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Abstract

Graph Neural Networks (GNNs) are powerful for the representation learning of graph-structured 

data. Most of the GNNs use a message-passing scheme, where the embedding of a node is 

iteratively updated by aggregating the information from its neighbors. To achieve a better 

expressive capability of node influences, attention mechanism has grown to be popular to assign 

trainable weights to the nodes in aggregation. Though the attention-based GNNs have achieved 

remarkable results in various tasks, a clear understanding of their discriminative capacities is 

missing. In this work, we present a theoretical analysis of the representational properties of the 

GNN that adopts the attention mechanism as an aggregator. Our analysis determines all cases 

when those attention-based GNNs can always fail to distinguish certain distinct structures. Those 

cases appear due to the ignorance of cardinality information in attention-based aggregation. To 

improve the performance of attention-based GNNs, we propose cardinality preserved attention 

(CPA) models that can be applied to any kind of attention mechanisms. Our experiments on node 

and graph classification confirm our theoretical analysis and show the competitive performance of 

our CPA models. The code is available online: https://github.com/zetayue/CPA.

1 Introduction

Graph, as a kind of data structure in non-Euclidean domain, can represent a set of instances 

(nodes) and the relationships (edges) between them, thus has a broad application in various 

fields [Zhou et al., 2018]. Different from regular Euclidean data such as texts and images, 

graph structured data are irregular so it is not straightforward to apply important operations 

in deep learning (e.g. convolutions). Consequently, the analysis of graph-structured data 

remains a challenging and ubiquitous question.

In recent years, Graph Neural Networks (GNNs) have been proposed to learn the 

representations of graph-structured data and attract a growing interest [Scarselli et al., 2009; 

Li et al., 2016; Niepert et al., 2016; Kipf and Welling, 2017; Hamilton et al., 2017; Zhang et 
al., 2018; Ying et al., 2018; Morris et al., 2019; Xu et al., 2019]. GNNs can iteratively 
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update node embeddings by aggregating/passing node features and structural information in 

the graph. The generated node embeddings can be fed into extra modules and the whole 

model is trained end-to-end for different tasks.

Though many GNNs have been proposed, it is noted that when updating the embedding of a 

node vi by aggregating the embeddings of its neighbor nodes vj, most of the GNN variants 

will assign non-parametric weight between vi and vj in their aggregators [Kipf and Welling, 

2017; Hamilton et al., 2017; Xu et al., 2019]. However, such aggregators (e.g. sum or mean) 

fail to learn and distinguish the information between a target node and its neighbors during 

the training. Taking account of different contributions from the nodes in a graph is important 

in real-world data as not all edges have similar impacts. A natural alternative solution is 

making the edge weights trainable to have a better expressive capability.

To assign learnable weights in the aggregation, the attention mechanism [Bahdanau et al., 
2014; Vaswani et al., 2017] is incorporated in GNNs. Thus the weights can be directly 

represented by attention coefficients between nodes and give interpretability [Veličković et 
al., 2018; Thekumparampil et al., 2018]. Though GNNs with the attention-based aggregators 

achieve promising performance on various tasks empirically, a clear understanding of their 

discriminative power is missing for the designing of more powerful attention-based GNNs. 

Recent works [Morris et al., 2019; Xu et al., 2019; Maron et al., 2019] have theoretically 

analyzed the expressive power of GNNs. However, they are unaware of the attention 

mechanism in their analysis. So that it is unclear whether using attention mechanism in 

aggregation will constrain the expressive power of GNNs.

In this work, we make efforts to theoretically analyze the discriminative power of GNNs 

with attention-based aggregators. Our findings reveal that previous proposed attention-based 

aggregators fail to distinguish certain distinct structures. By determining all such cases, we 

reveal the reason for those failures is the ignorance of cardinality information in aggregation. 

It inspires us to improve the attention mechanism via cardinality preservation. We propose 

models that can be applied to any kind of attention mechanisms and achieve the goal. In our 

experiments on node and graph classification, we confirm our theoretical analysis and 

validate the power of our proposed models. The best-performing one can achieve 

competitive results comparing to other baselines. Our key contributions are summarized as 

follows:

• We show that previously proposed attention-based aggregators in message-

passing GNNs always fail to distinguish certain distinct structures. We determine 

all of those cases and demonstrate the reason is the ignorance of the cardinality 

information in the aggregation.

• We propose Cardinality Preserved Attention (CPA) methods to improve the 

original attention-based aggregator. With them, we can distinguish all cases that 

previously always make an attention-based aggregator fail.

• Experiments on node and graph classification validate our theoretical analysis 

and the power of our CPA models. Comparing to baselines, CPA models can 

reach state-of-the-art level.
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2 Preliminaries

2.1 Notations

Let G = (V, E) be a graph with set of nodes V and set of edges E. The nearest neighbors of 

node i are defined as N(i) = j ∣ d(i, j) = 1 , where d(i, j) is the shortest distance between 

node i and j. We denote the set of node i and its nearest neighbors as N(i) = N(i) ∪ i  For 

the nodes in N(i), their feature vectors form a multiset M(i) = (Si, μi), where Si = {s1, …, sn} 

is the ground set of M(i), and μi:Si ℕ * is the multiplicity function that gives the 

multiplicity of each s ∈ Si. The cardinality ∣M∣ of a multiset is the number of elements (with 

multiplicity) in the multiset.

2.2 Graph Neural Networks

General GNNs—Graph Neural Networks (GNNs) adopt node or edge features and the 

graph structure as input to learn the representations in graphs for different tasks. In this 

work, we focus on the GNNs under the massage-passing framework, which updates the node 

features by aggregating its nearest neighbor node features iteratively. In previous surveys, 

this type of GNNs is referred as Graph Convolutional Networks in [Wu et al., 2020] or the 

GNNs with convolutional aggregator in [Zhou et al., 2018]. Under the framework, a learned 

representation of each node after l layers contains the features and the structural information 

within l-hop neighborhood. The l-th layer of a GNN can be formulated as:

ℎi
l = ϕl ℎi

l − 1, ℎj
l − 1, ∀j ∈ N(i) , (1)

where the superscript l denotes the l-th layer. hi is the representation of node i, and ℎi
0 is 

initialized as Xi. The aggregation function ϕ in Equation (1) propagates information between 

nodes to update the node features.

In the final layer, since the node representation ℎi
L after L iterations contains the L-hop 

neighborhood information, it can be directly used for local/node-level tasks. While for 

global/graph-level tasks, the whole graph representation hG is computed using an extra 

readout function g:

ℎG = g ℎi
L, ∀i ∈ G . (2)

Attention-Based GNNs—In a GNN, when the aggregation function ϕ in Equation (1) 

adopts attention mechanism, we consider it as an attention-based GNN. The attention-based 

aggregator in l-th layer can be formulated as follows:

eijl − 1 = Att ℎi
l − 1, ℎj

l − 1 , (3)

αijl − 1 = softmax eijl − 1 =
exp eijl − 1

∑k ∈ N(i)exp eik
l − 1 , (4)
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ℎi
l = fl ∑j ∈ N(i)αijl − 1ℎj

l − 1 , (5)

where the superscript l denotes the l-th layer and eij is the attention coefficient computed by 

an attention function Att to measure the relation between node i and node j. αij is the 

attention weight calculated by the softmax function. Equation (5) is a weighted summation 

that uses all α as weights followed with a nonlinear function f.

2.3 Related Works

Since GNNs have achieved remarkable results in practice, a clear understanding of the 

power of GNNs is needed to design better models. Recent works [Morris et al., 2019; Xu et 
al., 2019; Maron et al., 2019] focus on understanding the discriminative power of GNNs by 

comparing it to the Weisfeiler-Lehman (WL) test [Weisfeiler and Leman, 1968] when 

deciding the graph isomorphism. It is proved that the massage-passing-based GNNs are at 

most as powerful as the 1-WL test [Xu et al., 2019]. Inspired by the higher discriminative 

power of the k-WL test (k > 2) than the 1-WL test, GNNs with a theoretically higher 

discriminative power than the massage-passing ones have been proposed in [Morris et al., 
2019; Maron et al., 2019]. However, the GNNs in those works do not specifically analyze 

the role of attention mechanism. So it is currently unknown whether the attention 

mechanism will constrain the discriminative power. Our work focuses on the massage-

passing-based GNNs with attention mechanism, which are upper bounded by the 1-WL test.

Another recent work [Knyazev et al., 2019] aims to understand the attention mechanism 

over nodes in GNNs with experiments in a controlled environment. However, the attention 

mechanism discussed in the work is used in the pooling layer for the pooling of nodes, while 

our work investigates the usage of attention mechanism in the aggregation layer for the 

updating of nodes.

3 Limitation of Attention-Based GNNs

In this section, we theoretically analyze the discriminative power of attention-based GNNs 

and show their limitations. The discriminative power means how well an attention-based 

GNN can distinguish different elements (local or global structures). We find that previously 

proposed attention-based GNNs can fail in certain cases and the discriminative power is 

limited. Besides, by theoretically finding out all cases that always make an attention-based 

GNN fail, we reveal that those failures come from the lack of cardinality preservation in 

attention-based aggregators.

3.1 Discriminative Power of Attention-based GNNs

We assume the node input feature space is countable. For any attention-based GNNs, we 

give the conditions in Lemma 1 to make them reach the upper bound of discriminative 

power when distinguishing different elements (local or global structures). In particular, each 

local structure belongs to a node and is the k-height subtree structure rooted at the node, 

which is naturally captured in the node feature ℎi
k after k iterations in a GNN. The global 

structure contains the information of all such subtrees in a graph.
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Lemma 1. Let ℎi
k be a GNN following the neighborhood aggregation scheme with the 

attention-based aggregator (Equation (5)). For global-level task, an extra readout function 
(Equation (2)) is used in the final layer A can reach its upper bound of discriminative power 
(can distinguish all distinct local structures or be as powerful as the 1-WL test when 
distinguishing distinct global structures) after sufficient iterations with the following 
conditions:

• Local-level: Function f and the weighted summation in Equation (5) are 

injective.

• Global-level: Besides the conditions for local-level, A’s readout function 

(Equation (2)) is injective.

Proof. Local-level: For the aggregator in the first layer, it will map different 1-height subtree 

structures to different embeddings from the distinct input multisets of neighborhood node 

features, since it is injective. Iteratively, the aggregator in the l-th layer can distinguish 

different l-height subtree structures by mapping them to different embeddings from the 

distinct input multisets of (l-1)-height subtree features, since it is injective.

Global-level: From Lemma 2 and Theorem 3 in [Xu et al., 2019], we know: when all 

functions in A are injective, A can reach its upper bound of discriminative power, which is 

the same as the Weisfeiler-Lehman (WL) test [Weisfeiler and Leman, 1968] when deciding 

the graph isomorphism.

With Lemma 1, we are interested in whether its conditions can always be satisfied, so as to 

reach the upper bound of discriminative capacity of an attention-based GNN. Since the 

function f and the global-level readout function can be predetermined to be injective, we 

focus on the injectivity of the weighted summation function in attention-based aggregator.

3.2 Non-Injectivity of Attention-Based Aggregator

In this part, we aim to answer the following two questions:

Q 1. Can the attention-based GNNs actually reach the upper bound of discriminative power? 
In other words, can the weighted summation function in an attention-based aggregator be 
injective?

Q 2. If not, can we determine all of the cases that prevent any kind of weighted summation 
function being injective?

Given a countable feature space ℋ, a weighted summation function is a mapping 

W :ℋ ℝn. The exact W is determined by the attention weights α computed from Att in 

Equation (3). Since Att is affected by stochastic optimization algorithms (e.g. SGD) which 

introduce stochasticity in W, we have to pay attention that W is not fixed when dealing with 

the two questions.

In Theorem 1, we answer Q1 with No by giving the cases that make W not to be injective. 

So that the attention-based GNNs can never meet their upper bound of discriminative power, 
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which is stated in Corollary 1. Moreover, we answer Q2 with Yes in Theorem 1 by pointing 

out those cases are the only reason to always prevent W being injective. This alleviates the 

difficulty of summarizing the properties of those cases. Besides, we can specifically propose 

methods to avoid those cases so as to let W to be injective.

Theorem 1. Assume the input feature space χ is countable. Given a multiset X ⊂ χ and the 
node feature c of the central node, the weighted summation function h(c, X) in aggregation 

is defined as h(c, X) = Σx∈X αcxf(x), where f :X ℝn is a mapping of input feature vector 
and αcx is the attention weight between f(c) and f(x) calculated by the attention function Att 
in Equation (3) and the softmax function in Equation (4). For all f and Att, h(c1, X1) = h(c2, 

X2) if and only if c1 = c2, X1 = (S, μ) and X2 = (S, k · μ) for k ∈ ℕ *. In other words, h will 
map different multisets to the same embedding iff the multisets have the same central node 
feature and the same distribution of node features.

Proof. (Sketch) We prove Theorem 1 in both two directions:

1. If given c1 = c2, X1 = (S, μ) and X2 = (S, k · μ), we can derive h(c1, X1) = h(c2, 

X2) using the formula of the weighted summation function.

2. If given h(c1, X1) = h(c2, X2) for all f, Att, we denote the multisets X1 = (S1, μ1) 

and X2 = (S2, μ2). We prove by contradiction that if S1 ≠ S2 or c1 ≠ c2, the 

equation h(c1, X1) = h(c2, X2) for all f, Att is not always true. Thus we have S1 = 

S2 and c1 = c2. Then we can derive X1 = (S, μ) and X2 = (S, k · μ).

Corollary 1. Let A be the GNN defined in Lemma 1. A never reaches its upper bound of 
discriminative power:

There exists two different subtrees S1 and S2 or two graphs G1 and G2 that the Weisfeiler-
Lehman test decides as non-isomorphic, such that A always maps the two subtrees/graphs to 
the same embeddings.

Proof. We provide the cases when A always maps two subtrees/graphs to the same 

embeddings:

1. For subtrees, S1 and S2 are 1-height subtrees that have the same root node and 

the same distribution of node features.

2. For graphs, let G1 be a fully connect graph with n nodes and G2 be a ring-like 

graph with n nodes. All nodes in G1 and G2 have the same feature x.

We denote {Xi}, i ∈ G1 as the set of multisets for aggregation in G1 and {Xi}, j ∈ G2 as the 

set of multisets for aggregation in G2. As G1 is a fully connect graph, all multisets in G1 

contain 1 central node and n − 1 neighbors. As G2 is a ring-like graph, all multisets in G2 

contain 1 central node and 2 neighbors. Thus we have

Xi = x , μ1(x) = n , ∀i ∈ G1,
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Xj = x , μ2(x) = 3 , ∀j ∈ G2,

where μi(x) is the multiplicity function of the node with feature x in Gi, i ∈ {1, 2}.

From Theorem 1, we know that h(c, Xi) = h(c, Xj), ∀i ∈ G1, ∀j ∈ G2. Considering Equation 

(5), we have ℎi
l = ℎi

l, ∀i ∈ G1, ∀j ∈ G2 in each iteration l. Besides, as the number of nodes in 

G1 and G2 is equal to n, A will always map G1 and G2 to the same set of multisets of node 

features {hl}in each iteration l and finally get the same embedding for the whole graph.

3.3 Only Unpreserved Cardinality Guarantees the Non-Injectivity

With Theorem 1, we are now interested in the properties of all cases that guarantee the non-

injectivity of the weighted summation functions W. Since the multisets that all W fail to 

distinguish share the same distribution of node features, we can say that W ignores the 

multiplicity information of each identical element in the multisets:

Corollary 2. Let W be the weighted summation function in any attention-based GNN. W
cannot preserve the cardinality information of the multiset of node features. The lost of 
cardinality information in W is the only reason that prevents W to be injective.

In the next section, we aim to propose improved attention-based models to preserve the 

cardinality in aggregation.

4 Cardinality Preserved Attention Model

Since the attention-based aggregators do not preserve the cardinality of the multiset, our goal 

is to propose modifications to any kind of attention mechanism to capture the cardinality 

information. So that all of the cases that always prevent attention-based aggregator being 

injective can be avoided.

To achieve our goal, we modify the weighted summation function in Equation (5) to 

incorporate the cardinality information and do not change the attention function in Equation 

(3) so as to keep its original expressive power. Two different models named as Additive and 

Scaled are proposed to modify the Original model in Equation (5):

Model 1. (Additive)

ℎi
l = fl ∑j ∈ N(i)αijl − 1ℎj

l − 1 + wl ⊙ ∑j ∈ N(i)ℎj
l − 1 , (6)

Model 2. (Scaled)

ℎi
l = fl ψl(|N(i)|) ⊙ ∑j ∈ N(i)αijl − 1ℎj

l − 1 , (7)
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where w is a non-zero vector ∈ ℝn, ⊙ denotes the elementwise multiplication, |N(i)| equals 

to the cardinality of the multiset N(i), ψ :ℤ+ ℝn is an injective function that maps the 

cardinality value to a non-zero vector.

In the Additive model, each element in the multiset will contribute to the term that we added 

to implicitly preserve the cardinality information. In the Scaled model, the original weighted 

summation is directly multiplied by a representational vector of the cardinality value. So 

with these models, distinct multisets with the same distribution will result in different 

embedding h. Note that both of our models do not change the Att function, such that they 

can keep the learning power of the original attention mechanism. We summarize the effect 

of our models in Corollary 3 and illustrate it in Figure 1.

Corollary 3. Let T be the original attention-based aggregator in Equation (5) that operates 
on a multiset H ⊂ ℋ, where ℋ is a node feature space mapped from the countable input 

feature space χ. There exists a ℋ so that with our proposed Cardinality Preserved Attention 

(CPA) models in Equation (6) and (7), T can now distinguish all different multisets in 
aggregation that it previously always fails to distinguish.

Proof. According to Theorem 1, for any two distinct multisets H1 and H2 that T previously 

always fail to distinguish (h(c, H1) = h(c, H2)), we know H1 = (S, μ) and H2 = (S, k ⋅ μ) ⊂ ℋ
for some k ∈ ℕ *. H1 and H2 have the same central node feature c ∈ S in aggregation. We 

denote M = ∑ℎ ∈ H1αcℎ1ℎ = ∑ℎ ∈ H2αcℎ2ℎ, where αchi is the attention weight that belongs 

to Hi, and between c and h, h ∈ Hi, i ∈ {1, 2}After applying CPA models, the aggregations 

in T can be rewritten as

Model 1: ℎ1 c, Hi = M + w ⊙ ∑ℎ ∈ Hiℎ, i ∈ 1, 2 ,

Model 2: ℎ2 c, Hi = ψ |Hi| ⊙ M, i ∈ 1, 2 .

To prove the existence of ℋ, ℋ can be defined as following: All h are vectors with positive 

values.

For Model 1, we have ℎ1 c, H1 − ℎ1 c, H2 = w ⊙ ∑ℎ ∈ H1ℎ − ∑ℎ ∈ H2ℎ . Since 

k ⋅ ∑ℎ ∈ H1ℎ = ∑ℎ ∈ H2ℎ ≠ 0,, we know ∑ℎ ∈ H1ℎ − ∑ℎ ∈ H2ℎ ≠ 0,. Considering w is a 

non-zero vector, we have h1(c, H1) ≠ h1(c, H2).

For Model 2, we have h2(c, H1)−h2(c, H2) = (ψ(∣H1∣) − ψ(∣H2∣)) ⊙ M. As αch > 0 due to the 

softmax function, and h ≠ 0 in our definition, we know M ≠ 0 since ψ(∣H1∣) − ψ(∣H2∣) ≠ 0, 

we can get h2(c, H1) ≠ h2(c, H2).

In conclusion, our CPA models can help T to distinguish different multisets in aggregation, 

which it previously always fails to distinguish.

Zhang and Xie Page 8

IJCAI (U S). Author manuscript; available in PMC 2020 August 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



While the original attention-based aggregator is never injective as we mentioned in previous 

sections, our cardinality preserved attention-based aggregator can be injective with certain 

learned attention weights to reach its upper bound of discriminative power as stated in 

Lemma 1. We validate this in our experiments.

For the efficiency of our CPA models compared with the original attention-based aggregator, 

it is possible that the Model 1 and 2 require more parameters than the original one when our 

introduced w and ψ(|N(i)|) are learnable during the training. Thus we further simplify our 

models by fixing the values in w and ψ(|N(i)|) and define two CPA variants:

Model 3. (f-Additive)

ℎi
l = fl ∑j ∈ N(i) αijl − 1 + 1 ℎj

l − 1 , (8)

Model 4. (f-Scaled)

ℎi
l = fl |N(i)| ⋅ ∑j ∈ N(i)αijl − 1ℎj

l − 1 . (9)

Model 3 and 4 still preserve the cardinality information while require the same number of 

parameters as the original model in Equation (5). In practice, we find that the simplified 

models exhibit similar performance compared with Model 1 and 2 as shown in the 

experiments.

5 Experiments

In our experiments, we focus on the following questions:

Q 3. Since attention-based GNNs (e.g. GAT) are originally proposed for local-level tasks 
like node classification, will those models fail or not meet the upper bound of discriminative 
power when solving certain node classification tasks? If so, can our CPA models improve 
the original model?

Q 4. For global-level tasks like graph classification, how well can the original attention-
based GNNs perform? Can our CPA models improve the original model?

Q 5. How the attention-based GNNs with our CPA models perform compared to baselines?

To answer Question 3, we design a node classification task which is to predict whether or 

not a node is included in a triangle as one vertex in a graph. To answer Question 4 and 5, we 

perform experiments on graph classification benchmarks and evaluate the attention-based 

GNNs with CPA models.

5.1 Experimental Setup

Datasets—In our synthetic task (TRIANGLE-NODE) for predicting whether or not a node 

is included in a triangle, we generate a graph with 4800 nodes and 32400 edges. 40.58% of 

the nodes are included in triangles as vertices while 59.42% are not. There are 4000 nodes 
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assigned with feature ‘0’, 400 with feature ‘1’ and 400 with feature ‘2’. The label of each 

node for prediction is whether or not it is included in a triangle.

In our experiment on graph classification, we use 6 benchmark datasets collected by 

[Kersting et al., 2020]: 2 social network datasets (REDDIT-BINARY (RE-B), REDDIT-

MULTI5K (RE-M5K)) and 4 bioinformatics datasets (MUTAG, PROTEINS, ENZYMES, 

NCI1).

In all datasets, if the original node features are provided, we use the one-hot encodings of 

them as input.

Models and Configurations—In our experiments, the Original model is the one that 

uses the original version of an attention mechanism. We apply each of our 4 CPA models 

(Additive, Scaled, f-Additive and f-Scaled) to the original attention mechanism for 

comparison. In the Additive and Scaled models, we take advantage of the approximation 

capability of multi-layer perceptron (MLP) [Hornik et al., 1989] to model f and ψ. All 

MLPs have 2 layers with Batch normalization [Ioffe and Szegedy, 2015] and ReLU 

activation.

For node classification, we use GAT [Veličković et al., 2018] as the Original model. In the 

GAT variants, we use 2 GNN layers and a hidden dimensionality of 32. The negative input 

slope of LeakyReLU in the GAT attention mechanism is 0.2. The number of heads in multi-

head attention is 1. We use a dropout ratio of 0 and a weight decay value of 0.

For graph classification, we build a GNN (GAT-GC) based on GAT as the Original model: 

We adopt the attention mechanism in GAT to specify the form of Equation (3). For the 

readout function, a naive way is to only consider the node embeddings from the last 

iteration. Although a sufficient number of iterations can help to avoid the cases in Theorem 1 

by aggregating more diverse node features, the features from the latter iterations may 

generalize worse and the GNNs usually have shallow structures [Xu et al., 2019; Zhou et al., 
2018]. So the GAT-GC adopts the same function as used in [Xu et al., 2018; Xu et al., 2019; 

Li et al., 2019], which concatenates graph embeddings from all iterations: 

ℎG = ‖k = 0
L Readout ℎi

k ∣ i ∈ G . For the Readout function, we use sum for bioinformatics 

datasets and mean for social network datasets. In the GAT-GC variants, we use 4 GNN 

layers. The hidden dimensionality is 32 for bioinformatics datasets and 64 for social network 

datasets. The negative input slope of LeakyReLU is 0.2. We use a single head in the multi-

head attention. The following hyper-parameters are tuned for each dataset: (1) Batch size in 

{32, 128}; (2) Dropout ratio in f0; 0:5g after dense layer; (3) L2 regularization from 0 to 

0:001.

For all experiments, we perform 10-fold cross-validation and repeat the experiments 10 

times for each dataset and each model. Following [Xu et al., 2019], to get a final accuracy 

for each run, we select the epoch with the best cross-validation accuracy averaged over all 

10 folds. The results are reported based on the results averaged across all runs. All models 

are trained using the Adam optimizer [Kingma and Ba, 2018] and the learning rate is 

dropped by a factor of 0.5 every 400 epochs for node classifications and every 50 epochs for 
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graph classifications. We use an initial learning rate of 0.01 for the TRIANGLE-NODE and 

bioinformatics datasets and 0.0025 for the social network datasets. On each dataset, we use 

the same hyper-parameter configurations in all model variants for a fair comparison.

5.2 Node Classification

For the TRIANGLE-NODE dataset, the proportion P of multisets that hold the properties in 

Theorem 1 is 29.2%, as shown in Table 1. The classification accuracy of the Original model 

(GAT) is significantly lower than the CPA models. It supports the claim in Corollary 1: the 

Original model fails to distinguish all distinct multisets in the dataset and exhibits 

constrained discriminate power. On the contrary, CPA models can distinguish all different 

multisets in the graph as suggested in Corollary 3 and indeed significantly improve the 

accuracy of the Original model as shown in Table 1. This experiment thus well answers 

Question 3 that we raised.

5.3 Graph Classification

Here we aim to answer Question 4 by evaluating the performance of GAT-based GNN (GAT-

GC) variants on graph classification benchmarks. Besides, we compare our best-performing 

CPA model with baselines to answer Question 5.

Social Network Datasets—All graphs in the RE-B and RE-M5K datasets are the graphs 

stated in Corollary 1 that all attention-based GNNs fail to distinguish: Since those datasets 

do not contain original node features and we assign all the node features to be the same, we 

have P = 100.0% in those datasets. Thus all multisets in aggregation will be mapped to the 

same embedding by the Original GAT-GC. After a mean readout function on all multisets, 

all graphs are finally mapped to the same embedding. The performance of the Original 
model is just random guessing of the graph labels as reported in Table 2. While our CPA 

models can distinguish all different multisets and are confirmed to be significantly better 

than the Original one.

Here we examine a naive approach to incorporate the cardinality information in the Original 
model by assigning node degrees as input node labels. By doing this way, the node features 

are diverse and we get P = 0.0%, which means that the cases in Theorem 1 can be all 

avoided. However, the testing accuracies of Original can only reach 76.65 ± 9.87% on RE-B 

and 43.71 ± 9.05% on RE-M5K, which are significantly lower than the results of CPA 

models in Table 2. Thus in practice, our proposed models exhibit good generalization power 

comparing to the naive approach.

Bioinformatics Datasets—For bioinformatics datasets that contain diverse node labels, 

we also report the P values in Table 3. The results reveal the existence (P ≥ 29.3%) of the 

cases in those datasets that can fool the Original model, thus the discriminative power of the 

Original model is theoretically constrained.

To empirically validate this, we compare the training accuracies of GAT-GC variants, since 

the discriminative power can be directly indicated by the accuracies on training sets. Higher 

training accuracy indicates a better fitting ability to distinguish different graphs. The training 
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curves of GAT-GC variants are shown in Figure 2. From these curves, we can see even 

though the Original model has overfitted different datasets, the fitting accuracies that it 

converges to can never be higher than those of our CPA models. Compared to the WL 

kernel, CPA models can get training accuracies close to 100% on several datasets, which are 

comparable with the WL kernel (equal to 100% as shown in [Xu et al., 2019]). These 

findings validate that the discriminative power of the Original model is limited while our 

CPA models can approach the upper bound with certain learned weights.

For the performance on testing sets, the testing curves exhibit similar patterns as those 

shown in Figure 2. The testing accuracies of GAT-GC variants on bioinformatics datasets are 

reported in Table 3. From those results, we find our proposed CPA models can further 

improve the testing accuracies of the Original model on all datasets. This indicates that the 

preservation of cardinality can also benefit the generalization power of the model besides the 

discriminative power.

Comparison to Baselines—From the previous results in Table 2 and 3, we find the f-
Scaled model has the highest average testing accuracy on all datasets. Thus the f-Scaled 
model is chosen as the best-performing GAT-GC variant to be compared with other 

baselines. Note that all 4 models (Additive, Scaled, f-Additive and f-Scaled) exhibit very 

small differences in performance, and fail to be distinguished by paired t-test at significance 

level 5% on all datasets. The similar performance of the fixed-weight models (f-Additive 
and f-Scaled) comparing to the full models (Additive and Scaled) demonstrates that the 

improvements achieved by CPA models are not simply due to the increased capacities given 

by the additional parameters used in the full models. The preservation of cardinality 

information in CPA models is the key to the improvements.

We then compare our GAT-GC (f-Scaled) model with several state-of-the-art baselines: WL 

kernel (WL) [Shervashidze et al., 2011], PATCHY-SAN (PSCN) [Niepert et al., 2016], Deep 

Graph CNN (DGCNN) [Zhang et al., 2018], Graph Isomorphism Network (GIN) [Xu et al., 
2019] and Capsule Graph Neural Network (CapsGNN) [Xinyi and Chen, 2019]. For the 

baselines, we use the results reported in their original works. If results are not available, we 

use the best testing results reported in [Xinyi and Chen, 2019; Ivanov and Burnaev, 2018].

In Table 4, the results show that our GAT-GC (f-Scaled) model achieves 4 top 1 and 2 top 2 

on all 6 datasets. It should be noted that our model is general enough to adopt any kind of 

attention mechanism, it is expected that even better performance can be achieved with 

certain choice of attention mechanism besides the one used in GAT.

6 Conclusion

In this paper, we theoretically analyze the representational power of GNNs with attention-

based aggregators: We determine all cases when those GNNs always fail to distinguish 

distinct structures. The finding shows that the missing cardinality information in aggregation 

is the only reason to cause those failures. To improve, we propose cardinality preserved 

attention (CPA) models to solve this issue. In our experiments, we validate our theoretical 

analysis that the performances of the original attention-based GNNs are limited. With our 
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models, the original models can be improved. Compared to other baselines, our best-

performing model achieves competitive performance. In future work, a challenging problem 

is to better learn the attention weights so as to guarantee the injectivity of our cardinality 

preserved attention models after the training. Besides, it would be interesting to analyze 

different attention mechanisms.
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Figure 1: 
An illustration of different attention-based aggregators on multiset of node features. Given 

two distinct multisets H1 and H2 that have the same central node feature hi and the same 

distribution of node features, aggregators will map hi to hi1 and hi2 for H1 and H2. The 

Original model will get ℎi1′ = ℎi2′  and fail to distinguish H1 and H2, while our Additive and 

Scaled models can always distinguish H1 and H2 with ℎi1′′ ≠ ℎi2′′  and ℎi1′′′ ≠ ℎi2′′′.
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Figure 2: 
Training curves of GAT-GC variants on bioinfo datasets.
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Table 1:

Testing accuracies (%) of the original GAT and the GAT applied with each of our 4 CPA models on 

TRIANGLE-NODE dataset for node classification. We highlight the result of the best performed model. The 

proportion P of multisets that hold the properties in Theorem 1 among all multisets is also reported.

Dataset
P(%)

TRIANGLE-NODE
29.2

Original 78.40 ± 7.65

Additive 91.31 ± 1.19

Scaled 91.38 ± 1.23

f-Additive 91.18 ± 1.24

f-Scaled 91.36 ± 1.26
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Table 2:

Testing accuracies (%) of GAT-GC variants (the original one and the ones applied with each of our 4 CPA 

models) on social network datasets. We highlight the result of the best performed model per dataset. The 

proportion P of multisets that hold the properties in Theorem 1 among all multisets is also reported.

Datasets
P(%)

RE-B
100.0

RE-M5K
100.0

Original 50.00 ± 0.00 20.00 ± 0.00

Additive 93.07 ± 1.82 57.39 ± 2.09

Scaled 92.36 ± 2.27 56.76 ± 2.26

f-Additive 93.05 ± 1.87 56.43 ± 2.38

f-Scaled 92.57 ± 2.06 57.22 ± 2.20
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Table 3:

Testing accuracies (%) of GAT-GC variants (the original one and the ones applied with each of our 4 CPA 

models) on bioinformatics datasets. We highlight the result of the best performed model per dataset. The 

highlighted results are significantly higher than those from the corresponding Original model under paired t-

test at significance level 5%. The proportion P of multisets that hold the properties in Theorem 1 among all 

multisets is also reported.

Datasets
P(%)

MUTAG
56.9

PROTEINS
29.3

ENZYMES
29.4

NCI1
43.3

Original 84.96 ± 7.65 75.64 ± 3.96 58.08 ± 6.82 80.29 ± 1.89

Additive 89.75 ± 6.39 76.61 ± 3.80 58.90 ± 6.96 81.92 ± 1.89

Scaled 89.65 ± 7.47 76.44 ± 3.77 58.35 ± 6.97 82.18 ± 1.67

f-Additive 90.34 ± 6.05 76.60 ± 3.91 59.80 ± 6.18 81.96 ±2.01

f-Scaled 90.44 ± 6.44 76.81 ± 3.77 58.45 ± 6.35 82.28 ± 1.81

IJCAI (U S). Author manuscript; available in PMC 2020 August 10.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Zhang and Xie Page 20

Ta
b

le
 4

:

Te
st

in
g 

ac
cu

ra
ci

es
 (

%
) 

fo
r 

gr
ap

h 
cl

as
si

fi
ca

tio
n.

 W
e 

hi
gh

lig
ht

 th
e 

re
su

lt 
of

 th
e 

be
st

 p
er

fo
rm

ed
 m

od
el

 f
or

 e
ac

h 
da

ta
se

t. 
O

ur
 G

A
T-

G
C

 (
f-

Sc
al

ed
) 

m
od

el
 

ac
hi

ev
es

 th
e 

to
p 

2 
on

 a
ll 

6 
da

ta
se

ts
.

D
at

as
et

s
M

U
T

A
G

P
R

O
T

E
IN

S
E

N
Z

Y
M

E
S

N
C

I1
R

E
-B

R
E

-M
5K

B
as

el
in

es

W
L

82
.0

5 
±

 0
.3

6
74

.6
8 

±
 0

.4
9

52
.2

2 
±

 1
.2

6
82

.1
9 

±
0.

18
81

.1
0 

±
 1

.9
0

49
.4

4 
±

 2
.3

6

PS
C

N
88

.9
5 

±
 4

.3
7

75
.0

0 
±

2.
51

-
76

.3
4 

±
 1

.6
8

86
.3

0 
±

1.
58

49
.1

0 
±

0.
70

D
G

C
N

N
85

.8
3 

±
 1

.6
6

75
.5

4 
±

 0
.9

4
51

.0
0 

±
7.

29
74

.4
4 

±
 0

.4
7

76
.0

2 
±

 1
.7

3
48

.7
0 

±
 4

.5
4

G
IN

89
.4

0 
±

 5
.6

0
76

.2
0 

±
 2

.8
0

-
82

.7
0 

± 
1.

70
92

.4
0 

±
 2

.5
0

57
.5

0 
± 

1.
50

C
ap

sG
N

N
86

.6
7 

±
 6

.8
8

76
.2

8 
±

 3
.6

3
54

.6
7 

±
 5

.6
7

78
.3

5 
±

 1
.5

5
-

52
.8

8 
±

 1
.4

8

G
A

T-
G

C
 (

f-
Sc

al
ed

)
90

.4
4 

± 
6.

44
76

.8
1 

± 
3.

77
58

.4
5 

± 
6.

35
82

.2
8 

±
 1

.8
1

92
.5

7 
± 

2.
06

57
.2

2 
±

 2
.2

0

IJCAI (U S). Author manuscript; available in PMC 2020 August 10.


	Abstract
	Introduction
	Preliminaries
	Notations
	Graph Neural Networks
	General GNNs
	Attention-Based GNNs

	Related Works

	Limitation of Attention-Based GNNs
	Discriminative Power of Attention-based GNNs
	Non-Injectivity of Attention-Based Aggregator
	Only Unpreserved Cardinality Guarantees the Non-Injectivity

	Cardinality Preserved Attention Model
	Experiments
	Experimental Setup
	Datasets
	Models and Configurations

	Node Classification
	Graph Classification
	Social Network Datasets
	Bioinformatics Datasets
	Comparison to Baselines


	Conclusion
	References
	Figure 1:
	Figure 2:
	Table 1:
	Table 2:
	Table 3:
	Table 4:

