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Abstract

Recurrent neural networks (RNNs) are a widely used tool for modeling sequential data, yet 

they are often treated as inscrutable black boxes. Given a trained recurrent network, we would 

like to reverse engineer it–to obtain a quantitative, interpretable description of how it solves a 

particular task. Even for simple tasks, a detailed understanding of how recurrent networks work, 

or a prescription for how to develop such an understanding, remains elusive. In this work, we 

use tools from dynamical systems analysis to reverse engineer recurrent networks trained to 

perform sentiment classification, a foundational natural language processing task. Given a trained 

network, we find fixed points of the recurrent dynamics and linearize the nonlinear system around 

these fixed points. Despite their theoretical capacity to implement complex, high-dimensional 

computations, we find that trained networks converge to highly interpretable, low-dimensional 

representations. In particular, the topological structure of the fixed points and corresponding 

linearized dynamics reveal an approximate line attractor within the RNN, which we can use 

to quantitatively understand how the RNN solves the sentiment analysis task. Finally, we find 

this mechanism present across RNN architectures (including LSTMs, GRUs, and vanilla RNNs) 

trained on multiple datasets, suggesting that our findings are not unique to a particular architecture 

or dataset. Overall, these results demonstrate that surprisingly universal and human interpretable 

computations can arise across a range of recurrent networks.
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1 Introduction

Recurrent neural networks (RNNs) are a popular tool for sequence modelling tasks. These 

architectures are thought to learn complex relationships in input sequences, and exploit 

this structure in a nonlinear fashion. However, RNNs are typically viewed as black boxes, 

despite considerable interest in better understanding how they function.

Here, we focus on studying how recurrent networks solve document-level sentiment analysis

—a simple, but longstanding benchmark task for language modeling [7, 19]. Simple models, 

such as logistic regression trained on a bag-of-words representation, can achieve good 

performance in this setting [17]. Nonetheless, baseline models without bi-gram features miss 

obviously important syntactic relations, such as negation clauses [18]. To capture complex 

structure in text, especially over long distances, many recent works have investigated a wide 

variety of feed-forward and recurrent neural network architectures for this task (for a review, 

see [19]).

We demonstrate that popular RNN architectures, despite having the capacity to implement 

high-dimensional and nonlinear computations, in practice converge to low-dimensional 

representations when trained on this task. Moreover, using analysis techniques from 

dynamical systems theory, we show that locally linear approximations to the nonlinear 

RNN dynamics are highly interpretable. In particular, they all involve approximate low-

dimensional line attractor dynamics–a useful dynamical feature that can be implemented by 

linear dynamics and can used to store an analog value [13]. Furthermore, we show that this 

mechanism is surprisingly consistent across a range of RNN architectures. Taken together, 

these results demonstrate how a remarkably simple operation—linear integration—arises as 

a universal mechanism in disparate, nonlinear recurrent architectures that solve a real world 

task.

2 Related Work

Several studies have tried to interpret recurrent networks by visualizing the activity of 

individual RNN units and memory gates during NLP tasks [5, 15]. While some individual 

RNN state variables appear to encode semantically meaningful features, most units do not 

have clear interpretations. For example, the hidden states of an LSTM appear extremely 

complex when performing a task (Fig. 1). Other work has suggested that network units with 

human interpretable behaviors (e.g. class selectivity) are not more important for network 

performance [10], and thus our understanding of RNN function may be misled by focusing 

only on single interpretable units. Instead, this work aims to interpret the entire hidden state 

to infer computational mechanisms underlying trained RNNs.

Another line of work has developed quantitative methods to identify important words or 

phrases in an input sequence that influenced the model’s ultimate prediction [8, 11]. These 

approaches can identify interesting salient features in subsets of the inputs, but do not 

directly shed light into the computational mechanism of RNNs.
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3 Methods

3.1 Preliminaries

We denote the hidden state of a recurrent network at time t as a vector, ht. Similarly, the 

input to the network at time t is given by a vector xt. We use F to denote a function that 

applies any recurrent network update, i.e. ht+1 = F(ht, xt).

3.2 Training

We trained four RNN architectures–LSTM [4], GRU [1], Update Gate RNN (UGRNN) 

[2], and standard (vanilla) RNNs–on binary sentiment classifcation tasks. We trained each 

network type on each of three datasets: the IMDB movie review dataset, which contains 

50,000 highly polarized reviews [9]; the Yelp review dataset, which contained 500,000 user 

reviews [20]; and the Stanford Sentiment Treebank, which contains 11,855 sentences taken 

from movie reviews [14]. For each task and architecture, we analyzed the best performing 

networks, selected using a validation set (see Appendix B for test accuracies of the best 

networks).

3.3 Fixed point analysis

We analyzed trained networks by linearizing the dynamics around approximate fixed points. 

Approximate fixed points are state vectors h1*, h2*, h3*, ⋯  that do not change appreciably 

under the RNN dynamics with zero inputs: hi* ≈ F hi*, x = 0  [16]. Briefly, we find these 

fixed points numerically by first defining a loss function q = 1
N h − F (h, 0) 2

2
, and then 

minimizing q with respect to hidden states, h, using standard auto-differentiation methods 

[3]. We ran this optimization multiple times starting from different initial values of h. 

These initial conditions were sampled randomly from the distribution of state activations 

explored by the trained network, which was done to intentionally sample states related to the 

operation of the RNN.

4 Results

For brevity, in what follows we explain our approach using the working example of the 

LSTM trained on the Yelp dataset (Figs. 2–3). At the end of the results we show a 

summary figure across a few more architectures and datasets (Fig. 6). We find similar results 

for all architectures and datasets, as demonstrated by an exhaustive set of figures in the 

supplementary materials.

4.1 RNN dynamics are low-dimensional

As an initial exploratory analysis step, we performed principal components analysis (PCA) 

on the RNN states concatenated across 1,000 test examples. The top 2–3 PCs explained 

~90% of the variance in hidden state activity (Fig. 2a, black line). The distribution of 

hidden states visited by untrained networks on the same set of examples was much 

higher dimensional (Fig. 2a, gray line), suggesting that training the networks stretched the 

geometry of their representations along a low-dimensional subspace.
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We then visualized the RNN dynamics in this low-dimensional space by forming a 2D 

histogram of the density of RNN states colored by the sentiment label (Fig. 2b), and 

visualized how RNN states evolved within this low-dimensional space over a full sequence 

of text (Fig. 2b).

We observed that the state vector incrementally moved from a central position towards 

one or another end of the PC-plane, with the direction corresponding either to a positive 

or negative sentiment prediction. Input words with positive valence (“amazing”, “great”, 

etc.) incremented the hidden state towards a positive sentiment prediction, while words with 

negative valence (“bad”, “horrible”, etc.) pushed the hidden state in the opposite direction. 

Neutral words and phrases did not typically exert large effects on the RNN state vector.

These observations are reminiscent of line attractor dynamics. That is, the RNN state 

vector evolves along a 1D manifold of marginally stable fixed points. Movement along 

the line is negligible whenever non-informative inputs (i.e. neutral words) are input to the 

network, whereas when an informative word or phrase (e.g. “delicious” or “mediocre”) 

is encountered, the state vector is pushed towards one or the other end of the manifold. 

Thus, the model’s representation of positive and negative documents gradually separates as 

evidence is incrementally accumulated.

The hypothesis that RNNs approximate line attractor dynamics makes four specific 

predictions, which we investigate and confirm in subsequent sections. First, the fixed points 

form an approximately 1D manifold that is aligned with the readout weights (Section 4.2). 

Second, all fixed points are attracting and marginally stable. That is, in the absence of 

input (or, perhaps, if a string of neutral/uninformative words are encountered) the RNN state 

should rapidly converge to the closest fixed point and then should not change appreciably 

(Section 4.4). Third, locally around each fixed point, inputs representing positive vs. 

negative evidence should produce linearly separable effects on the RNN state vector along 

some dimension (Section 4.5). Finally, these instantaneous effects should be integrated by 

the recurrent dynamics along the direction of the 1D fixed point manifold (Section 4.5).

4.2 RNNs follow a 1D manifold of stable fixed points

The line attractor hypothesis predicts that RNN state vector should rapidly approach a fixed 

point if no input is delivered to the network. To test this, we initialized the RNN to a 

random state (chosen uniformly from the distribution of states observed on the test set) 

and simulated the RNN without any input. In all cases, the normalized velocity of the state 

vector (‖ht+1 − ht‖/‖ht‖) approached zero within a few steps, and often the initial velocity 

was small. From this we conclude that the RNN is very often in close proximity to a fixed 

point during the task.

We numerically identified the location of ~500 RNN fixed points using previously 

established methods [16, 3]. Briefly, we minimized the quantity q = 1
N h − F (h, 0) 2

2
 over 

the RNN hidden state vector, h, from many initial conditions drawn to match the distribution 

of hidden states during training. Critical points of this loss function satisfying q < 10−8 were 
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consider fixed points (similar results were observed for different choices of this threshold). 

For each architecture, we found ~500 (approximate) fixed points.

We then projected these fixed points into the same low-dimensional space used in Fig. 2b. 

Although the PCA projection was fit to the RNN hidden states, and not the fixed points, a 

very high percentage of variance in fixed points was captured by this projection (Fig. 2c, 

inset), suggesting that the RNN states remain close to the manifold of fixed points. We call 

the vector that describes the main axis of variation of the 1D manifold m. Consistent with 

the line attractor hypothesis, the fixed points appeared to be spread along a 1D curve when 

visualized in PC space, and furthermore the principal direction of this curve was aligned 

with the readout weights (Fig. 2c).

We further verified that this low-dimensional approximation was accurate by using locally 

linear embedding (LLE) [12] to parameterize a 1D manifold of fixed points in the raw, 

high-dimensional data. This provided a scalar coordinate, θi ∈ [−1, 1], for each fixed point, 

which was well-matched to the position of the fixed point manifold in PC space (coloring of 

points in Fig. 2c).

4.3 Linear approximations of RNN dynamics

We next aimed to demonstrate that the identified fixed points were marginally stable, and 

thus could be used to preserve accumulated information from the inputs. To do this, we used 

a standard linearization procedure [6] to obtain an approximate, but highly interpretable, 

description of the RNN dynamics near the fixed point manifold. Briefly, given the last state 

ht−1 and the current input xt, the approach is to locally approximate the update rule with a 

first-order Taylor expansion:

ht = F h * + Δht − 1, x * + Δxt
≈ F h * , x * + JrecΔht − 1 + JinpΔxt

(1)

where Δht−1 = ht−1−h* and Δxt = xt−x* and {Jrec, Jinp} are Jacobian matrices of the system: 

Jij
rec h * , x * =

∂F h * , x * i
∂ℎj*

 and Jij
inp h * , x * =

∂F h * , x * i
∂xj*

.

We choose h* to be a numerically identified fixed point and x* = 02, thus we have F(h*, 

x*) ≈ h* and Δxt = xt. Under this choice, equation (1) reduces to a discrete-time linear 

dynamical system:

Δht = JrecΔht − 1 + Jinpxt . (2)

It is important to note that both Jacobians depend on which fixed point we choose to 

linearize around, and should thus be thought of as functions of h*; for notational simplicity 

we do not denote this dependence explicitly.

2We also tried linearizing around the average embedding over all words; this did not change the results. The average embedding is 
very close to the zeros vector (the norm of the difference between the two is less than 8 × 10−3), so it is not surprising that using that 
as the linearization point yields similar results.
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By reducing the nonlinear RNN to a linear system, we can analytically estimate the 

network’s response to a sequence of T inputs. In this approximation, the effect of each input 

xt is decoupled from all others; that is, the final state is given by the sum of all individual 

effects3.

We can restrict our focus to the effect of a single input, xt. Let k = T − t be the number 

of time steps between xt and the end of the document. The total effect of xt on the final 

RNN state is (Jrec)k Jinpxt. After substituting the eigendecomposition Jrec = RΛL for a 

non-normal matrix, this becomes:

RΛkLJinpxt = ∑
a = 1

N
λa

kraℓa
⊤Jinpxt, (3)

where L = R−1, the columns of R (denoted ra) contain the right eigenvectors of Jrec, the 

rows of L (denoted ℓa
⊤) contain the left eigenvectors of Jrec, and Λ is a diagonal matrix 

containing complex-valued eigenvalues, λ1 > λ2 > … > λN, which are sorted based on their 

magnitude.

4.4 An analysis of integration eigenmodes

Each mode of the system either reduces to zero or diverges exponentially fast, with a time 

constant given by: τa = 1
log λa

 (see Appendix C for derivation). This time constant has 

units of tokens (or, roughly, words) and yields an interpretable number for the effective 

memory of the system. In practice we find, with high consistency, that nearly all eigenmodes 

are stable and only a small number cluster around |λa| ≈ 1.

Fig. 3 plots the eigenvalues and associated time constants and shows the distribution of all 

eigenvalues at three representative fixed points along the fixed point manifold (Fig. 3a). In 

Fig. 3c, we plot the decay time constant of the top three modes; the slowest decaying mode 

persists after ~1000 time steps, while the next two modes persist after ~100 time steps, with 

lower modes decaying even faster. Since the average review length for the Yelp dataset is 

~175 words, only a small number of modes can retain information from the beginning of the 

document.

Overall, these eigenvalue spectra are consistent with our observation that RNN states only 

explore a low-dimensional subspace when performing sentiment classification. RNN activity 

along the majority of dimensions is associated with fast time constants and is therefore 

quickly forgotten. While multiple eigenmodes likely contribute to the performance of the 

network, we restrict this initial study to the slowest mode, for which λ1 ≈ 1.

4.5 Left and right eigenvectors

Restricting our focus to the top eigenmode for simplicity (there may be a few slow modes 

of integration), the effect of a single input, xt, on the network activity (eq. 3) becomes: 

3We consider the case where the network has closely converged to a fixed point, so that h0 = h* and thus Δh0 = 0.
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r1ℓ1
⊤Jinpx. We have dropped the dependence on t since λ1 ≈ 1, so the effect of x is largely 

insensitive to the exact time it was input to system. Using this expression, we separately 

analyzed the effects of specific words with positive, negative and neutral valences. We 

defined positive, negative, and neutral words based on the magnitude and sign of the logistic 

regression coefficients of a bag-of-words classifier.

We first examined the term Jinpx for various choices of x (i.e. various word tokens). 

This quantity represents the instantaneous linear effect of x on the RNN state vector. We 

projected the resulting vectors onto the same low-dimensional subspace shown in Fig. 2c. 

We see that positive and negative valence words push the hidden state in opposite directions. 

Neutral words, in contrast, exert much smaller effects on the RNN state (Fig 4).

While Jinpx represents the instantaneous effect of a word, only the features of this input 

that overlap with the top few eigenmodes are reliably remembered by the network. The 

scalar quantity ℓ1
⊤Jinpx, which we call the input projection, captures the magnitude of change 

induced by x along the eigenmode associated with the longest timescale. Again we observe 

that the valence of x strongly correlates with this quantity: neutral words have an input 

projection near zero while positive and negative words produced larger magnitude responses 

of opposite sign. Furthermore, this is reliably observed across all fixed points. Fig. 4c 

shows the average input projection for positive, negative, and neutral words; the histogram 

summarizes these effects across all fixed points along the line attractor.

Finally, if the input projection onto the top eigenmode is non-negligible, then the right 

eigenvector r1 (which is normalized to unit length) represents the direction along which x 
is integrated. If the RNN implements an approximate line attractor, then r1 (and potentially 

other slow modes) should align with the principal direction of the manifold of fixed points, 

m. In essence, this prediction states that an informative input pushes the current RNN state 

along the fixed point manifold and towards a neighboring fixed point, with the direction of 

this movement determined by word or phrase valence. We indeed observe a high degree of 

overlap between r1 and m both visually in PC space (Fig. 4b) and quantitatively across all 

fixed points (Fig. 4d).

4.6 Linearized dynamics approximate the nonlinear system

To verify that the linearized dynamics (2) well approximate the nonlinear system, we 

compared hidden state trajectories of the full, nonlinear RNN to the linearized dynamics. 

That is, at each step, we computed the next hidden state using the nonlinear LSTM update 

equations ht + 1
LSTM = F ht, xt , and the linear approximation of the dynamics at the nearest 

fixed point ht + 1
lin = h * + Jrec h * ht − h * + Jinp h * xt . Fig. 5a shows the true, nonlinear 

trajectory (solid black line) as well as the linear approximations at every point along the 

trajectory (red dashed line). To summarize the error across many examples, we computed 

the relative error ht + 1
LSTM − ht + 1

lin
2/ ht + 1

LSTM
2. Fig. 5b shows that this error is small (around 

10%) across many test examples.
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Note that this error is the single-step error, computed by running either the nonlinear or 

linear dynamics forward for one time step. If we run the dynamics for many time steps, we 

find that small errors in the linearized system accumulate thus causing the trajectories to 

diverge. This suggests that we cannot, in practice, replace the full nonlinear LSTM with a 

single linearized version.

4.7 Universal mechanisms across architectures and datasets

Empirically, we investigated whether the mechanisms identified in the LSTM (line attractor 

dynamics) were present not only for other network architectures but also for networks 

trained on other datasets used for sentiment classification. Remarkably, we see a surprising 

near-universality across networks (but see Supp. Mat. for another solution for the VRNN). 

Fig. 6 shows, for different architectures and datasets, the correlation of the the top left 

eigenvectors with the instantaneous input for a given fixed point (first row), as well as a 

histogram over the same quantity over fixed points (second row). We observe the same 

configuration of a line attractor of approximate fixed points, and show an example fixed 

point and right eigenvector highlighted (third row) along with a summary of the projection 

of the top right eigenvector along the manifold across fixed points (bottom row). We see that 

regardless of architecture or dataset, each network approximately solves the task using the 

same mechanism.

5 Discussion

In this work we applied dynamical systems analysis to understand how RNNs solve 

sentiment analysis. We found a simple mechanism—integration along a line attractor—

present in multiple architectures trained to different sentiment analysis tasks. Overall, this 

work provides preliminary, but optimistic, evidence that different, highly intricate network 

models can converge to similar solutions that may be reduced and understood by human 

practitioners.

In summary, we found that in nearly all cases the key activity performed by the RNN 

for sentiment analysis is simply counting the number of positive and negative words used. 

More precisely, a slow mode of a local linear system aligns its left eigenvector with the 

current effective input, which itself nicely separates positive and negative word tokens. 

The associated right eigenvector then represents that input in a direction aligned to a 

line attractor, which in turn is aligned to the readout vector. As the RNN iterates over a 

document, integration of negative and positive words moves the system state along this line 

attractor, corresponding to accumulation of evidence by the RNN towards a prediction.

Such a mechanism is consistent with a solution that does not make use of word order 

when making a decision. As such, it is likely that we have not understood all the dynamics 

relevant in the computation of sentiment analysis. For example, we speculate there may 

be some yet unknown mechanism that detects simple bi-gram negations of one word by 

another, e.g. “not bad,” since the gated RNNs performed a few percentage points better than 

the bag-of-words model. Nonetheless, it appears that approximate line attractor dynamics 

represent a fundamental computational mechanism in these RNNs, which can be built upon 

by future investigations.
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When we compare the overall classification accuracy of the Jacobian linearized version 

of the LSTM with the full nonlinear LSTM, we find that the linearized version is much 

worse, presumably due to small errors in the linear approximation that accrue as the network 

processes a document. Note that if we directly train a linear model (as opposed to linearizing 

a nonlinear model), the performance is quite high (only around 3% worse than the LSTM), 

which suggests that the error of the Jacobian linearized model has to do with errors in the 

approximation, not from having less expressive power.

We showed that similar dynamical features occur in 4 different architectures, the LSTM, 

GRU, UGRNN and vanilla RNNs (Fig. 6 and Supp. Mat.) and across three datasets. These 

rather different architectures all implemented the solution to sentiment analysis in a highly 

similar way. This hints at a surprising notion of universality of mechanism in disparate RNN 

architectures.

While our results pertain to a specific task, sentiment analysis is nevertheless representative 

of a larger set of modeling tasks that require integrating both relevant and irrelevant 

information over long sequences of symbols. Thus, it is possible that the uncovered 

mechanisms—namely, approximate line attractor dynamics—will arise in other practical 

settings, though perhaps employed in different ways on a per-task basis.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: 
Example LSTM hidden state activity for a network trained on sentiment classification. Each 

panel shows the evolution of the hidden state for all of the units in the network for positive 

(left) and negative (right) example documents over the first 150 tokens. At a glance, the 

activation time series for individual units appear inscrutable.
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Figure 2: 
LSTMs trained to identify the sentiment of Yelp reviews explore a low-dimensional volume 

of state space. (a) PCA on LSTM hidden states - PCA applied to all hidden states visited 

during 1000 test examples for untrained (light gray) vs. trained (black) LSTMs. After 

training, most of the variance in LSTM hidden unit activity is captured by a few dimensions. 

(b) RNN state space - Projection of LSTM hidden unit activity onto the top two principal 

components (PCs). 2D histogram shows density of visited states for test examples colored 

for negative (red) and positive (green) reviews. Two example trajectories are shown for 

a document of each type (red and green solid lines, respectively). The projection of the 

initial state (black dot) and readout vector (black arrows) in this low-dimensional space are 

also shown. Dashed black line shows a readout value of 0. (c) Approximate fixed points - 

Projection of approximate fixed points of the LSTM dynamics (see Methods) onto the top 

PCs. The fixed points lie along a 1-D manifold (inset shows variance explained by PCA on 

the approximate fixed points), parameterized by a coordinate θ (see Methods).
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Figure 3: 
Characterizing the top eigenmodes of each fixed point. (a) Same plot as in Fig. 2c (fixed 

points are grey), with three example fixed points highlighted. (b) For each of these fixed 

points, we compute the LSTM Jacobian (see Methods) and show the distribution of 

eigenvalues (colored circles) in the complex plane (black line is the unit circle). (c-d) 

The time constants (τ in terms of # of input tokens, see Appendix C) associated with the 

eigenvalues. (c) The time constant for the top three modes for all fixed points as function 

of the position along the line attractor (parameterized by a manifold coordinate, θ). (d) All 

time constants for all eigenvalues associated with the three highlighted fixed points. The top 

eigenmode across fixed points has a time constant on the order of hundreds to thousands of 

tokens.
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Figure 4: 
Effect of different word inputs on the LSTM state vector. (a) Effect of word inputs, Jinpx, for 

positive, negative, and neutral words (green, red, cyan dots). The green and red arrows point 

to the center of mass for the positive and negative words, respectively. Blue arrows denote ℓ1, 

the top left eigenvector. The PCA projection is the same as Fig. 2c, but centered around each 

fixed point. Each plot denotes a separate fixed point (labeled in panel b). (b) Same plot as in 

Fig. 2c, with the three example fixed points in (a) highlighted (the rest of the approximate 

fixed points are shown in grey). Blue arrows denote r1, the top right eigenvector. In all cases 

r1 is aligned with the orientation of the manifold, m, consistent with an approximate line 

attractor. (c) Average of the projection of inputs with the left eigenvector ℓ1
⊤Jinpx  over 100 

positive (green), negative (red), or neutral (cyan) words. Histogram displays the distribution 

of this input projection over all fixed points. (d) Distribution of r1
⊤m (overlap of the top right 

eigenvector with the fixed point manifold) over all fixed points. Null distribution consists of 

randomly generated unit vectors of the same dimension as the hidden state.
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Figure 5: 
Linearized LSTM dynamics display low fractional error. (a) At every step along a trajectory, 

we compute the next state using either the full nonlinear system (solid, black) or the 

linearized system (dashed, red). Inset shows a zoomed in version of the dynamics. (b) 

Histogram of fractional error of the linearized system over many test examples, evaluated in 

the high-dimensional state space.
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Figure 6: 
Universal mechanisms across architectures and datasets (see Appendix A for all other 

architecture-dataset combinations). Top row: comparison of left eigenvector (blue) against 

instantaneous effect of word input Jinpx by valence (green and red dots are positive and 

negative words, compare to Fig. 4a) for an example fixed point. Second row: Histogram of 

input projections summarizing the effect of input across fixed points (average of ℓ1
⊤Jinpx, 

compare to Fig. 4c). Third row: Example fixed point (blue) shown on top of the manifold 

of fixed points (gray) projected into the principal components of hidden state activity, along 

with the corresponding top right eigenvector (compare to Fig. 4b). Bottom row: Distribution 

of projections of the top right eigenvector onto the manifold across fixed points (distribution 

of r1
⊤m, compare to Fig. 4d).
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