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Abstract

Intelligence is a socially and scientifically interesting topic because of its prominence in human 

behavior, yet there is little clarity on how the neuroimaging and neurobiological correlates of 

intelligence differ between males and females, with most investigations limited to using either 

mass-univariate techniques or a single neuroimaging modality. Here we employed connectome-

based predictive modeling (CPM) to predict the intelligence quotient (IQ) scores for 166 males 

and 160 females separately, using resting-state functional connectivity, grey matter cortical 

thickness or both. The identified multimodal, IQ-predictive imaging features were then compared 

between genders. CPM showed high out-of-sample prediction accuracy (r > 0.34), and integrating 
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both functional and structural features further improved prediction accuracy by capturing 

complementary information (r = 0.45). Male IQ demonstrated higher correlations with cortical 

thickness in the left inferior parietal lobule, and with functional connectivity in left 

parahippocampus and default mode network, regions previously implicated in spatial cognition 

and logical thinking. In contrast, female IQ was more correlated with cortical thickness in the right 

inferior parietal lobule, and with functional connectivity in putamen and cerebellar networks, 

regions previously implicated in verbal learning and item memory. Results suggest that the 

intelligence generation of males and females may rely on opposite cerebral lateralized key brain 

regions and distinct functional networks consistent with their respective superiority in cognitive 

domains. Promisingly, understanding the neural basis of gender differences underlying intelligence 

may potentially lead to optimized personal cognitive developmental programs and facilitate 

advancements in unbiased educational test design.
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Introduction

Individual differences in overall intellectual performance can be measured using the 

intelligence quotient (IQ), which covers a variety of cognitive domains including memory, 

verbal comprehension, processing speed, reasoning, spatial ability and executive function 

(Deary et al. 2010). Consequently, intelligence is postulated to draw on communications 

between regions that are responsible for multiple high-order cognitive functions. A paper 

reviewed advances in functional and structural neuroimaging findings (Jung and Haier 2007) 

reported a striking consensus, named the Parieto-Frontal Integration Theory (P-FIT), which 

suggested that individual differences in intelligence can be characterized by a distributed 

network mainly involving the parietal and frontal regions (Vakhtin et al. 2014). This theory 

has been corroborated by numerous neuroscientific studies across various neuroimaging 

modalities (Langeslag et al. 2013; Song et al. 2008; Glascher et al. 2010; Vakhtin et al. 

2014; R. T. Jiang et al. 2017). Specifically, this theory implied that basic sensory/perceptual 

regions were responsible for visual/auditory recognition, imagery, elaboration, the parietal 

regions for structural symbolism, abstraction, the frontal regions for problem solving, 

evaluation, hypothesis testing, and then the anterior cingulate accounted for selecting the 

response (Colom et al. 2010).

On the other hand, sex discrepancy in intelligence has been of enduring biological interest in 

cognitive psychology, with existing studies converged in demonstrating superior memory 

and social cognition abilities in females, and better motor and social skills in males 

(Ingalhalikar et al. 2014). A wealthy of neuroimaging studies on intelligence have also 

demonstrated marked gender difference, focusing on showing how brain imaging measures 

differentially correlate with intelligence in males and females. For example, females’ 

intelligence demonstrates a greater reliance on functional connectivity (FC) between the 

bilateral Wernicke’s areas and left posterior superior temporal gyrus, while males’ 
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intelligence displays a closer correlation with FC between Broca’s area and auditory 

processing areas (Schmithorst and Holland 2007). Males show stronger intelligence/gray 

matter (GM) correlations in primarily frontal and parietal areas (Brodmann area, [BA] 8, 9, 

39, 40) (Haier et al. 2005), and greater hemispheric lateralization for various high-level 

cognitive domains like affective, language and memory (Cahill et al. 2001; Schmithorst and 

Holland 2006), whereas in females the strongest correlations are in frontal lobe (BA 10) 

along with Broca’s area (Haier et al. 2005). Regarding cortical thickness, females’ 

intelligence is strongly correlated with prefrontal and temporal association cortices, whereas 

intelligence of males exhibits pre-dominated correlations in temporal-occipital cortices (Narr 

et al. 2007; Goriounova and Mansvelder 2019). In addition, males exhibit stronger 

correlations with overall white matter volume, enhanced modularity, and greater within-

hemisphere connectivity (Ryman et al. 2016), whereas females show greater local and global 

efficiency, as well as between-hemisphere connectivity (Yan et al. 2011; Ingalhalikar et al. 

2014). Moreover, differences in hemispheric laterality are also hypothesized to exist between 

males and females. For example, males show more left hemisphere specialization for verbal 

processing and greater bilateral activity for visuospatial tasks, whereas females show greater 

bilateral activity for verbal processing and more right hemisphere specialization for 

visuospatial tasks (Clements et al. 2006). Studies also suggested that the male brain was 

more strongly lateralized than the female brain, which may underlie their greater 

vulnerability to disorders with disrupted brain asymmetries like schizophrenia, dyslexia and 

autism (Tomasi and Volkow 2012; Baron-Cohen et al. 2005).

Despite the fact that males and female exhibit striking differences in brain structure and 

function, there is little difference in general intelligence between them (Ryman et al. 2016). 

It appears that males and females may achieve comparable levels of general intelligence by 

using distinct strategies when solving cognitive tasks (Deary et al. 2010). Although gender 

difference in intelligence is socially and scientifically important, there is little clarity on how 

the neuroimaging and neurobiological correlates of intelligence differ between males and 

females. In addition, most existing investigations on intelligence focused on mass univariate 

approaches at the group level, ignoring the individual heterogeneity, or were restricted to 

using a single modality without utilizing complementary information provided by 

multimodal imaging data (Sui et al. 2018).

In the current study, we are motivated to ascertain the degree to which intelligence of males 

and females is underpinned by different neurobiological correlates using multimodal 

neuroimaging data in the context of individualized prediction. Addressing these issues could 

advance our understanding of the potential neurobiological basis underlying gender 

difference in intelligence, and promisingly lead to optimized personal cognitive programs 

which can narrow the gender gap that is believed to exist in some specific cognitive domains 

(Irwing and Lynn 2006). Specifically, we employed a recently developed machine learning-

based multivariate approach —connectome-based predictive modeling (CPM) (Shen et al. 

2017)—to quantitatively estimate individual’s intelligence scores using resting-state 

functional connectivity, grey matter cortical thickness or both. Previously, it has been stated 

that the strengths of CPM include its use of linear operation which allows for fast 

computation, robust generalization and straightforward interpretation of feature weights, as 

well as its purely data-driven nature which helps guard against the possibility of ignoring 
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potentially important features brought by hypothesis-driven approaches (Shen et al. 2017). 

The CPM has been successfully applied to predict aspects of human behaviors like 

personality traits (Hsu et al. 2018), attention (Rosenberg et al. 2016), creative ability (R. E. 

Beaty et al. 2018; Z. Liu et al. 2018) and treatment outcomes for cocaine use disorder (Yip 

et al. 2019) from patterns of brain connectivity. Moreover, CPM has also been used for the 

prediction of fluid intelligence. Specifically, Finn’s work successfully predicted the 

individual fluid intelligence scores with CPM in rigorous cross-validated analysis, 

demonstrating the potential of using CPM to reveal brain-behavior relationships and search 

for promising imaging biomarkers (Finn et al. 2015).

However, this study only used a single neuroimaging modality and didn’t investigate the 

gender difference. In the current study, we improved CPM which can now deal with 

multimodal neuroimaging features here, and derived improved prediction accuracy. Within a 

rigorous cross-validated analysis, our results showed that the intelligence generation of 

males and females may rely on opposite cerebral lateralized key brain regions and distinct 

functional networks, which is consistent with their superiority in cognitive domains.

Materials and methods

Subjects

Data used in the current study is same as our previous work (R. Jiang et al. 2018). A total of 

440 healthy college students who were all Han Chinese covering a wide range of research 

areas, were recruited from the University of Electronic Science and Technology of China 

(UESTC). The Ethics Committee of School of Life Science and Technology at the UESTC 

approved the research protocol. Participants provided written informed consent and were 

paid for their participation. Participants had no history of neurologic or psychiatric 

disorders, and were not taking medications that could interfere with their ability to complete 

a questionnaire or provide MRI data (R. Jiang et al. 2018). All participants completed the 

Chinese version of Wechsler Adult Intelligence Scale (WAIS-RC) (Dai et al. 1990; Wechsler 

1981). With high test-retest reliability, WAIS is a widely used measurement system that 

includes several fundamental cognitive performance subtests contributing to intelligence 

(Jensen 1998) including digit span, picture arrangement, information, block design, 

similarities, and digit symbol. The computed overall score from WAIS, i.e., Full-Scale IQ, 

can be used to represent the general intellectual abilities. Participants with either missing 

imaging data, incomplete WAIS assessment score or excessive head motion (defined as >3 

mm translation, or >3° rotation during the run) were excluded. Finally, 326 righted-handed 

subjects (160F/166M, mean age 19.0±1.1 years, range: 17–24 years) were retained for 

further analysis. In this investigation, Full-Scale IQ scores ranged between 74 and 126 

(mean IQ = 109.9 ± 11.1). There is no difference between males and females in age (p=0.55, 

Supplementary Figure S1) or education (males: 12.33±0.80 years; females: 12.38±0.84 

years; p=0.57). Males have a slightly higher IQ scores than females (p=0.041).

MRI data acquisition

Details of the imaging protocol can be found in our previous work (Zhang et al. 2015). 

Whole-brain imaging was performed on a 3T MR750 magnetic resonance scanner (GE 
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Healthcare). Resting-state fMRI data were acquired using a gradient echo, echo-planar-

imaging (GRE-EPI) sequence with the following parameters: Repetition Time (TR) =2000 

ms, Echo Time (TE) = 30 ms, field of view (FOV) = 240×240 mm2, flip angle = 90°, matrix 

= 64×64, voxel size = 3.75×3.75×4.0 mm3, 36 slices, and 245 volumes. High-resolution T1-

weighted volumetric sequence was acquired using the following parameters: TR = 8.16 ms, 

TE = 3.18 ms, FA = 7°, FOV =256×256 mm2, acquisition matrix =256×256, slice thickness 

= 1 mm without gap, slice number = 188. Before scanning, all subjects were instructed to 

move as little as possible, keep eyes closed, think of nothing in particular, and not fall 

asleep. Subjects were asked right after the scan whether they had fallen asleep during the 

scan. Notably, the mean framewise displacement (FD) was not correlated with IQ scores 

(p>0.05).

Whole-brain functional connectivity analysis

Functional imaging data were preprocessed using DPARSFA (Data Processing Assistant for 

RestingState fMRI Advanced Edition, http://rfmri.org/DPARSF). Details of preprocessing 

have been published elsewhere (Jin et al. 2015; R. Jiang et al. 2018). The first 10 volumes 

were discarded to allow for magnetization equilibrium. Subsequent preprocessing included 

slice timing correction, head motion correction, spatial normalization to the Montreal 

Neurological Institute (MNI) template, resampling to 2 × 2 × 2 mm3 , smoothing using a 4 

mm Gaussian kernel, temporal band-pass filtering (0.01 Hz to 0.08 Hz), and regressing out 

nuisance signals of head motion parameters, white matter, CSF, and global signals.

The registered fMRI volumes in the MNI template were parcellated into 116 nodes 

according to the Automated Anatomical Labeling (AAL) (Tzourio-Mazoyer et al. 2002). 

Mean regional time series were obtained for each individual by averaging voxel-wise fMRI 

time series in each of the 116 regions of interests (ROI). Pearson correlations of time courses 

between each node pair were calculated, and Fisher transformed, generating a 116 × 116 

symmetric connectivity matrix per subject. After removing 116 diagonal elements, we 

extracted elements in the upper triangle of the FC matrix as features for analyzation.

Overall, the FC matrix was reshaped in a feature vector in the dimension of (116 × 115)/2 = 

6670.

Cortical thickness calculation

Vertex-wise estimates of cortical thickness were calculated using publically available 

software package FreeSurfer (version 5.3.0, http://surfer.nmr.mgh.harvard.edu/). Initially, 

grey matter/white matter (white) and grey matter/cerebrospinal fluid (pial) surfaces were 

constructed for each participant. Detailed processing procedures refer to (Fischl and Dale 

2000; Cui et al. 2016). The generated cortical surfaces were then quality checked to ensure 

accurate quantification of cortical thickness. The shortest distance between the white and 

pial surfaces at numerous vertices across the entire cortical mantle were calculated. Finally, 

the reconstructed cortical surfaces for each participants were aligned to a standardized 

cortical surface tessellation with 40,962 vertices per hemisphere and smoothed with a 20 

mm full-width at half-maximum Gaussian filter (B. Liu et al. 2016).
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Individualized prediction

In this study, we applied CPM to estimate participants’ IQ scores using either whole-brain 

FC or cortical thickness for males, females and all subjects separately. Figure 1 demonstrates 

a summary of our analysis flowchart. In light of CPM has been described in detail elsewhere 

(Shen et al. 2017), we briefly describe the procedure in the context of functional 

connectivity here. We employed a leave-one-out cross-validation (LOOCV) strategy to 

predict the IQ scores of novel individuals. Previously, the CPM procedure, along with 

LOOCV approach, has been widely applied for the prediction of multiple cognitive metrics 

and demonstrated robust prediction performance (Finn et al. 2015; R. E. Beaty et al. 2018; 

Feng et al. 2018; Greene et al. 2018; Hsu et al. 2018; Rosenberg et al. 2016). During 

LOOCV, each subject is designated as the testing sample in turns while the remaining 

subjects are used to train the CPM model. Each iteration consisted of three steps:

1. Feature selection. We calculated the Pearson correlation between IQ scores and 

each of the 6670 FCs (edges) across training subjects, obtaining an r-value with 

an associated P value for each edge (Hsu et al. 2018). Next, edges that were 

positively correlated with IQ scores with a P value < INLINE made up the 

positive network or high-intelligent network (edges whose strength indexed 

higher IQ scores), while edges negatively correlated with IQ scores with a P 

value < INLINE made up the negative network or low-intelligent network (edges 

whose strength indexed low IQ scores).

2. Model building. By summing edges in the high-intelligent or low-intelligent 

network, we obtained a single summary statistic ‘network strength’ for each 

training subject. Then, a simple linear regression model was constructed to 

estimate the relationship between the high-intelligent or low-intelligent network 

strength with observed IQ scores (R. E. Beaty et al. 2018). A general linear 

model (GLM) was also built by combining the high- and low-intelligent network 

strengths.

3. Prediction. The model built in training subjects was applied to the one left out 

subject, generating a predicted IQ score. By exchanging the role of training and 

testing subsets in turn, and pulling together all testing subjects across N (sample 

size) loops, we obtained the predicted IQ scores for all participants.

Additionally, we repeated the CPM procedure with 81924 cortical thickness values as input 

features and acquired the high-intelligent and low-intelligent regions. The prediction 

performance was assessed by calculating the Pearson’s correlations between observed and 

predicted IQ scores and the normalized root mean square error (NRMSE). Moreover, to 

confirm the specificity of the IQ-predictive models and control for potential confounds, we 

also calculated the partial correction between predicted and observed IQ scores after ruling 

out age, mean frame-to-frame displacement and education years.

Note that the optimal parameters of INLINE and INLINE were determined by the 

data for each imaging modality, and once determined, they remained constant 

across all cross-validation loops (R. Jiang et al. 2018).
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Details regarding parameter tuning and the optimal parameters used in final results are 

provided in Supplementary File S1 and Table S1. To implement multimodal prediction, we 

then combined functional and structural features using multiple linear regression. 

Specifically, positive network strength, positive cortex strength, negative network strength 

and negative cortex strength were concatenated horizontally as input features. Notably, the 

multimodal prediction was also performed within a LOOCV strategy.

IQ-predictive grey matter cortices and functional networks

Considering that our prediction was performed within a LOOCV strategy, in each iteration, 

slightly different imaging features were selected. Supplementary Table S1 demonstrates the 

number range of features identified across all loops. Predictive regions/FCs were determined 

by pulling together all features that appeared in each of the cross-validation loops. To 

facilitate characterization of the biological substrates underlying functional networks to 

prediction, we grouped the 116 AAL nodes into seven canonical networks similar to those 

defined previously in resting-state studies: default mode (DMN), visual, cognitive control 

(CC), sensorimotor, auditory, cerebellar and subcortical networks (Rashid et al. 2014; Allen 

et al. 2011). Furthermore, to confirm the predictive power of each individual canonical 

network, we reran the CPM procedure in two ways: (1) prediction with whole-brain FCs 

after excluding FCs that appeared in one of the seven canonical networks in turn (Rosenberg 

et al. 2016); and (2) prediction by restricting the feature selection step in CPM to FCs from 

each of the seven canonical networks alone (using only within-network edges) (Finn et al. 

2015).

Data and code availability—Matlab scripts were written to implement individualized 

prediction. The code is available from the authors upon request. The data used for prediction 

in this study can be accessed upon request to the corresponding author.

Results

Individualized prediction

CPM achieved appreciable estimations of IQ scores, using functional connections, cortical 

thickness or both for males and females respectively (Table 1). Prediction with high-

intelligent region in males was absent from our results, because we didn’t detected any 

positively correlated cortical thickness in males. Notably, combining functional connectivity 

and cortical thickness further improved prediction accuracy (r[male] = 0.45, p =1.2×10−9, 

RMSE= 9.83, NRMSE =0.088; r[female] = 0.45, p = 1.7×10−9, RMSE= 10.19, NRMSE= 

0.094; Fig 2) than using any single modality alone. In addition, predictions remain 

significant after regressing out age, mean framewise head motion and education years, ruling 

out these potential confounds (Table 1). Moreover, to determine whether our results were 

affected by the brain parcellation, we reran the prediction pipeline using FCs based on the 

246-node Brainnetome atlas (Fan et al. 2016), and results suggest that using a less fine-

grained brain atlas like AAL does not influence our prediction performance (Figure S2).
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Additionally, CPM also achieved comparable prediction accuracy when reran the prediction 

procedure by restricting the analysis to only subjects with IQ scores ≥85 (Table S2). Figure 

S3 demonstrated the prediction results for all subjects.

IQ-predictive brain regions and functional networks

For males, the low-intelligent regions encompass 258 features located exactly in two 

regions: the left inferior parietal lobule (IPL) and right precuneus (Fig. 3a). While for 

females, CPM reveals 284 positively correlated features (high-intelligent region) 

concentrated primarily in the right insula, right superior temporal gyrus (STG), and the right 

inferior frontal gyrus; and 444 negatively correlated features (low-intelligent region) 

distributed across the right IPL, right precuneus extending to the left caudal middle frontal 

cortex (Fig. 3b). Together, these represented <0.6% of the total 81924 possible features 

(Table S1). Specifically, for females, 93.54% of all the identified features were located in the 

right brain. For males, 63.2% of all 258 features were located in the left brain (Table S3). 

Regarding the consensus features (appear in every iteration of the cross-validation, with a 

100% identification rate), all GM features from females were located in the right brain, 

while all GM features from males were located in the left brain (Table S4).

With regard to FCs, the high-intelligent network comprises 162 edges, and the low-

intelligent network comprises 309 edges in males (Fig 3c). Anatomically, the top 5 nodes 

showing the highest degree (i.e. the total number of connected FCs identified across all 

cross-validation loops) in the high-intelligent network were the left parahippocampal gyrus 

(PHG), right middle temporal gyrus, left anterior cingulum, and left/right middle cingulum, 

which are primarily hubs of DMN and cognitive control network; while the top 5 nodes in 

the low-intelligent network were the right superior parietal lobule, right inferior temporal 

gyrus, left calcarine, left middle occipital gyrus and left fusiform, spanning primarily 

sensorimotor and visual networks (Fig. 4a). For females, 145 and 329 edges were detected in 

the positive and negative networks separately (Fig. 3d). Anatomically, the top 5 most 

important nodes in the high-intelligent network were the left putamen, right cerebellar VIII, 

left medial orbital part of superior frontal gyrus, left vermis IX, and right putamen, 

predominantly corresponding to core hubs of the cognitive control and cerebellar network; 

the top 5 nodes in the low-intelligent network pre-dominantly concentrated in the 

sensorimotor network comprising the left/right postcentral, right supplementary motor area, 

right superior parietal lobule, and the right precentral gyrus (Fig. 4b). Collectively, these 

accounted for <5% of the brain’s 6670 total edges. Degrees of all 116 AAL nodes for males 

and females can be found in Table S5 and S6. Additionally, detailed information of the 

consensus FCs (Fig. 3c, d, in bold edge) (R. Jiang et al. 2018; Dosenbach et al. 2010) and 

their correlations with IQ scores can be found in Table S7 and S8. Moreover, functional 

connections of females (mean length 79.76 mm) in the high-intelligent network were 

significantly longer (p=0.0045) in anatomical vector distance than these of males (mean 

length 71.37 mm), while there was no significant difference in the length of functional 

connections in the low-intelligent network between them (Fig. 3e, f, Table S9). The IQ-

predictive GM regions and functional connections derived from subjects with IQs≥85 were 

very similar to those derived from all subjects (Table S2 and Figure S4). Additionally, 
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predictive GM regions and functional connections derived from all subjects can be found in 

Table S3 and Figure S5.

Separately evaluating the importance of each canonical network, we found that prediction in 

females was insignificant in only one case—when CPM was performed on whole-brain FCs 

excluding the cerebellar edges in the high-intelligent network (r[-CB] = −0.03, p = 0.74). 

For males, excluding either DMN or CC edges in the high-intelligent network generated 

insignificant predictions (r[-DMN] = 0.12, p =0.11; r[-CC] = 0.13, p =0.11). By contrast, all 

predictions remain significant in the low-intelligent network when excluding edges in any of 

the seven networks. Interestingly, CPM achieved consistent results when predicting using 

only within-network edges from each of the seven canonical networks. Specifically, 

predictive model based on the positive network was highlighted with the most contribution 

for the cerebellar network in females (r[CB] = 0.36, p =3.4×10−6), and the DMN in males 

(r[DMN] = 0.17, p =0.03). Negative features in all seven networks yielded attenuated 

prediction performance, with the visual network emerged as the most predictive one for both 

males (r[VIS] = 0.26, p =52.×10−4) and females (r[VIS] = 0.26, p =6.7×10−4) (Table 2).

Discussion

Intelligence is a very general capability that accurately predicts various important life 

outcomes including socioeconomic status and health (Colom et al. 2010). Currently, there is 

little understanding of how neurobiological correlates of IQ differ between males and 

females. In the present study, we successfully uncovered the functional and structural 

correlates of intelligence using CPM for males and females separately, demonstrating that 

intelligence can be characterized by both the resting-state FCs and cortical thickness. More 

importantly, we found that intelligence of males and females may be underpinned by 

different neurobiological substrates, complementing existing work on gender difference of 

intelligence.

Methodological considerations

CPM is a recently developed method that has been successfully employed to predict multiple 

cognitive traits like attention (Rosenberg et al. 2016), reading comprehension ability 

(Jangraw et al. 2018), and creativity (R. E. Beaty et al. 2018) using neuroimaging features of 

brain connectivity or whole genome genes (Z. Liu et al. 2018). Rather than constraining to 

specific ROIs, CPM performs a whole-brain data-driven searching for possible 

neuroimaging features most related to the target cognitive metrics, and uses the strength of 

these features to generate predictions. It has been demonstrated that CPM performs as well 

as or better than many of the existing approaches in brain-behavior prediction, and confers 

an advantage in interpreting the derived predictive neuroimaging features (Shen et al. 2017). 

However, CPM was mostly applied in FCs previously, with other neuroimaging features 

limited. For the first time, cortical thickness was adopted as input of CPM in the prediction 

of cognitive construct. Given that anatomically neighboring cortical features demonstrate 

similar characteristics and closer relationships, predictive regions derived with CPM in our 

results are distributed densely on neighboring brain areas, which relates to more biological 

significance. In contrast to other intensity or volumetric-based GM measures, the thickness 
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of cortex delineates properties in cytoarchitectural aspects of neuropil, including the 

arrangement and density of neurons, nerve fibers and neuroglia (Narr et al. 2007), which 

may more closely link with intelligence (Narr et al. 2005). Similar to previous works using 

CPM (Rosenberg et al. 2016), both of high-intelligent (predicting higher IQ scores) and low-

intelligent (predicting lower IQ scores) models generated significant predictions. Generally, 

FC-based models showed better numerical prediction accuracy, implying that intelligence 

may be more strongly related to brain function than structure (Song et al. 2008; Choi et al. 

2008). More importantly, two types of neuroimaging features were leveraged to implement 

multimodal prediction, achieving improved prediction accuracy than using any single 

modality alone, indicating that complementary information can be provided by different 

modalities (Meng et al. 2017; Sui et al. 2015). Putatively, multimodal data can capitalize on 

the strength of each imaging modality effectively (Sui et al. 2012; Qi et al. 2018), and 

holistically uncover the biological substrates underlying intelligence. Correspondingly, in 

our study, prediction with cortical thickness explored more gender difference in the 

lateralization of predictive brain regions, while prediction with FCs detected more gender 

difference in the specification of contributing functional networks.

Gender difference in intelligence-associated brain structures

It has long been recognized that the spatial ability and verbal ability are two core cognitive 

domains that are consistently reported to exhibit significant sexual dimorphism (Bell et al. 

2006). Generally, existing studies converged on an consensus that females commonly 

outperform males in verbal-related tasks including manual speed, verbal fluency, verbal and 

item memory, whereas males outperform females in mathematical and visuospatial tasks 

including mental rotation and logical thinking (Kimura 1996). Consistently, brain regions 

and functional networks detected in our results are related to males’ and females’ superiority 

in cognitive domains.

As shown in our results, the neuroanatomy of both high-intelligent and low-intelligent 

regions concentrates primarily in higher-order association cortices (parietal, prefrontal, and 

insula cortex), which are similar to brain regions reported in previous investigations of 

intelligence (Colom et al. 2010). Interestingly, negative correlations between IQ scores and 

cortical thickness are more pronounced than positive ones in our study. Apparently, this 

finding may seem a little counterintuitive to the well-recognized central working hypothesis, 

which attributes more neuronal mass to higher-level cognitive abilities. However, our results 

are in line with findings on the mechanisms of maturation-induced and learning-induced 

synaptic plasticity, both of which are associated with an initial increase of synapse number 

and a subsequent synaptic pruning (Genc et al. 2018; Huttenlocher 1990), a process which 

can speed up learning and processing, and save resources of network and energy by using 

less computation to perform tasks (Genc et al. 2018). Speculatively, more intelligent adults 

may optimize their structural brain network efficiency by employing synaptic pruning 

(Schnack et al. 2015; Goh et al. 2011).

Apart from the common brain regions appearing in both gender groups, we found significant 

IQ/cortical thickness correlations in caudal middle frontal and STG in females, but not in 

males. Our findings are in accordance with the hypothesis that tasks requiring verbal 
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processing and memory involve the participation of frontal-temporal cortical networks (Narr 

et al. 2007). In addition, the STG, an important part of anterior temporal lobe, is central to 

the acquisition of long-term lexical memories (Bonner and Price 2013), which contributes 

greatly to verbal abilities in human. The IPL is reported to participate in language 

processing, mathematical operations and during cognitive set-shifting tasks. The IPL can be 

activated in high-intelligent individuals to implement feedback evaluation through an 

attention-related process (Nejad et al. 2009). Interestingly, the right IPL was reported to 

participate more in tasks like sensing relationships between body parts, spatial working 

memory and the recognition of affect (Frederikse et al. 1999). By contrast, the left IPL 

participated more in cognitive processes concerning spatial perception like motor planning, 

mental rotation of 3-D objects, time estimation and judgments of speed and position 

(Frederikse et al. 1999). In support of our findings, (Narr et al. 2007) also reported a 

negative correlation between IQ scores and cortical thickness in the left IPL in males. 

Coincidentally, in our study, correlations between cortical thickness in IPL and intelligence 

were found to be lateralized to the left brain for males, and right for females. However, there 

are also studies suggesting a functional contribution of the left IPL to social cognition and 

language tasks (Bzdok et al. 2016). Specifically, Hartwigsen et.al demonstrated that the left 

angular gyrus, a key part of IPL, participated in the language processing by facilitating 

speech comprehension in challenging listening conditions (Hartwigsen et al. 2015), which is 

consistent with the fact that lesions of the left angular gyrus are associated with difficulties 

in language tasks. Apart from the IPL, most brain regions identified in females were right 

lateralized. Previous work has suggested that males show dominance of left brain, which is 

described as more analytical, sequential, logical, detailed, and are excel at logical thinking 

and numerical computation (Fah 2009; Bonner and Price 2013). In contrast, females tend to 

use their right brain more efficiently and rely more on intuitive thinking in decision-making 

(Ingalhalikar et al. 2014).

Gender difference in intelligence-associated brain function

Nodes showing greater degrees in the high-intelligent networks correspond to high-level 

cognitive networks, such as the DMN and executive control network (ECN), especially for 

males. Numerous studies have shown that high-level cognitive processes may rely on the 

dynamic coupling of DMN and ECN (Jung et al. 2013). Specifically, the DMN is 

responsible for generating ideas in both domain-specific and domain-general tasks including 

the semantic memory and mental simulation (R. E. Beaty et al. 2018). Then, the ECN 

contributes to the selection and modification of appropriate response from candidate ideas 

by evaluating their efficacy (Roger E. Beaty et al. 2016). Different from brain areas derived 

in the low-intelligent regions, functional nodes showing the highest degrees in the low-

intelligent networks are among various primary sensory networks (e.g., visual, auditory and 

sensorimotor). Previous work has verified the role of these regions in processing procedural 

(habitual) responses, suggesting that low-creative people might be unable to transcend 

learned knowledge when attempting to generate novel ideas (R. E. Beaty et al. 2018). A 

recent study also reported negative associations between these primary sensory regions and 

creative ability (R. E. Beaty et al. 2018). Given that both creativity and intelligence are high-

level cognitions sharing some common mechanisms (Kenett et al. 2018), we thus posit that 
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low-intelligent people may depend more on retrieving previously learned knowledge 

(Dezfouli and Balleine 2012).

Among all functional nodes in the high-intelligent network, the left PHG exhibits the highest 

degree for males. The PHG has been studied extensively and been implicated in a variety of 

spatial analysis-related cognitive tasks like spatial representation, navigation and scene 

perception (Aminoff et al. 2013). Studies have emphasized an involvement of PHG in 

learning spatial configurations of objects. Previous evidence for the role of PHG in spatial 

processing has demonstrated the existence of various types of activity in this region in the 

processing of scenes and environmental landmarks (Levy et al. 2001; Bar et al. 2006), 

aspects of spatial memory (Burgess et al. 2001), and spatial navigation (Janzen et al. 2007). 

In contrast, for females, the left putamen in the high-intelligent network demonstrates the 

highest degree. As an essential part of the striatum, the putamen is intimately recognized to 

be crucial for higher cognitive functions like mental flexibility, learning, cognitive control 

and language processing particularly (Becker et al. 2016). AVBM study indicated that 

multilinguals are skilled in handling and mastering multiple languages (i.e., articulatory 

repertoire) primarily by inducing structural plasticity in the left putamen. And compared 

with monolinguals, multilinguals generally demonstrated higher GM density and activation 

level in left putamen (Abutalebi et al. 2013). Additionally, neuromodulator studies implied 

that dopamine transporters availability in caudate and putamen participated in the mediation 

of intelligence (Grazioplene et al. 2015). Specially, females performed better on verbal 

learning tasks, which may be due to their higher dopamine availability in striatum.

Notably, among all brain networks, the cerebellar network contributes the most to IQ 

prediction for females. Traditionally, the cerebellum is considered to participate in the 

coordination and regulation of somatic and autonomic motor tasks (Manto et al. 2012). 

However, a paper reviewed advances in functional and structural neuroimaging findings of 

the cerebellum, as well as evidence from neuropsychological and neurophysiological 

investigations (Murdoch 2010), and concluded that the cerebellum also participated in 

mediation of a wealthy of cognitive functions, especially language processing such as 

syntax, verbal fluency, word retrieval, reading and writing (Mariën et al. 2014). 

Correspondingly, many clinical studies showed that patients with cerebellar pathology 

exhibited various types of impairments in linguistic functions (Murdoch 2010). Moreover, a 

meta-analysis study provided support for the participation of cerebellum in cognition, 

suggesting that both cognitive tasks of language processing and verbal working memory 

employed overlapped cerebellar regions (Stoodley and Schmahmann 2009). Likewise, 

another study posited that the cerebellum participates in verbal working memory through 

two separate processes: articulatory rehearsal which involves a cerebello-frontal circuit, and 

the storage of information which involves a cerebello-parietal loop (Chen and Desmond 

2005; Stoodley and Schmahmann 2009). Moreover, a recent fMRI study employing tools 

from network theory reported that both males and females have the small-worldness 

characteristics, but females show higher neural network efficiency in cerebellum, especially 

for higher-intelligence females (Pezoulas et al. 2017). Putatively, this configuration 

maximizes the efficiency and reduces the costs of information transfer, signifying that the 

network organization in females is more efficient. Moreover, longer functional connections 

distance for females in the high-intelligent network may reflect more myelination and 
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functional integration between distant regions (Fair et al. 2007), which can facilitate efficient 

interareal communication (van den Heuvel and Sporns 2011), and consequently afford more 

pronounced positively correlated cortical thickness.

Limitations and future directions

Some issues relating to the current study need to be mentioned. First, gender differences in 

intelligence were discussed primarily around the verbal and nonverbal aspects, however, no 

significant differences were observed in verbal domains of intelligence test between them in 

our data. It may be due to the great homogeneity of our current samples. Participants in the 

study are all young college students with a limited age range (19 to 24 years) for whom 

higher intellectual capacity than average were likely achieved. Although homogeneous 

samples can rule out a number of potential confounds, such samples are typically not 

representative of the broader population. Moreover, it has been reported that age exerted an 

important confound on both the intelligence level and cortical development (Schnack et al. 

2015; Narr et al. 2007). Studies consist of subjects with more heterogeneous properties 

warrant further consideration, and generalization of the current results should be evaluated in 

external cohorts. The gender difference in intelligence can also be interpreted from other 

aspects in the future. Third, since integrating cortical thickness and resting-state FC achieved 

improved prediction performance, other types of neuroimaging features including GM 

volume, fractional anisotropy and dynamic FC characteristics (Zhi et al. 2018) can also be 

adopted for prediction in the context of multimodal fusion in the future. Additionally, future 

study can employ fine-grained brain parcellations that divide the human brain into well-

defined functional networks (Power et al. 2011), which may confer more biological 

significance.

Conclusions

In this study, we built a connectome-based IQ-prediction procedure based on solid cross-

validation by integrating multi-modal neuroimaging data, which complements existing work 

on individualized prediction in human intelligence. Moreover, we identified and compared 

the gender-different imaging biomarkers that may predict other individuals’ educational or 

health outcomes (Gabrieli et al. 2015). More importantly, we found that intelligence of 

males and females were underpinned by different neurobiological correlates. Specifically, 

males IQ demonstrated closer correlations with cortical thickness in the left IPL, and with 

functional connectivity in the left PHG and default mode network; whereas female IQ was 

more correlated with cortical thickness in the right IPL, and with functional connectivity 

linking left putamen and within the cerebellar networks, which is consistent with their 

respective superiority in cognitive and behavioral performance (visuospatial processing vs. 

verbal and memory ability). In summary, better understanding the neuroimaging correlates 

and gender difference underlying human intelligence may facilitate advancements on 

unbiased educational or cognitive test design, particularly with regard to popular 

standardized tests such as the GRE and SAT, which are criticized for showing gender-bias 

(Hill et al. 2014). Furthermore, females and males can be guided to take advantage of their 

most efficient cognitive procedure in problem solving (Halpern et al. 2007), which may 

allow more flexibility and positively impact overall performance.
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Fig. 1. Summary of the prediction flowchart and the derived neural correlates for intelligence.
In the current study, we employed CPM to estimate individual’s IQ scores using resting-state 

functional connectivity, grey matter cortical thickness or both. Importantly, integrating both 

functional and structural features improved prediction accuracy. Within rigorous cross-

validated analysis, our results showed that the intelligence generation of males and females 

may rely on opposite cerebral lateralized key brain regions and distinct functional networks, 

which is consistent with their respective superiority in cognitive domains
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Fig. 2. Scatter plot of the model-estimated IQ scores with respect to observed values using 
multimodal neuroimaging features.
When integrating functional connectivity and cortical thickness features together as input for 

CPM, Pearson’s correlations of r[male] = 0.45 (p = 1.2 × 10−9) and r[female] = 0.45 (p = 1.7 

× 10−9) between predicted and observed IQ scores were achieved for males and females 

respectively. All values were standardized to z-scores for visualization
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Fig. 3. Brain regions and functional connections predicting IQ scores for males and females.
For males, CPM identified 258 features in the low-intelligent region (a), 162 connections in 

the high-intelligent network, and 309 connections in the low-intelligent network (c). For 

females, a respective 284 and 444 features were encompassed in the high-intelligent and 

low-intelligent regions (b), while 145 and 329 edges were encompassed in the high-

intelligent and low-intelligent networks (d). As demonstrated in the circle figure, the 116 

functional nodes are grouped into eight AAL-defined macroscale brain regions according to 

their lobe locations. Edges in the high-intelligent network are colored in orange, while 

connections in the low-intelligent network are colored in blue. Edges that appear in every 

iteration of the LOOCV (a 100% identification rate) are visualized in bold. (e). Functional 

connections of females in the high-intelligent network were significantly longer in 

anatomical vector distance than those of males. (f). There was no difference in the length of 

connections in the low-intelligent network between males and females
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Fig. 4. Functional nodes in the high-intelligent and low-intelligent networks.
To facilitate characterization, we grouped the 116 nodes defined in AAL into seven 

canonical networks that were defined previously in resting-state studies: default mode 

(DMN), visual (VIS), cognitive control (CC), sensorimotor (SM), auditory (AUD), 

cerebellar (CB) and subcortical network (SC). The node size denotes degree, which 

represents the number of connected functional connections identified in the prediction 

procedure across all cross-validation loops
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