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Abstract

Temporal dynamics of gene expression inform cellular and molecular perturbations associated 

with disease development and evolution. Given the complexity of high-dimensional temporal 

genomic data, an analytical framework guided by a robust theory is needed to interpret time-

sequential changes and to predict system dynamics. Here we model temporal dynamics of the 

transcriptome of peripheral blood mononuclear cells in a two-dimensional state-space representing 

states of health and leukemia using time-sequential bulk RNA-seq data from a murine model of 

acute myeloid leukemia (AML). The state-transition model identified critical points which 

accurately predict AML development and identifies step-wise transcriptomic perturbations that 

drive leukemia progression. The geometry of the transcriptome state-space provided a biological 

interpretation of gene dynamics, aligned gene signals that are not synchronized in time across 

mice, and allowed quantification of gene and pathway contributions to leukemia development. Our 

state-transition model synthesizes information from multiple cell types in the peripheral blood and 

*Correspondence: Russell C. Rockne, rrockne@coh.org, Ya-Huei Kuo, ykuo@coh.org.
†These authors contributed equally
††These senior authors contributed equally

HHS Public Access
Author manuscript
Cancer Res. Author manuscript; available in PMC 2021 February 01.

Published in final edited form as:
Cancer Res. 2020 August 01; 80(15): 3157–3169. doi:10.1158/0008-5472.CAN-20-0354.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



identifies critical points in the transition from health to leukemia to guide interpretation of changes 

in the transcriptome as a whole to predict disease progression.
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Introduction

Acute myeloid leukemia (AML) is a devastating malignancy of the hematopoietic system 

that can rapidly lead to bone marrow failure and death. Approximately 21,000 new patients 

are diagnosed with AML each year in the United States, and the latest 5-year overall survival 

rate remains at only 28% (https://seer.cancer.gov)(1). Thus, novel diagnostic and therapeutic 

approaches are highly needed.

AML comprises multiple distinct biological and clinical entities characterized by gene 

mutations and chromosomal abnormalities that drive leukemogenesis and predict prognosis 

and treatment response. Genomic studies such as the cancer genome atlas have revealed 

mutational landscapes in AML, highlighting patterns of cooperation and exclusivity among 

the gene mutations in the ontogenesis of the disease(2). These various genetic mutations 

ultimately alter the expression of downstream genes and are therefore associated with unique 

gene expression profiles representing functional networks in leukemic cell biology. 

Identification of genomic alterations including gene mutations, epigenetic changes, and gene 

expression profiles, obtained by high-throughput sequencing assays are becoming a part of 

the routine clinical assessment of AML patients at diagnosis and subsequent follow-ups.

As a biologically complex disease with genomic alterations and expression, AML can be 

viewed as an evolving, dynamic system wherein multiple interconnected inputs produce 

changes in the disease state that correspond to specific clinical phenotype. However, with the 

plethora of non-synchronized genomic alterations (e.g., gene mutations, deletions, 

epigenetic changes) and differentially expressed genes that can be detected at any given time 

point in patient’s peripheral blood (PB) or bone marrow (BM), it is challenging to 

quantitatively determine which of these changes are biologically and clinically relevant to 

predict disease evolution (e.g., malignant cell transformation, treatment response or 

resistance, disease relapse). Although methods have been proposed to analyze time-series 

genomic data(3–5), it remains critical to develop novel approaches that improve the accuracy 

of predicting disease evolution and treatment response. Thus, a framework guided by a 

robust theory is needed to interpret and predict a system’s dynamics. To this end, a central 

challenge for interpretation of dynamic data is the identification and prioritization of the 

genomic alterations and gene expression changes that at defined time-points, and to integrate 

all available information to accurately predict disease evolution.

Here, we propose that AML initiation and progression can be viewed as a state change of the 

transcriptome of BM or PB cells. To support this hypothesis, we apply concepts from state-

transition theory to identify time-dependent critical transcriptomic perturbations that predict 
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disease initiation and progression. To this end, we use a well-established conditional knock-

in mouse model that mimics a subset of human AML driven by the fusion gene CBFB-
MYH11 (CM), corresponding to the cytogenetic rearrangement inv(16)(p13.1q22) or 

t(16;16)(p13.1;q22) [henceforth inv(16)] in the human disease. Inv(16) is one of the most 

common recurrent cytogenetic aberrations and is found in approximately 5–12% of all 

patients with AML. The selection of this model was motivated by the possibility to select a 

common starting time given that the CM gene can be pharmacologically induced, the 

reliability of the mouse model to develop AML stochastically over time, and the feasibility 

to follow disease evolution from a state of health to a state of leukemia through time-series 

sampling of PB mononuclear cells (PBMCs) of each individual mouse. Induction of CM 
expression disrupts normal hematopoietic differentiation, resulting in perturbed 

hematopoiesis in the BM and an increased probability of state-transition from health to 

leukemia.

We show here that temporal dynamics of the PBMC transcriptome from CM mice are 

predictive of state-transition from health to leukemia. We represent the transcriptome as a 

particle moving in a two-dimensional state-space (i.e., normal hematopoiesis and leukemia) 

and identify state-transition critical points that correspond to specific states of the disease 

evolution, and associate with changes in the expression of individual genes and pathways 

that contribute to leukemogenesis.

Materials and Methods

State-transition model to describe transcriptome dynamics and development of AML

State-transition theory has a rich mathematical foundation(6) and has been broadly applied 

in various scientific fields, from chemistry, to physics, and biology(7–12) (see Yuan et al(13) 

for a thorough review of applications to cancer). We applied state-transition theory to model 

AML development and evolution, starting with the observation that the cellular composition 

of BM and PBMCs changes over time in relation to disease state (Figure 1A). To this end, 

therefore, we expect gene expression profiles of the BM and PBMCs to change over time 

during leukemia development and progression. Thus, we reasoned that we could use changes 

in the transcriptome to model disease evolution, i.e. from health to leukemia. Following 

state-transition theory, we postulated that in a state of health, a large energy barrier exists 

which reduces the probability of the system (i.e., a mouse or a patient) to transition from a 

state of normal hematopoiesis to a state of leukemia. Once hematopoiesis is perturbed by the 

expression of one or more leukemogenic events and the transcriptome changes, the energy 

barrier is reduced, and the probability of transition from normal hematopoiesis to leukemia 

increases, but not vice versa, because the system will tend to the lowest energy state. A state 

of leukemia is defined here as greater than 20% circulating blasts, based on the established 

AML diagnostic guideline(14).

To translate these concepts into a state-transition model, we represent the transcriptome as a 

particle undergoing Brownian motion in a double-well quasi-potential (denoted Up) with 

two stable states (see Table 1 glossary of terms). Leukemogenic events alter the quasi-

potential so that the energy barrier is lowered and the probability of the transcriptome 

particle moving from one stable state to another, i.e. from health to leukemia, is increased. 
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The motivation for this double-well model is the underlying hypothesis that there are two 

states in this experimental system: health and leukemia. This is because if a mouse is healthy 

it will remain healthy without an oncogenic alteration, and if a mouse has leukemia, it will 

remain with leukemia until moribund without a treatment. We note that in our model, the 

existence of a transition state between health and leukemia follows directly from modeling 

the motion of a particle in a potential energy landscape; between two stable states (i.e. 

valleys) there must be an unstable state (i.e. peak).

The states in our model are identified with critical points denoted as c1*, c1, c2, c3

corresponding to local minima and maxima of the quasi-potential Up (Figure 1B). The 

critical point c1 represents the reference state of perturbed hematopoiesis; a stable state with 

no evidence of disease that occurs upon activation of an initial leukemogenic event (i.e. 

CM). We differentiate c1 from c1*, which is a critical point that represents the reference stable 

state of normal hematopoiesis in control mice. The critical point c3 represents a state of overt 

leukemia. The critical point c2 represents an unstable transition state between the states of 

health and leukemia, i.e. between c1 and c3. Because the critical point c2 is an unstable 

transition state, the model predicts that it would be unlikely to observe the system precisely 

at or very near this state. Thus, the model predicts that when the system crosses the unstable 

critical point c2, the development of leukemia becomes inevitable and the velocity of the 

transcriptome particle will increase toward c3. This can be interpreted biologically as an 

acceleration of leukemia progression following a critical change in the transcriptional state 

of the system as observed from the peripheral blood.

We tested the double-well state-transition model by performing a time-series gene 

expression study using a well-established, conditional knock-in mouse model (Cbfb+/56M/
Mx1-Cre; C57BL/6) and observe the transcriptome over disease initiation and progression. 

The Cbfb+/56M/Mx1-Cre mouse recapitulates the human inv(16) AML that is also driven by 

the CM fusion gene. In this mouse, CM expression is induced via the activation of Cre-

mediated recombination by intravenous administration of synthetic double-stranded RNA 

polyinosinic–polycytidylic acid [poly (I:C)] (supplemental Figure S1)(15,16). We collected 

PBMC samples from a cohort of CM-induced mice (n = 7) and similarly treated littermate 

control mice lacking the transgene (n = 7) before induction (T0) and at one-month intervals 

after induction up to 10 months (T1-T10) or when the mouse was diseased and moribund. 

All mice were maintained in an AAALAC-accredited animal facility, and all experimental 

procedures were performed in accordance with federal and state government guidelines and 

established institutional guidelines and protocols approved by the Institutional Animal Care 

and Use Committee (IACUC) at the Beckman Research Institute of City of Hope. We 

collected blood at one-month intervals because this was the most frequent sampling allowed 

under IACUC guidelines given the volume of blood required to perform flow cytometry and 

RNA-seq analyses. All the CM-induced mice developed AML within the 10-month duration 

of the experiment (Figure 1C), except for one mouse that exhibited CM-perturbed pre-

leukemic expansion of progenitor populations in the BM but evidence of circulating 

leukemic blasts by the end of experiment. All the collected PBMC samples were analyzed 

by RNA-seq (heatmap of RNA-seq samples shown in Figure 1D) and flow cytometry to 
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assess the percentage of circulating leukemia blasts (supplemental Figures S1C,S2), which is 

used to define disease state.

Construction of the transcriptome state-space and quasi-potentials

In order to follow changes in the state of the PBMC transcriptome over time during the 

course of AML initiation and progression, we constructed a two-dimensional state-space 

utilizing dimension reduction analysis on the time-series bulk RNA-seq data. We constructed 

a data matrix (X) so that each row corresponds to a sample and each column corresponds to 

a gene transcript level in log2 transformed counts per million (cpm) reads(17). We then 

performed principal component analysis (PCA) on the matrix X and identified the principal 

components for variance that most clearly associated with leukemia progression. Principal 

components (PCs) were computed via singular value decomposition (supplemental Figure 

S3A), which is one of several matrix factorization methods that can be used to deconvolve 

genomic data(18–21). The singular value decomposition is given by X = UΣV * where X is 

column mean centered data and * denotes the conjugate transpose. The columns of the 

unitary matrix U, not to be confused with the quasi-potential Up, form an orthonormal basis 

for the sample space (i.e., the temporal dynamics of the transcriptome), the diagonal matrix 

Σ contains the singular values, and the columns of the matrix V* correspond to the 

eigengenes(20) (see Table 1 glossary of terms), or loadings, of each gene in the 

transcriptome per PC.

We found the “elbow” in the PC spectrum was captured in the first 4 components, 

representing a 66% of the total variation in the data (supplemental Figure S3B). An analysis 

of the first 4 components revealed that the first component (PC1) was correlated with time 

for all control and CM mice, suggesting transcriptional changes associated with aging. The 

second component (PC2) strongly correlated with the appearance of differentially expressed 

Kit (supplemental FigureS3C), which in this mouse model is a surrogate immunophenotypic 

marker for leukemic cells (blasts). The third and fourth principal components (PC3,PC4) 

were not interpretable (supplemental Figure S3D). We therefore constructed a 2-dimensional 

state-space with the first (denoted as non-leukemic) and second (denoted as leukemic) 

principal components, labeled (x1,x2) = (PC1,PC2) in order to study two orthogonal, 

mutually exclusive states; health and leukemia, so that each data point represents the 

transcriptome as a particle, which creates a trajectory through the 2D principal component 

space over time. We note that PCs are eigenvectors of the data matrix X and are orthogonal 

by construction. We therefore could have used any other component as a non-leukemic 

coordinate axis, for example (PC3, PC2). We chose PC1 for convenience and simplicity. We 

also examined other dimension reduction methods to construct the state-space, but found 

them to be sub-optimal due to free parameters (e.g., diffusion mapping(22)) or the inability 

to isolate leukemia trajectories with default settings (e.g., t-SNE(23), hierarchical clustering) 

(see supplemental methods, Figure S4-S5). We note that PCA is a parameter-free, linear 

method and these properties are advantageous because they simplify and make more 

objective the construction of the state-space.

We identified a geometric orientation of the transcriptome state-space such that the mean 

position of the reference (non-leukemic) state was located at PC2 = 0 and smoothly 

Rockne et al. Page 5

Cancer Res. Author manuscript; available in PMC 2021 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



increased toward a leukemic state from north to south in the space along the PC2 axis 

(Figure 2A). This geometric interpretation allowed use to identify PC2 as a leukemic axis 

and model the contribution of each gene to the transition to leukemia state, by considering 

the loading matrix V*. The columns of the matrix V* represent the eigengenes 

corresponding to principal components so that each gene can be represented as a 2-

dimensional vector with components g = (v1*, v2*) for the principal component state-space 

(x1,x2) = (PC1,PC2) (Figure 2B). This representation enables the decomposition of each 

gene into non-leukemic (v1*) and leukemic (v2*) components, and therefore the interpretation 

of the leukemic component of genes based on the contribution to the leukemia state (v2*) in 

differential expression analysis. We then mapped the trajectory of each mouse along the 

leukemic axis in the state-space (PC2) over time and computed the shape of the double-well 

quasi-potentials used to model state-transition along the leukemic axis PC2 (Up(x2)) via 

estimation of the critical points c1*, c1, c2, c3 (Figure 2C, supplemental Figure S6A-B).

Results

Transcriptome dynamics precede detection of leukemic blasts

As early as one month following induction of CM and despite the absence of any circulating 

leukemic (cKit+) blasts, we detected initial changes of the transcriptome position toward the 

leukemia state (p<0.01, supplemental Figure 6C), likely representing the early CM-driven 

hematopoietic perturbations that we have previously reported(15,16,24). Leukemic blasts 

were initially detected (>5% by flow cytometry) once the transcriptome-particle approached 

the unstable critical point c2 in the state-space. Once the transcriptome crossed c2, consistent 

with the predicted acceleration of transition toward the leukemia state c3, we observed a 

rapid increase of leukemic blasts and manifestation of overt disease (Figure 2D). The 

acceleration after crossing c2 was also supported by increasing velocity calculated between 

each pair of time-sequential points in the state-space (supplemental Figure S6D). Of note, 

levels of Kit expression in the transcriptome correlated with the number of PB cKit+ cells 

(blasts) and the PC2 position only after the mice began to develop leukemia (Figure 2E, 

supplemental Figure S7A,B), implying that expression changes of genes other than Kit 
contributed to the variance in the data and thus to the initial movement of the transcriptome 

in the state-space before any sign of disease was detectable.

Biological interpretation of the critical points in the transcriptome state-space

Because state-transition theory enables the interpretation of time-series genomic data in 

terms of critical points, we hypothesized that the transcriptome changes [differentially 

expressed genes (DEGs)] occurring at each critical point (c1*, c1, c2, c3) also represented 

critical biological alterations that drive the evolution of the disease (Figure 3A). To identify 

these alterations, we partitioned the data such that each sample was associated with a unique 

critical point with the smallest distance in the state-space (Figure 3A). We then identified 

DEGs by performing pairwise comparisons of gene expression at each of the critical points 

with that of the reference state (i.e., c1 vs c1*; c2 vs c1*; c3 vs c1*) and with that of other critical 

points (c2 vs c1; c3 vs c1; c3 vs c2) using edgeR and a false discovery rate of 0.05 (Table 2, 
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supplemental Figure S8, Tables S1-6). We then categorized the DEGs at each critical point 

as early events (c1 vs. c1*, ~c2 vs. c1; ~c3 vs. c2), transition events (c2 vs. c1*, ~c1 vs. c1*; ~c3 

vs. c2), and persistent events, genes that remained as DEGs at all three of the critical points 

(c1 vs. c1*; c2 vs. c1*; c3 vs. c1*) where ~ denotes the exclusion of genes from that comparison 

(Fig. 3A; supplemental Figure S8, Tables S7-S10).

Gene Ontology (GO) analysis revealed insights into the biological and functional impact of 

DEGs associated with each critical point in the transition from normal hematopoiesis to 

leukemia (supplemental Table S11-S14). For transcriptional early events at c1, the top three 

GO terms ranked by q-value (multiple-test corrected p-value) included extracellular matrix 

organization (GO-0030198), cellular response to cytokine stimulus (GO-0071345) and 

cytokine-mediated signaling pathway (GO-0070098) (Figure 3A; Figure S9A; Table S11). 

For the transition events at ~c2, the top three ranked GO terms included DNA metabolic 

processes (GO-0006259), DNA replication (GO-0006260), and G1-S transition of mitotic 

cell cycle (GO-0000082) (Figure 3A; Figure S9B; Table S12). For the persistent events at c1, 

which are the DEGs that continued to be differentially expressed also at the critical points c2 

and c3, the top three ranked GO terms included positive regulation of phosphatidylinositol 3-

kinase activity (GO-0043552), positive regulation of phospholipid metabolic process 

(GO-1903727), and positive regulation of lipid kinase activity (GO-0090218) (Figure 3A; 

Figure S9C; Table S13). Interestingly, consistent with increasing leukemic blasts, Kit up-

regulation was observed among the persistent events.

Quantification of individual genes and pathways contribution to leukemia progression

Given the 2-dimensional geometry of the transcriptome state-space, as demonstrated in 

Figure 2B, we were also able to decompose the contribution of each gene to leukemia 

progression by considering the second component (v2*) of the eigengene vector g = (v1*, v2*). 

For instance, considering the expression of leukemia marker Kit and the leukemogenic CM 
genes, we showed that the magnitude of the second component of both genes was negative 

(v2* < 0) and therefore pointing south in the state-space, contributing to the variance in the 

transcriptome associated with leukemia, with kit = (−0.0060, − 0.0284) and 

CM = (−0.0042, − 0.0202) (Figure 3B). Analysis of the top 1% of eigengenes (Table S15) 

which were also identified as persistent events showed strong contribution to leukemia. To 

illustrate quantification of leukemia contribution and state-space trajectory, we selected 

several of these genes based on known functions in AML (Egfl7, Wt1) (25–29) or cancer 

progression (Prkd1) (30–32). Indeed, the proangiogenic factor Egfl7 

[Egfl7 = (−0.0009, − 0.0390)], leukemia-associated antigen Wt1 [W t1 = (0.0003, − 0.0395)] 

and the protein kinase Prkd1 [Prkd1 = (0.0010, − 0.0486)] were among the genes showing the 

strongest contributions toward leukemia (Figure 3B; see supplemental Table S7-10 for 

decomposition of each gene). Accordingly, all CM mice that developed leukemia (CM1–5, 

CM7) showed increasing expression of these leukemia eigengenes (Kit, CM, Egfl7, Wt1, 

Prkd1) and reproducible trajectories in the state-space as they move from perturbed 

hematopoiesis (c1) to leukemia (c3) (Figure 4A). The trajectories of the leukemia 

eigengenes, determined by plotting eigengene expression in the state-space, were 
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remarkably concordant for all CM leukemia mice (Figure 4A, top), in contrast to the 

nonsynchronous changes observed over time (Figure 4A, bottom). In other words, the 

transcriptomic state—as defined by location in the state-space—consistently aligned 

leukemia eigengene dynamics across all CM mice despite the fact that mice develop overt 

leukemia stochastically at different times. Therefore, analysis of gene expression dynamics 

with the transcriptome state-space provided a meaningful approach to align gene expression 

dynamics and to quantify the leukemogenic contribution of individual genes as well as the 

collective contribution of a set of genes.

With this geometric interpretation in hand, we could also quantify the contribution of gene 

pathways, defined by GO terms, as the vector sum of each constituent eigengene, so that 

G = (G1, G2) = (∑i = 1
n g1

i , ∑j = 1
n g2

j). The second component of the summed vector, G2 

represents the maximum contribution of an individual GO term pathway G to 

leukemogenesis (Figure 4B; black vector). To this end, of the all of the constituent genes for 

a GO term (black dots), we considered only those that were DEGs (pink dots) and thus 

active contributors in each pathway to leukemogenesis (Figure 4B; pink vector). As such, 

each significantly enriched GO term could be quantitatively analyzed for its relative 

contribution to leukemogenesis as the sum total v2* contributions of the DEGs in that 

particular GO term.

To evaluate the step-wise contribution of the GO terms, we then performed vector analysis 

of the GO pathways enriched in early, transition, and persistent events and represented them 

as vectors in the state-space (Figure 4B). Notably, our analysis of early events that 

characterize c1 revealed some GO pathways that exhibited contributions away from 

leukemia (i.e. north, G2
i > 0)(Figure 4C), suggesting the presence of a restorative force that 

attempted to counteract the initially CM-driven hematopoietic perturbation and restore the 

system to a reference state of normal hematopoiesis. On the other hand, analysis of GO 

terms that characterized transition and persistent events demonstrated an increasing 

magnitude and direction (angle) toward the leukemic state (Figure 4B). Evaluation of all 

early, transition, and persistent GO terms revealed a strong overall leukemogenic 

contribution (Figure 4C), underscoring the unique biological insights that could be gained by 

an analytical approach based on critical points of the transcriptome state-space.

Analysis of the leukemic transcriptome at c3 showed dysregulation of a large number 

(11,634) of genes (Table 2, supplemental Figure S8, Table S5), making it difficult to perform 

pathway enrichment or to interpret in terms of contribution to leukemia. Thus, we filtered 

genes with a geometric criteria to include genes within a range of angles in the state-space 

that were most strongly associated with leukemia (Figure 3A; supplemental Figure S10). 

This approach identified differentially expressed leukemia eigengenes (leukemia eigenDEG; 

supplemental Table S10). The top three GO terms for leukemia eigenDEG ranked by q-value 

included mitotic spindle organization (GO-0007052), centromere complex assembly 

(GO-0034508), and microtubule cytoskeleton organization involved in mitosis 

(GO-1902850) (supplemental Table S14), consistent with the hyper-proliferative phenotype, 
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leukemic cell trafficking, and extramedullary tissue infiltration associated with late-stage 

disease.

Validation studies in independent cohorts of mice

To validate our state-transition model, state-space, and analytical approach, we performed 

independent experiments to collect PBMC bulk RNA-seq data from two additional 

validation (v) cohorts of control (vControl) and CM (vCM) mice which were similarly 

induced with poly (I:C) as described for the training cohort. We collected validation cohort 1 

samples (vControl1–7; vCM1–9) monthly for up to 6 months; and collected validation 

cohort 2 samples (vControl8–9; vCM10–12) sparsely at 3 randomly selected timepoints 

during leukemia progression. We performed principal component analysis of the validation 

cohort 1 and 2 data, which again demonstrated that the majority of the variance was encoded 

in the first 4 PCs (supplemental Figure S11A-C) and the leukemia-related variance was 

again encoded in PC2 (Figure 5A). We then evaluated our ability to map state-transition 

trajectories and predict leukemia development in the validation cohorts by projecting the 

data from the validation cohorts into the state-space constructed using the training cohort 

(see supplemental methods). The trajectories of vControls in both validation cohorts 

remained at c1*, whereas vCM mice that developed leukemia in both validation cohorts 

progressed toward the leukemia state at c3. Of note, three CM-induced mice in the validation 

cohort 1 (vCM2, 3, 6) did not develop leukemia during the 6-month study period, and were 

mapped to positions in the state-space between c1 and c2 but did not cross the transition 

point c2 (Figure 5A; S11D), consistent with a delayed onset of leukemia. These mice 

showed pre-leukemic states in the bone marrow (i.e., expansion of pre-leukemic progenitor 

populations) at the end of the study, indicating leukemia progression was taking place but 

had not yet manifested (supplemental Figure S2). As in the original analysis and similar to 

the initial dataset, we detected early movement of the transcriptome-particles representing 

CM mice at c1, 1 month (T1) after induction of CM expression (supplemental Figures 

S11E). We also observed similar state-space trajectories, in that acceleration of the 

transcriptome-particle toward the leukemia state occurred once it crossed the unstable 

critical point c2, which also corresponded to a rapid increase in cKit+ cells detected in the 

peripheral blood (Figure 5B).

Prediction of leukemia development and progression

Mathematically, we model the transcriptional state of the system as a particle in a quasi-

potential with a Langevin equation of motion given by the stochastic differential equation 

dXt = − ∇Updt + 2β−1dBt where Xt denotes the state of the transcriptome at time t, Up is 

the quasi-potential, and dBt is a Brownian motion that is uncorrelated in time 

< Bti, Btj > = δi, j, with δi,j being the Dirac delta function and β−1 is the diffusion coefficient. 

An example realization of the stochastic equation of motion for control and CM mice is 

shown in Figure 5C. Because of the stochasticity due to biological, experimental, technical, 

or time-sampling variations, transcriptome trajectories cannot be precisely predicted with 

this approach.
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In order to calculate the mean expected behavior of the stochastic dynamics of a 

transcriptome-particle, we consider the evolution of the probability density function. The 

spatial and temporal evolution of the probability density for the position of a particle P(x2,t) 
is given by the solution of the Fokker-Planck (FP) equation based on the shape of the 

potential (Up(x2)) and equation of motion as:

∂
∂t P (x2, t) = − ∂

∂x2
Up(x2)P (x2, t) + ∂2

∂x2
2 (β−1P (x2, t)) (1)

where x2 is the spatial coordinate (PC2) and β−1 is the diffusion coefficient, which we 

estimated with a mean-squared displacement analysis of state-space trajectories 

(supplemental Figure S12A)(6). Solution of the FP permits the direct calculation of the 

expected first arrival time from an initial point (e.g., perturbed hematopoiesis c1) in the state-

space to a final point (e.g., leukemia c3).

In order to predict the time to develop leukemia in the validation cohorts, we numerically 

solved the FP equation using the parameters estimated from the training cohort with initial 

conditions derived from the validation cohorts 1 and 2 and integrate the probability density 

(Eq. 1, Figure 5D). The simulation accurately predicted the time to leukemia for all CM 

mice (n=9) that eventually developed leukemia during the study period (p>>0.05, Figure 

5E). Parameters used in the simulations are given in supplemental material (Figure S12B,C). 

Of note, the model correctly predicted the delayed onset of overt leukemia in the three CM-

induced mice in the validation cohort 1 (vCM2, 3, 6) that did not develop leukemia during 

the 6-month study period.

Discussion

Here we report the application of state-transition theory to interpret temporal genomic data 

and accurately predict leukemia development in a murine model of AML. As a proof of 

principle, we obtained time-sequential RNA-seq data from a well-characterized orthotopic 

mouse model of inv(16) AML and modelled state-transition from health to leukemia. We 

demonstrate the feasibility of predicting state-transition dynamics and time to leukemia 

using these time-sequential genomic data collected at sparse timepoints. Our results show 

that movement of the transcriptome, represented as a particle in a state-space, can be 

understood in terms of critical points—mathematically-derived inflection points—which 

provide a framework to predict the development of leukemia at any point in the space, at any 

timepoint, without the presence of detectable leukemic blasts.

One of the greatest challenges in analyzing time-sequential genomic data is the fact that 

multiple signal(s) of interest (i.e., genes relevant to leukemia) often are not synchronized in 

time. Although methods exist to perform time realignment or estimate parameters of a 

predictive probability density function(33–37), these methods often require prior knowledge 

of the system dynamics or have not been experimentally validated in a cancer model. Here, 

we modeled the development of AML as state-transition of the transcriptome-particle in a 

leukemia state-space with a double-well quasi-potential. This method does not require a 

priori information, and allows for a wide range of nonlinear dynamics, including transient 
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changes of the genes due to stochastic variations or biological fluctuations, for example 

environmental conditions that may be random. Furthermore, our approach guides 

interpretation of temporal genomic data even when data are incomplete or sparse—as is 

often the case with longitudinal human data from the clinic.

Through the analysis of DEGs based on state-transition critical points, we identified early, 

transition, and persistent transcriptional events, and identified perturbations of gene 

expression associated with critical step-wise development of leukemia, which we refer to as 

eigengenes. Early events are enriched for cellular response to cytokine stimulus and 

cytokine-mediated signaling pathway, consistent with previously reported altered cell 

signaling and impaired lineage differentiation induced by the CM oncogene(16,24). Notably, 

our results revealed that early perturbations associated with critical point c1 are not 

necessarily contributing positively to leukemogenesis but may instead represent a 

counteracting homeostatic response. The transition events associated with the unstable 

critical point c2 were characterized by aberrant expression of many genes involved in DNA 

damage and DNA repair, consistent with the notion that additional cooperating mutations or 

epigenetic alterations are required for a full leukemia development (15,16). Furthermore, we 

identified genes that, although not uniquely associated with individual critical points, were 

persistently and differentially expressed at all critical points c1, c2 and c3 during the 

leukemia state-transition. These genes are mainly involved in signaling pathways that 

support cell proliferation and survival, and vector analyses demonstrated a direction of 

strong contribution to the variance associated with leukemia. These persistent events can be 

interpreted as a force cooperating with the CM oncogene to propel the change of the 

system’s transcriptional state from the reference state to the leukemia state. Based on this 

analysis, we postulate that AML and perhaps cancer in general, can be considered an 

eigenstate of the transcriptome; that is to say that AML is an energetically favorable 

configuration of the transcriptome as a whole, that evolves in parallel to clonal expansion of 

malignant cells.

Furthermore, the location and trajectory of individual genes in the state-space allows 

assessment of the direction and the magnitude with which individual genes contribute to the 

transition to leukemia. For example, among the persistent events Egfl7, Wt1 and Prkd1 
showed a strong selectivity in the direction toward leukemia and their expression level 

consistently increased during transition toward leukemia, particularly between c1 and c2 in 

the state-space. Indeed, the human homolog of these genes have been implicated in leukemia 

or cancer pathobiology. The angiogenic factor EGFL7 is known to be highly expressed and 

predict poor prognosis in AML patients (25), and is also a host gene of miR-126, which is a 

miRNA signature associated with inv(16) AML(38) and leukemia stem cell quiescence and 

drug resistance(39). The Wilms’ tumor gene WT1 is overexpressed and plays an oncogenic 

role in leukemia and various solid tumors. In AML, overexpression of WT1 has been found 

to predict poor prognosis and minimal residual disease(26,27,29). Prkd1 encodes a serine/

threonine protein kinase and is part of all top 3 ranked GO terms enriched for persistent 

events. The specific role of PRKD1 in AML has not been described, however, it is known to 

promote invasion, cancer stemness and drug resistance in several solid tumors(30–32). In 

addition to these genes, our approach identified many other genes showing a strong 

contribution to leukemia development (Table S8-S11). Many of these genes have not been 
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previously linked to leukemia, highlighting that the state-transition based approach offers 

novel biological insights and hypotheses for further investigation.

State-transition theory and corresponding mathematical models have been applied to other 

systems and to other omics data platforms (e.g., epigenomics, miRomics)(7,40,41). 

However, our application to the interpretation of leukemia evolution is novel in the use of 

time-series bulk RNA-seq data collected from the peripheral blood. We chose to use PB as a 

tissue of interest because changes in the cellular composition of PBMCs are obvious once 

AML is clinically present and it is much more accessible for frequent sequential sampling 

than BM, and therefore this approach could potentially be more easily applied to patients 

with leukemia and other hematopoietic malignancies in the clinical setting. Nevertheless, 

with the development of more sensitive approaches that include “liquid biopsies” for solid 

tumors, it is possible that this approach could be also be extended to patients with solid 

tumors. Meanwhile, future studies will examine the relationships between the changes in the 

transcriptomic states of the BM and PBMCs, and to estimate more precisely the magnitude 

of perturbations detectable in the transcriptome. Notably, our state-transition model allowed 

us to derive useful information about the state of the system as a whole, without concern for 

heterogeneity related to additional mutations, clonal dynamics, or composition of cells 

within the sample. To our knowledge, other approaches currently available to analyze time-

series genomic data such as those that use concepts of thermodynamic (non)equilibrium and 

statistical mechanics(42) may be useful tools for analyzing cellular state transitions (e.g., 

epithelial to mesenchymal transition(41) and early stages of carcinogenesis(43)), but they do 

not provide similar geometric- or critical point-based interpretation of genes or pathways as 

we report herein. Our approach builds on these works and offers an opportunity to anticipate 

critical transitions in cancer initiation and progression as proposed by Scheffer et al in their 

seminal work(44).

Recent studies have interrogated the clonal architecture of AML over time(45), and shown 

that somatic mutations may precede diagnosis of AML by months or years(46) and that deep 

sequencing of mutations can be used to differentiate age-related clonal hematopoiesis from 

pre-AML and predict AML risk in otherwise healthy individuals(47). Our approach detects 

system-wide perturbation before any leukemic blasts are seen in the blood, or differential 

expression of known leukemogenic marker genes, suggesting the signal detected by bulk 

RNA-seq is not driven solely by the presence of leukemic cells. Our model presents a view 

of cancer as a change in transcriptional state of the system as a whole, which occurs in 

parallel with, and in addition to, DNA mutations and clonal evolution of malignant cells. 

Our model provides a predictive mathematical framework to identify a transition point (c2) 

in leukemia development. Notably, this transition point also marks a point of accelerated 

leukemia progression manifested on the level of leukemia blast counts as well as the 

transcriptome movement. Importantly, although data from a relatively simple mouse model 

of AML were used to develop this theoretical framework, we demonstrated that the results 

are reproducible in multiple cohorts (i.e., one training cohort and two validation cohorts) and 

that the robustness of this approach is not affected by variability in sampling time, 

frequency, sample preparation, or data normalization methods (supplemental Figure S13–

S14). Moreover, we show that the transcriptome data from independent validation cohorts 
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can be mapped into a previously built leukemia state-space, suggesting that our approach 

robustly isolated leukemia related signals in the context of a defined genetic mouse model.

We expect that in the future, state-transition dynamical models could be applied in the clinic 

to support proactive monitoring to detect transcriptional perturbations away from a reference 

state of health or complete remission after treatment to a state of disease or vice versa(48). 

However, applications to humans possess challenges. Because of the background genomic 

variability across humans, it may be that the leukemia trajectories are encoded in multiple 

principle components. As we have done with the mice, a careful examination of all PCs may 

be required to extract the signal associated with leukemia in humans. Given the enormous 

number of changes in the genome over the course of leukemia progression, we expect 

variability driven by leukemia processes will be encoded in a single principal component 

despite the variance due to genomic background and disease etiology across individuals. If 

this is not the case, signal amplification techniques may be required such as contrastive 

PCA(49) or gene filtering based on information criteria such as mutual information. An 

alternative approach may be to utilize pseudotime methods to construct trajectories across 

patients with similar disease states(50). Our expectation is that in the near future, our state-

transition dynamical model could be tested in the clinic as a monitoring tool to detect 

transcriptome perturbations and predict changes in the state of the disease thereby providing 

useful information for therapeutic intervention by targeting pathways at or before critical 

points in state-transition(48).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Statement of Significance

Findings apply the theory of state transitions to model the initiation and development of 

acute myeloid leukemia, identifying transcriptomic perturbations that accurately predict 

time to disease development.
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Figure 1. Leukemia as a state-transition of the transcriptome.
State-transition theory is applied to model transcriptional states over time and to identify 

critical points in the transition from health to leukemia, and to compute the probability of 

leukemia development. A) The scheme represents the temporal evolution of the 

transcriptome of the blood from a healthy state to a leukemia state in a longitudinal study in 

an AML model induced by the Cbfb-MYH11 (CM) oncogene. In the conditional CM knock-

in mouse model (Cbfb+/56M/Mx1Cre), expression of CM in the adult bone marrow alters 

normal hematopoietic differentiation creating aberrant pre-leukemic progenitor cells which 

with time acquire additional genetic, epigenetic alterations needed for malignant 

transformation and AML development. B) We model the action of oncogenic events as a 

reduction in the energy barrier required to cause state-transition, and thus increase the 

probability of leukemia development. In unperturbed—normal—hematopoiesis, a large 

energy barrier between the reference state c1 and unstable transition c2 result in low 

probability of the state-transitioning to leukemia c3. In hematopoiesis perturbed by an AML 

oncogene CM, the energy barrier is reduced and therefore increases the probability of 

transition from c1 to c3 to a leukemia state. The * marker indicates normal hematopoiesis 

unperturbed by Cbfb-MYH11. C) In a cohort of CM mice (Cbfb+/56M/Mx1Cre; N=7) and 

littermate controls (Ctrl; N=7) lacking one or both transgenes (Cbfb+/56M or Mx1Cre), PB 

was sampled prior to and following CM induction (by poly (I:C) treatment) monthly for up 

to 10 months (timepoints T0-T10), or when mice were moribund with leukemia. Blood 

samples were subjected to bulk RNA-seq and flow cytometry analysis. Survival curve of CM 

(red line) and Ctrl (black line) mice corresponding to blood sampling time point (dashed 

line) are shown. D) Hierarchical clustering of row normalized (mean zero, standard 

deviation one) log2 transformed counts per million (cpm) reads time-series RNA-seq data 

Rockne et al. Page 18

Cancer Res. Author manuscript; available in PMC 2021 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



for all blood samples (N= 132). Color bar shows standard deviation from the mean. Each 

column represents a timepoint sample, which are ordered sequentially in time and grouped 

by condition (CM red, Control black) and individual mice, indicated by colored bars or grey 

bars, respectively. Hierarchical clustering reveals similar leukemia transcriptional profiles 

over time which is not uniform across all mice.
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Figure 2. Construction of the transcriptome state-space and estimation of state-transition critical 
points.
A) The first two principal components (PCs) representing 58% of the variance in the data, 

and gene weights (eigengenes) corresponding to PCs are shown. The first principal 

component correlates with time and is likely due to the aging process (supplemental Figure 

S3D) and explains 47% of the variance in the data. The second principal component (PC2) 

explains 11% of the variance and shows a strong correlation with the appearance of 

differentially expressed Kit, which in this mouse model is a surrogate immunophenotypic 

marker for leukemic cells (supplemental Figure S3C) and encodes transition from health to 
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leukemia. Therefore PC1 and PC2 are used create a 2D orthogonal transcriptome state-space 

where each dot is an individual transcriptome from control (circles) and CM (squares) mice 

at different time points. B) The PCA weights for all sequenced genes corresponding to the 

first two PCs from the loading matrix (V*). The points in A) and B) are pseudo-colored 

from black to red, from north to south to indicate transition to leukemia. C) Temporal 

dynamics and state-transition critical points. Left: Transcriptome state-space trajectories of 

individual mice along PC2 plotted over time (controls in black; CM induced mice in colors). 

Right: state-transition critical points and dynamics of PC2 mapped onto the quasi-potential 

energy (Up(x2)) for control and CM mice. Controls remain at the reference state (c1*) and 

CM induced mice transition from the reference state of perturbed hematopoiesis (c1) to the 

leukemic state (c3). D) Representative flow cytometry plots of leukemia blasts (cKit+) 

frequency detected in the blood before induction and at each critical point. B220 is a B cell 

lineage marker and is not expressed on leukemia blasts. E) The frequency of cKit+ leukemia 

blasts increases rapidly after crossing c2 transition point and increase over time as the mice 

develop leukemia.
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Figure 3. State-transition critical point-based analysis of gene expression in leukemia 
progression.
A) The state-transition model is used to group samples relative to critical points. Early, 

transition, and persistent events in leukemia progression are defined relative to critical 

points. Leukemia eigengenes are a subset of eigengenes shown in Figure 2B, and are defined 

geometrically in the state-space (see supplemental Figure S10). Leukemia eigengenes are 

plotted in red in a radial histogram along with the other eigengenes in black. Leukemia 

eigengene expression is shown in a heatmap as compared to the average expression in 

control samples. B) Geometric representation and decomposition of eigengenes. Eigengene 

weights (V*, see Figure 2B, supplemental Figure S3A) for the first two components are 

plotted for all genes (black). Selected genes (Kit, CM, Egfl7, Wt1, Prkd1) are shown in 

colors and are oriented south in the space indicating relative contribution to state-transition 

to leukemia. The larger the magnitude, and more south is the red portion of the gene vector 

component (v2*), the stronger is the relative contribution of that gene to the variance 

associated with leukemia.
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Figure 4. Geometric analysis of gene expression and quantification of pathways contribution to 
leukemia progression.
A) Gene expression dynamics in state-space and time. Expression levels for selected 

leukemia eigengenes Kit, CM, Egfl7, Wt1, Prkd1 are plotted against the state-space (PC2) 

(top) or plotted against time (bottom) for CM mice. Increasing expression of these genes are 

concordant with movement from normal hematopoiesis (c1*) to leukemia (c3) in the state-

space despite the variability of expression over time. Representing gene expression 

dynamics in the state-space reveals alignment of gene dynamics by disease state, rather than 

the passage of time, which is more variable depending on when each mouse stochastically 

develops leukemia. B) Top: Geometric and vector analysis of GO terms overall (black) and 

genes (pink) that are differentially expressed (DE). The sum total of genes in a GO term 

(black vector) and the portion which is differentially expressed (pink vector) are used to 

geometrically interpret the contribution of the step-wise contribution of each GO term 

towards leukemia progression. Bottom: The eigengene state-space is used to represent genes 
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and biological pathways identified through pathway enrichment analysis as vectors. Subsets 

of genes in a given pathway which are differentially expressed are shown in pink and the 

distribution along the second component is shown as a kernel density. As with the gene 

analysis, the larger the magnitude and more south is the pink portion of the vector, the 

stronger is the relative contribution of the pathway to the variance in the transcriptome 

associated with transition to a state of leukemia. Selected pathways for early, transition, and 

persistent events are shown. C) The leukemia component of the vector representation of each 

GO term enriched in the early, transition, and persistent events is shown. Biological 

pathways represented as vectors demonstrate increasing orientation in the state-space 

towards the state of leukemia (v2*), with some early events pointing away from leukemia, 

suggesting a restorative homeostatic effect in the variance of the transcriptome. Few early 

events show a contribution away from the leukemia state, suggesting a homeostatic 

restorative force attempting to counteract the action of the leukemogenic perturbation caused 

by CM.
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Figure 5. Validation and prediction of leukemia development in independent cohorts.
As a validation of the state-transition mathematical model, critical points, and state-space 

geometry, we mapped data from two additional independent experiments into the state-

space: cohort 1 and cohort 2. Cohort 1 consists of 7 controls and 9 CM mice (vCM1–9) 

sampled at the same frequency as the training cohort. Cohort 2 consists of 2 controls and 3 

CM mice (vCM10–12) sampled sparsely in time. A) Leukemia trajectories (PC2) of 

validation cohorts projected into the state-space constructed with the training cohort. Critical 

points were estimated with the same procedure as the training data set. The locations in the 

transcriptome state-space correctly identify controls and states of leukemia, even in cohort 2 

which does not include timepoints prior to CM induction. B) The frequency of cKit+ 

leukemia blasts increases rapidly after crossing c2 transition point. C) The equation of 

motion of the transcriptome-particle in the quasi-potential is a stochastic differential 

equation which predicts trajectories of state-transition. One realization of a stochastic 

simulation is shown (controls black, CM induced mice in colors). Controls remain at the 

reference state (c1*) and CM induced mice transition from the reference state of perturbed 

hematopoiesis (c1) to the leukemic state (c3). D) Due to the stochastic nature of the 

biological processes and variability in RNA-seq data, we predict state-transition by 

considering the spatial-temporal evolution of the probability density (P(x2,t)) given by 

numerically solving the Fokker-Planck equation with initial conditions and simulation 

parameters determined by the training cohort. E) The predicted (simulated) time to state-

transition is calculated by integrating the probability density. The predicted time to develop 

leukemia is compared to the observed time to leukemia with a survival analysis for 

validation cohorts (cohort 1 and 2; CM n=12; Ctrl n=9). Survival curves for the training 
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cohort is also shown (red dashed lines, CM=7; black dashed lines, Ctrl n=7). The observed 

and simulated time to AML are not statistically different from each other (p >> 0.05).
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State-transition theory identifies critical points and predicts leukemia development
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Table 1.

Glossary of terms

Term Meaning

State variable A state variable is one of a minimal set of variables that describe the mathematical “state” of a dynamic system. In this work, 
the state variable is the transcriptome derived from RNA-seq of peripheral blood mononuclear cells.

State-space A state-space is a mathematical representation of all possible configurations of a system defined by the state variables. In this 
work, the state-space is constructed with principal component analysis of time-series RNA-seq data of peripheral blood 
mononuclear cells over the course of leukemia progression in a mouse model.

State-transition A state-transition is the dynamic process of a system changing from one state to another. In this work, the state-transition of 
interest is the transition of the transcriptome from a reference state of hematopoiesis to leukemia.

Probability 
density

The probability density gives the probability of finding the system in a given state (position in the state-space) at a given 
time. The probability density takes values between zero and one. The sum of the probability density over the entire state-
space is one. The probability density is given by the solution of the Fokker-Planck equation.

Double-well 
quasi-potential

A double-well potential is an energy function which has two local minima, and a local maxima, similar to a “w” shape. In 
this work, the double-well potential is derived from the transcriptome state-space. The potential is referred to as a “quasi-
potential” because the state-space does not have physical units, and therefore the potential energy function does not have a 
clearly defined physical analog. The wells of the potential correspond to stable states of the transcriptome, whereas the peak 
corresponds to an unstable transition state.

Eigengene Eigengene refers to the coefficient weights (or loadings) of a given gene computed with principal component analysis. In this 
work, a “leukemia eigengene” refers to the weight of a given gene in the principal component analysis of gene expression 
data associated with leukemia.
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Table 2.
Differentially expressed genes based on critical points.

Thousands of genes are differentially expressed across critical points in the transcriptome state-transition from 

health to leukemia (q<0.05, |log2(FC)|>1).

Test vs. reference #genes down #genes up #genes total

c1 vs control (c1*) 2,305 1,859 4,164

c2 vs control (c1*) 4,421 4,126 8,547

c3 vs control (c1*) 6,119 5,515 11,634

c2 vs c1 3,560 3,772 7,332

c3 vs c1 5,744 5,565 11,309

c3 vs c1 3,602 3,274 6,876
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