
Reverse engineering recurrent networks for sentiment
classification reveals line attractor dynamics

Niru Maheswaranathan*,
Google Brain, Google Inc., Mountain View, CA

Alex H. Williams*,
Stanford University, Stanford, CA

Matthew D. Golub,
Stanford University, Stanford, CA

Surya Ganguli,
Stanford and Google Brain, Google Inc., Stanford, CA

David Sussillo
Google Brain, Google Inc., Mountain View, CA

Abstract

Recurrent neural networks (RNNs) are a widely used tool for modeling sequential data, yet

they are often treated as inscrutable black boxes. Given a trained recurrent network, we would

like to reverse engineer it–to obtain a quantitative, interpretable description of how it solves a

particular task. Even for simple tasks, a detailed understanding of how recurrent networks work,

or a prescription for how to develop such an understanding, remains elusive. In this work, we

use tools from dynamical systems analysis to reverse engineer recurrent networks trained to

perform sentiment classification, a foundational natural language processing task. Given a trained

network, we find fixed points of the recurrent dynamics and linearize the nonlinear system around

these fixed points. Despite their theoretical capacity to implement complex, high-dimensional

computations, we find that trained networks converge to highly interpretable, low-dimensional

representations. In particular, the topological structure of the fixed points and corresponding

linearized dynamics reveal an approximate line attractor within the RNN, which we can use

to quantitatively understand how the RNN solves the sentiment analysis task. Finally, we find

this mechanism present across RNN architectures (including LSTMs, GRUs, and vanilla RNNs)

trained on multiple datasets, suggesting that our findings are not unique to a particular architecture

or dataset. Overall, these results demonstrate that surprisingly universal and human interpretable

computations can arise across a range of recurrent networks.

nirum@google.com .
*equal contribution

HHS Public Access
Author manuscript
Adv Neural Inf Process Syst. Author manuscript; available in PMC 2020 August 10.

Published in final edited form as:
Adv Neural Inf Process Syst. 2019 December ; 32: 15696–15705.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

1 Introduction

Recurrent neural networks (RNNs) are a popular tool for sequence modelling tasks. These

architectures are thought to learn complex relationships in input sequences, and exploit

this structure in a nonlinear fashion. However, RNNs are typically viewed as black boxes,

despite considerable interest in better understanding how they function.

Here, we focus on studying how recurrent networks solve document-level sentiment analysis

—a simple, but longstanding benchmark task for language modeling [7, 19]. Simple models,

such as logistic regression trained on a bag-of-words representation, can achieve good

performance in this setting [17]. Nonetheless, baseline models without bi-gram features miss

obviously important syntactic relations, such as negation clauses [18]. To capture complex

structure in text, especially over long distances, many recent works have investigated a wide

variety of feed-forward and recurrent neural network architectures for this task (for a review,

see [19]).

We demonstrate that popular RNN architectures, despite having the capacity to implement

high-dimensional and nonlinear computations, in practice converge to low-dimensional

representations when trained on this task. Moreover, using analysis techniques from

dynamical systems theory, we show that locally linear approximations to the nonlinear

RNN dynamics are highly interpretable. In particular, they all involve approximate low-

dimensional line attractor dynamics–a useful dynamical feature that can be implemented by

linear dynamics and can used to store an analog value [13]. Furthermore, we show that this

mechanism is surprisingly consistent across a range of RNN architectures. Taken together,

these results demonstrate how a remarkably simple operation—linear integration—arises as

a universal mechanism in disparate, nonlinear recurrent architectures that solve a real world

task.

2 Related Work

Several studies have tried to interpret recurrent networks by visualizing the activity of

individual RNN units and memory gates during NLP tasks [5, 15]. While some individual

RNN state variables appear to encode semantically meaningful features, most units do not

have clear interpretations. For example, the hidden states of an LSTM appear extremely

complex when performing a task (Fig. 1). Other work has suggested that network units with

human interpretable behaviors (e.g. class selectivity) are not more important for network

performance [10], and thus our understanding of RNN function may be misled by focusing

only on single interpretable units. Instead, this work aims to interpret the entire hidden state

to infer computational mechanisms underlying trained RNNs.

Another line of work has developed quantitative methods to identify important words or

phrases in an input sequence that influenced the model’s ultimate prediction [8, 11]. These

approaches can identify interesting salient features in subsets of the inputs, but do not

directly shed light into the computational mechanism of RNNs.

Maheswaranathan et al. Page 2

Adv Neural Inf Process Syst. Author manuscript; available in PMC 2020 August 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

3 Methods

3.1 Preliminaries

We denote the hidden state of a recurrent network at time t as a vector, ht. Similarly, the

input to the network at time t is given by a vector xt. We use F to denote a function that

applies any recurrent network update, i.e. ht+1 = F(ht, xt).

3.2 Training

We trained four RNN architectures–LSTM [4], GRU [1], Update Gate RNN (UGRNN)

[2], and standard (vanilla) RNNs–on binary sentiment classifcation tasks. We trained each

network type on each of three datasets: the IMDB movie review dataset, which contains

50,000 highly polarized reviews [9]; the Yelp review dataset, which contained 500,000 user

reviews [20]; and the Stanford Sentiment Treebank, which contains 11,855 sentences taken

from movie reviews [14]. For each task and architecture, we analyzed the best performing

networks, selected using a validation set (see Appendix B for test accuracies of the best

networks).

3.3 Fixed point analysis

We analyzed trained networks by linearizing the dynamics around approximate fixed points.

Approximate fixed points are state vectors h1*, h2*, h3*, ⋯ that do not change appreciably

under the RNN dynamics with zero inputs: hi* ≈ F hi*, x = 0 [16]. Briefly, we find these

fixed points numerically by first defining a loss function q = 1
N h − F (h, 0) 2

2
, and then

minimizing q with respect to hidden states, h, using standard auto-differentiation methods

[3]. We ran this optimization multiple times starting from different initial values of h.

These initial conditions were sampled randomly from the distribution of state activations

explored by the trained network, which was done to intentionally sample states related to the

operation of the RNN.

4 Results

For brevity, in what follows we explain our approach using the working example of the

LSTM trained on the Yelp dataset (Figs. 2–3). At the end of the results we show a

summary figure across a few more architectures and datasets (Fig. 6). We find similar results

for all architectures and datasets, as demonstrated by an exhaustive set of figures in the

supplementary materials.

4.1 RNN dynamics are low-dimensional

As an initial exploratory analysis step, we performed principal components analysis (PCA)

on the RNN states concatenated across 1,000 test examples. The top 2–3 PCs explained

~90% of the variance in hidden state activity (Fig. 2a, black line). The distribution of

hidden states visited by untrained networks on the same set of examples was much

higher dimensional (Fig. 2a, gray line), suggesting that training the networks stretched the

geometry of their representations along a low-dimensional subspace.

Maheswaranathan et al. Page 3

Adv Neural Inf Process Syst. Author manuscript; available in PMC 2020 August 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

We then visualized the RNN dynamics in this low-dimensional space by forming a 2D

histogram of the density of RNN states colored by the sentiment label (Fig. 2b), and

visualized how RNN states evolved within this low-dimensional space over a full sequence

of text (Fig. 2b).

We observed that the state vector incrementally moved from a central position towards

one or another end of the PC-plane, with the direction corresponding either to a positive

or negative sentiment prediction. Input words with positive valence (“amazing”, “great”,

etc.) incremented the hidden state towards a positive sentiment prediction, while words with

negative valence (“bad”, “horrible”, etc.) pushed the hidden state in the opposite direction.

Neutral words and phrases did not typically exert large effects on the RNN state vector.

These observations are reminiscent of line attractor dynamics. That is, the RNN state

vector evolves along a 1D manifold of marginally stable fixed points. Movement along

the line is negligible whenever non-informative inputs (i.e. neutral words) are input to the

network, whereas when an informative word or phrase (e.g. “delicious” or “mediocre”)

is encountered, the state vector is pushed towards one or the other end of the manifold.

Thus, the model’s representation of positive and negative documents gradually separates as

evidence is incrementally accumulated.

The hypothesis that RNNs approximate line attractor dynamics makes four specific

predictions, which we investigate and confirm in subsequent sections. First, the fixed points

form an approximately 1D manifold that is aligned with the readout weights (Section 4.2).

Second, all fixed points are attracting and marginally stable. That is, in the absence of

input (or, perhaps, if a string of neutral/uninformative words are encountered) the RNN state

should rapidly converge to the closest fixed point and then should not change appreciably

(Section 4.4). Third, locally around each fixed point, inputs representing positive vs.

negative evidence should produce linearly separable effects on the RNN state vector along

some dimension (Section 4.5). Finally, these instantaneous effects should be integrated by

the recurrent dynamics along the direction of the 1D fixed point manifold (Section 4.5).

4.2 RNNs follow a 1D manifold of stable fixed points

The line attractor hypothesis predicts that RNN state vector should rapidly approach a fixed

point if no input is delivered to the network. To test this, we initialized the RNN to a

random state (chosen uniformly from the distribution of states observed on the test set)

and simulated the RNN without any input. In all cases, the normalized velocity of the state

vector (‖ht+1 − ht‖/‖ht‖) approached zero within a few steps, and often the initial velocity

was small. From this we conclude that the RNN is very often in close proximity to a fixed

point during the task.

We numerically identified the location of ~500 RNN fixed points using previously

established methods [16, 3]. Briefly, we minimized the quantity q = 1
N h − F (h, 0) 2

2
 over

the RNN hidden state vector, h, from many initial conditions drawn to match the distribution

of hidden states during training. Critical points of this loss function satisfying q < 10−8 were

Maheswaranathan et al. Page 4

Adv Neural Inf Process Syst. Author manuscript; available in PMC 2020 August 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

consider fixed points (similar results were observed for different choices of this threshold).

For each architecture, we found ~500 (approximate) fixed points.

We then projected these fixed points into the same low-dimensional space used in Fig. 2b.

Although the PCA projection was fit to the RNN hidden states, and not the fixed points, a

very high percentage of variance in fixed points was captured by this projection (Fig. 2c,

inset), suggesting that the RNN states remain close to the manifold of fixed points. We call

the vector that describes the main axis of variation of the 1D manifold m. Consistent with

the line attractor hypothesis, the fixed points appeared to be spread along a 1D curve when

visualized in PC space, and furthermore the principal direction of this curve was aligned

with the readout weights (Fig. 2c).

We further verified that this low-dimensional approximation was accurate by using locally

linear embedding (LLE) [12] to parameterize a 1D manifold of fixed points in the raw,

high-dimensional data. This provided a scalar coordinate, θi ∈ [−1, 1], for each fixed point,

which was well-matched to the position of the fixed point manifold in PC space (coloring of

points in Fig. 2c).

4.3 Linear approximations of RNN dynamics

We next aimed to demonstrate that the identified fixed points were marginally stable, and

thus could be used to preserve accumulated information from the inputs. To do this, we used

a standard linearization procedure [6] to obtain an approximate, but highly interpretable,

description of the RNN dynamics near the fixed point manifold. Briefly, given the last state

ht−1 and the current input xt, the approach is to locally approximate the update rule with a

first-order Taylor expansion:

ht = F h * + Δht − 1, x * + Δxt
≈ F h * , x * + JrecΔht − 1 + JinpΔxt

(1)

where Δht−1 = ht−1−h* and Δxt = xt−x* and {Jrec, Jinp} are Jacobian matrices of the system:

Jij
rec h * , x * =

∂F h * , x * i
∂ℎj*

 and Jij
inp h * , x * =

∂F h * , x * i
∂xj*

.

We choose h* to be a numerically identified fixed point and x* = 02, thus we have F(h*,

x*) ≈ h* and Δxt = xt. Under this choice, equation (1) reduces to a discrete-time linear

dynamical system:

Δht = JrecΔht − 1 + Jinpxt . (2)

It is important to note that both Jacobians depend on which fixed point we choose to

linearize around, and should thus be thought of as functions of h*; for notational simplicity

we do not denote this dependence explicitly.

2We also tried linearizing around the average embedding over all words; this did not change the results. The average embedding is
very close to the zeros vector (the norm of the difference between the two is less than 8 × 10−3), so it is not surprising that using that
as the linearization point yields similar results.

Maheswaranathan et al. Page 5

Adv Neural Inf Process Syst. Author manuscript; available in PMC 2020 August 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

By reducing the nonlinear RNN to a linear system, we can analytically estimate the

network’s response to a sequence of T inputs. In this approximation, the effect of each input

xt is decoupled from all others; that is, the final state is given by the sum of all individual

effects3.

We can restrict our focus to the effect of a single input, xt. Let k = T − t be the number

of time steps between xt and the end of the document. The total effect of xt on the final

RNN state is (Jrec)k Jinpxt. After substituting the eigendecomposition Jrec = RΛL for a

non-normal matrix, this becomes:

RΛkLJinpxt = ∑
a = 1

N
λa

kraℓa
⊤Jinpxt, (3)

where L = R−1, the columns of R (denoted ra) contain the right eigenvectors of Jrec, the

rows of L (denoted ℓa
⊤) contain the left eigenvectors of Jrec, and Λ is a diagonal matrix

containing complex-valued eigenvalues, λ1 > λ2 > … > λN, which are sorted based on their

magnitude.

4.4 An analysis of integration eigenmodes

Each mode of the system either reduces to zero or diverges exponentially fast, with a time

constant given by: τa = 1
log λa

 (see Appendix C for derivation). This time constant has

units of tokens (or, roughly, words) and yields an interpretable number for the effective

memory of the system. In practice we find, with high consistency, that nearly all eigenmodes

are stable and only a small number cluster around |λa| ≈ 1.

Fig. 3 plots the eigenvalues and associated time constants and shows the distribution of all

eigenvalues at three representative fixed points along the fixed point manifold (Fig. 3a). In

Fig. 3c, we plot the decay time constant of the top three modes; the slowest decaying mode

persists after ~1000 time steps, while the next two modes persist after ~100 time steps, with

lower modes decaying even faster. Since the average review length for the Yelp dataset is

~175 words, only a small number of modes can retain information from the beginning of the

document.

Overall, these eigenvalue spectra are consistent with our observation that RNN states only

explore a low-dimensional subspace when performing sentiment classification. RNN activity

along the majority of dimensions is associated with fast time constants and is therefore

quickly forgotten. While multiple eigenmodes likely contribute to the performance of the

network, we restrict this initial study to the slowest mode, for which λ1 ≈ 1.

4.5 Left and right eigenvectors

Restricting our focus to the top eigenmode for simplicity (there may be a few slow modes

of integration), the effect of a single input, xt, on the network activity (eq. 3) becomes:

3We consider the case where the network has closely converged to a fixed point, so that h0 = h* and thus Δh0 = 0.

Maheswaranathan et al. Page 6

Adv Neural Inf Process Syst. Author manuscript; available in PMC 2020 August 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

r1ℓ1
⊤Jinpx. We have dropped the dependence on t since λ1 ≈ 1, so the effect of x is largely

insensitive to the exact time it was input to system. Using this expression, we separately

analyzed the effects of specific words with positive, negative and neutral valences. We

defined positive, negative, and neutral words based on the magnitude and sign of the logistic

regression coefficients of a bag-of-words classifier.

We first examined the term Jinpx for various choices of x (i.e. various word tokens).

This quantity represents the instantaneous linear effect of x on the RNN state vector. We

projected the resulting vectors onto the same low-dimensional subspace shown in Fig. 2c.

We see that positive and negative valence words push the hidden state in opposite directions.

Neutral words, in contrast, exert much smaller effects on the RNN state (Fig 4).

While Jinpx represents the instantaneous effect of a word, only the features of this input

that overlap with the top few eigenmodes are reliably remembered by the network. The

scalar quantity ℓ1
⊤Jinpx, which we call the input projection, captures the magnitude of change

induced by x along the eigenmode associated with the longest timescale. Again we observe

that the valence of x strongly correlates with this quantity: neutral words have an input

projection near zero while positive and negative words produced larger magnitude responses

of opposite sign. Furthermore, this is reliably observed across all fixed points. Fig. 4c

shows the average input projection for positive, negative, and neutral words; the histogram

summarizes these effects across all fixed points along the line attractor.

Finally, if the input projection onto the top eigenmode is non-negligible, then the right

eigenvector r1 (which is normalized to unit length) represents the direction along which x
is integrated. If the RNN implements an approximate line attractor, then r1 (and potentially

other slow modes) should align with the principal direction of the manifold of fixed points,

m. In essence, this prediction states that an informative input pushes the current RNN state

along the fixed point manifold and towards a neighboring fixed point, with the direction of

this movement determined by word or phrase valence. We indeed observe a high degree of

overlap between r1 and m both visually in PC space (Fig. 4b) and quantitatively across all

fixed points (Fig. 4d).

4.6 Linearized dynamics approximate the nonlinear system

To verify that the linearized dynamics (2) well approximate the nonlinear system, we

compared hidden state trajectories of the full, nonlinear RNN to the linearized dynamics.

That is, at each step, we computed the next hidden state using the nonlinear LSTM update

equations ht + 1
LSTM = F ht, xt , and the linear approximation of the dynamics at the nearest

fixed point ht + 1
lin = h * + Jrec h * ht − h * + Jinp h * xt . Fig. 5a shows the true, nonlinear

trajectory (solid black line) as well as the linear approximations at every point along the

trajectory (red dashed line). To summarize the error across many examples, we computed

the relative error ht + 1
LSTM − ht + 1

lin
2/ ht + 1

LSTM
2. Fig. 5b shows that this error is small (around

10%) across many test examples.

Maheswaranathan et al. Page 7

Adv Neural Inf Process Syst. Author manuscript; available in PMC 2020 August 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Note that this error is the single-step error, computed by running either the nonlinear or

linear dynamics forward for one time step. If we run the dynamics for many time steps, we

find that small errors in the linearized system accumulate thus causing the trajectories to

diverge. This suggests that we cannot, in practice, replace the full nonlinear LSTM with a

single linearized version.

4.7 Universal mechanisms across architectures and datasets

Empirically, we investigated whether the mechanisms identified in the LSTM (line attractor

dynamics) were present not only for other network architectures but also for networks

trained on other datasets used for sentiment classification. Remarkably, we see a surprising

near-universality across networks (but see Supp. Mat. for another solution for the VRNN).

Fig. 6 shows, for different architectures and datasets, the correlation of the the top left

eigenvectors with the instantaneous input for a given fixed point (first row), as well as a

histogram over the same quantity over fixed points (second row). We observe the same

configuration of a line attractor of approximate fixed points, and show an example fixed

point and right eigenvector highlighted (third row) along with a summary of the projection

of the top right eigenvector along the manifold across fixed points (bottom row). We see that

regardless of architecture or dataset, each network approximately solves the task using the

same mechanism.

5 Discussion

In this work we applied dynamical systems analysis to understand how RNNs solve

sentiment analysis. We found a simple mechanism—integration along a line attractor—

present in multiple architectures trained to different sentiment analysis tasks. Overall, this

work provides preliminary, but optimistic, evidence that different, highly intricate network

models can converge to similar solutions that may be reduced and understood by human

practitioners.

In summary, we found that in nearly all cases the key activity performed by the RNN

for sentiment analysis is simply counting the number of positive and negative words used.

More precisely, a slow mode of a local linear system aligns its left eigenvector with the

current effective input, which itself nicely separates positive and negative word tokens.

The associated right eigenvector then represents that input in a direction aligned to a

line attractor, which in turn is aligned to the readout vector. As the RNN iterates over a

document, integration of negative and positive words moves the system state along this line

attractor, corresponding to accumulation of evidence by the RNN towards a prediction.

Such a mechanism is consistent with a solution that does not make use of word order

when making a decision. As such, it is likely that we have not understood all the dynamics

relevant in the computation of sentiment analysis. For example, we speculate there may

be some yet unknown mechanism that detects simple bi-gram negations of one word by

another, e.g. “not bad,” since the gated RNNs performed a few percentage points better than

the bag-of-words model. Nonetheless, it appears that approximate line attractor dynamics

represent a fundamental computational mechanism in these RNNs, which can be built upon

by future investigations.

Maheswaranathan et al. Page 8

Adv Neural Inf Process Syst. Author manuscript; available in PMC 2020 August 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

When we compare the overall classification accuracy of the Jacobian linearized version

of the LSTM with the full nonlinear LSTM, we find that the linearized version is much

worse, presumably due to small errors in the linear approximation that accrue as the network

processes a document. Note that if we directly train a linear model (as opposed to linearizing

a nonlinear model), the performance is quite high (only around 3% worse than the LSTM),

which suggests that the error of the Jacobian linearized model has to do with errors in the

approximation, not from having less expressive power.

We showed that similar dynamical features occur in 4 different architectures, the LSTM,

GRU, UGRNN and vanilla RNNs (Fig. 6 and Supp. Mat.) and across three datasets. These

rather different architectures all implemented the solution to sentiment analysis in a highly

similar way. This hints at a surprising notion of universality of mechanism in disparate RNN

architectures.

While our results pertain to a specific task, sentiment analysis is nevertheless representative

of a larger set of modeling tasks that require integrating both relevant and irrelevant

information over long sequences of symbols. Thus, it is possible that the uncovered

mechanisms—namely, approximate line attractor dynamics—will arise in other practical

settings, though perhaps employed in different ways on a per-task basis.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgments

The authors would like to thank Peter Liu, Been Kim, and Michael C. Mozer for helpful feedback and discussions.

References

[1]. Cho Kyunghyun, van Merrienboer Bart, Caglar Gulcehre, Bougares Fethi, Schwenk Holger,
and Bengio Yoshua. Learning Phrase Representations using RNN Encoder-Decoder for
Statistical Machine Translation. In Proc. Conference on Empirical Methods in Natural Language
Processing, Unknown, Unknown Region, 2014.

[2]. Collins Jasmine, Jascha Sohl-Dickstein, and David Sussillo. Capacity and trainability in recurrent
neural networks. arXiv preprint arXiv:1611.09913, 2016.

[3]. Golub Matthew and Sussillo David. FixedPointFinder: A tensorflow toolbox for identifying and
characterizing fixed points in recurrent neural networks. Journal of Open Source Software,
3(31):1003, 2018.

[4]. Hochreiter Sepp and Schmidhuber Jürgen. Long short-term memory. Neural computation,
9(8):1735–1780, 1997. [PubMed: 9377276]

[5]. Karpathy Andrej, Johnson Justin, and Li Fei-Fei. Visualizing and understanding recurrent
networks. arXiv preprint arXiv:1506.02078, 2015.

[6]. Khalil Hassan K. Nonlinear Systems. Pearson, 2001.

[7]. Liu Bing. Sentiment analysis: Mining opinions, sentiments, and emotions. Cambridge University
Press, 2015.

[8]. Lundberg Scott M and Lee Su-In. A unified approach to interpreting model predictions. In
Guyon I, Luxburg UV, Bengio S, Wallach H, Fergus R, Vishwanathan S, and Garnett R, editors,
Advances in Neural Information Processing Systems 30, pages 4765–4774. Curran Associates,
Inc., 2017.

Maheswaranathan et al. Page 9

Adv Neural Inf Process Syst. Author manuscript; available in PMC 2020 August 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

[9]. Maas Andrew L., Daly Raymond E., Pham Peter T., Huang Dan, Ng Andrew Y., and Potts
Christopher. Learning word vectors for sentiment analysis. In Proceedings of the 49th Annual
Meeting of the Association for Computational Linguistics: Human Language Technologies
– Volume 1, HLT ‘11, pages 142–150, Stroudsburg, PA, USA, 2011. Association for
Computational Linguistics.

[10]. Morcos Ari S., Barrett David G.T., Rabinowitz Neil C., and Matthew Botvinick. On the
importance of single directions for generalization. In International Conference on Learning
Representations, 2018.

[11]. James Murdoch W, Liu Peter J., and Yu Bin. Beyond word importance: Contextual
decomposition to extract interactions from LSTMs. In International Conference on Learning
Representations, 2018.

[12]. Roweis Sam T. and Saul Lawrence K. Nonlinear dimensionality reduction by locally linear
embedding. Science, 290(5500):2323–2326, 2000. [PubMed: 11125150]

[13]. Seung HS How the brain keeps the eyes still. Proceedings of the National Academy of Sciences,
93(23):13339–13344, 1996.

[14]. Socher Richard, Perelygin Alex, Wu Jean, Chuang Jason, Manning Christopher D, Ng Andrew,
and Potts Christopher. Recursive deep models for semantic compositionality over a sentiment
treebank. In Proceedings of the 2013 conference on empirical methods in natural language
processing, pages 1631–1642, 2013.

[15]. Strobelt Hendrik, Gehrmann Sebastian, Huber Bernd, Pfister Hanspeter, Rush Alexander M, et al.
Visual analysis of hidden state dynamics in recurrent neural networks. CoRR, abs/1606.07461,
2016.

[16]. Sussillo David and Barak Omri. Opening the black box: low-dimensional dynamics in high-
dimensional recurrent neural networks. Neural computation, 25(3):626–649, 2013. [PubMed:
23272922]

[17]. Wang Sida and Manning Christopher D. Baselines and bigrams: Simple, good sentiment
and topic classification. In Proceedings of the 50th Annual Meeting of the Association for
Computational Linguistics: Short Papers - Volume 2, ACL ‘12, pages 90–94, Stroudsburg, PA,
USA, 2012. Association for Computational Linguistics.

[18]. Wiegand Michael, Balahur Alexandra, Roth Benjamin, Klakow Dietrich, and Montoyo Andrés. A
survey on the role of negation in sentiment analysis. In Proceedings of the Workshop on Negation
and Speculation in Natural Language Processing, NeSp-NLP ‘10, pages 60–68, Stroudsburg, PA,
USA, 2010. Association for Computational Linguistics.

[19]. Zhang Lei, Wang Shuai, and Liu Bing. Deep learning for sentiment analysis: A survey. Wiley
Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 8(4):e1253, 2018.

[20]. Zhang Xiang, Zhao Junbo, and LeCun Yann. Character-level convolutional networks for text
classification. In Cortes C, Lawrence ND, Lee DD, Sugiyama M, and Garnett R, editors,
Advances in Neural Information Processing Systems 28, pages 649–657. Curran Associates,
Inc., 2015.

Maheswaranathan et al. Page 10

Adv Neural Inf Process Syst. Author manuscript; available in PMC 2020 August 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 1:
Example LSTM hidden state activity for a network trained on sentiment classification. Each

panel shows the evolution of the hidden state for all of the units in the network for positive

(left) and negative (right) example documents over the first 150 tokens. At a glance, the

activation time series for individual units appear inscrutable.

Maheswaranathan et al. Page 11

Adv Neural Inf Process Syst. Author manuscript; available in PMC 2020 August 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 2:
LSTMs trained to identify the sentiment of Yelp reviews explore a low-dimensional volume

of state space. (a) PCA on LSTM hidden states - PCA applied to all hidden states visited

during 1000 test examples for untrained (light gray) vs. trained (black) LSTMs. After

training, most of the variance in LSTM hidden unit activity is captured by a few dimensions.

(b) RNN state space - Projection of LSTM hidden unit activity onto the top two principal

components (PCs). 2D histogram shows density of visited states for test examples colored

for negative (red) and positive (green) reviews. Two example trajectories are shown for

a document of each type (red and green solid lines, respectively). The projection of the

initial state (black dot) and readout vector (black arrows) in this low-dimensional space are

also shown. Dashed black line shows a readout value of 0. (c) Approximate fixed points -

Projection of approximate fixed points of the LSTM dynamics (see Methods) onto the top

PCs. The fixed points lie along a 1-D manifold (inset shows variance explained by PCA on

the approximate fixed points), parameterized by a coordinate θ (see Methods).

Maheswaranathan et al. Page 12

Adv Neural Inf Process Syst. Author manuscript; available in PMC 2020 August 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 3:
Characterizing the top eigenmodes of each fixed point. (a) Same plot as in Fig. 2c (fixed

points are grey), with three example fixed points highlighted. (b) For each of these fixed

points, we compute the LSTM Jacobian (see Methods) and show the distribution of

eigenvalues (colored circles) in the complex plane (black line is the unit circle). (c-d)

The time constants (τ in terms of # of input tokens, see Appendix C) associated with the

eigenvalues. (c) The time constant for the top three modes for all fixed points as function

of the position along the line attractor (parameterized by a manifold coordinate, θ). (d) All

time constants for all eigenvalues associated with the three highlighted fixed points. The top

eigenmode across fixed points has a time constant on the order of hundreds to thousands of

tokens.

Maheswaranathan et al. Page 13

Adv Neural Inf Process Syst. Author manuscript; available in PMC 2020 August 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 4:
Effect of different word inputs on the LSTM state vector. (a) Effect of word inputs, Jinpx, for

positive, negative, and neutral words (green, red, cyan dots). The green and red arrows point

to the center of mass for the positive and negative words, respectively. Blue arrows denote ℓ1,

the top left eigenvector. The PCA projection is the same as Fig. 2c, but centered around each

fixed point. Each plot denotes a separate fixed point (labeled in panel b). (b) Same plot as in

Fig. 2c, with the three example fixed points in (a) highlighted (the rest of the approximate

fixed points are shown in grey). Blue arrows denote r1, the top right eigenvector. In all cases

r1 is aligned with the orientation of the manifold, m, consistent with an approximate line

attractor. (c) Average of the projection of inputs with the left eigenvector ℓ1
⊤Jinpx over 100

positive (green), negative (red), or neutral (cyan) words. Histogram displays the distribution

of this input projection over all fixed points. (d) Distribution of r1
⊤m (overlap of the top right

eigenvector with the fixed point manifold) over all fixed points. Null distribution consists of

randomly generated unit vectors of the same dimension as the hidden state.

Maheswaranathan et al. Page 14

Adv Neural Inf Process Syst. Author manuscript; available in PMC 2020 August 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 5:
Linearized LSTM dynamics display low fractional error. (a) At every step along a trajectory,

we compute the next state using either the full nonlinear system (solid, black) or the

linearized system (dashed, red). Inset shows a zoomed in version of the dynamics. (b)

Histogram of fractional error of the linearized system over many test examples, evaluated in

the high-dimensional state space.

Maheswaranathan et al. Page 15

Adv Neural Inf Process Syst. Author manuscript; available in PMC 2020 August 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 6:
Universal mechanisms across architectures and datasets (see Appendix A for all other

architecture-dataset combinations). Top row: comparison of left eigenvector (blue) against

instantaneous effect of word input Jinpx by valence (green and red dots are positive and

negative words, compare to Fig. 4a) for an example fixed point. Second row: Histogram of

input projections summarizing the effect of input across fixed points (average of ℓ1
⊤Jinpx,

compare to Fig. 4c). Third row: Example fixed point (blue) shown on top of the manifold

of fixed points (gray) projected into the principal components of hidden state activity, along

with the corresponding top right eigenvector (compare to Fig. 4b). Bottom row: Distribution

of projections of the top right eigenvector onto the manifold across fixed points (distribution

of r1
⊤m, compare to Fig. 4d).

Maheswaranathan et al. Page 16

Adv Neural Inf Process Syst. Author manuscript; available in PMC 2020 August 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

	Abstract
	Introduction
	Related Work
	Methods
	Preliminaries
	Training
	Fixed point analysis

	Results
	RNN dynamics are low-dimensional
	RNNs follow a 1D manifold of stable fixed points
	Linear approximations of RNN dynamics
	An analysis of integration eigenmodes
	Left and right eigenvectors
	Linearized dynamics approximate the nonlinear system
	Universal mechanisms across architectures and datasets

	Discussion
	References
	Figure 1:
	Figure 2:
	Figure 3:
	Figure 4:
	Figure 5:
	Figure 6:

