Skip to main content
. Author manuscript; available in PMC: 2020 Aug 10.
Published in final edited form as: IJCAI (U S). 2020 Jul;2020:1395–1402. doi: 10.24963/ijcai.2020/194

Table 4:

Testing accuracies (%) for graph classification. We highlight the result of the best performed model for each dataset. Our GAT-GC (f-Scaled) model achieves the top 2 on all 6 datasets.

Datasets MUTAG PROTEINS ENZYMES NCI1 RE-B RE-M5K
Baselines WL 82.05 ± 0.36 74.68 ± 0.49 52.22 ± 1.26 82.19 ±0.18 81.10 ± 1.90 49.44 ± 2.36
PSCN 88.95 ± 4.37 75.00 ±2.51 - 76.34 ± 1.68 86.30 ±1.58 49.10 ±0.70
DGCNN 85.83 ± 1.66 75.54 ± 0.94 51.00 ±7.29 74.44 ± 0.47 76.02 ± 1.73 48.70 ± 4.54
GIN 89.40 ± 5.60 76.20 ± 2.80 - 82.70 ± 1.70 92.40 ± 2.50 57.50 ± 1.50
CapsGNN 86.67 ± 6.88 76.28 ± 3.63 54.67 ± 5.67 78.35 ± 1.55 - 52.88 ± 1.48
GAT-GC (f-Scaled) 90.44 ± 6.44 76.81 ± 3.77 58.45 ± 6.35 82.28 ± 1.81 92.57 ± 2.06 57.22 ± 2.20