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Abstract

Introduction: Dementia pathogenesis begins years before clinical symptom onset,

necessitating the understanding of premorbid risk mechanisms. Here we investigated

potential pathogenic mechanisms by assessing DNA methylation associations with

dementia risk factors in Alzheimer’s disease (AD)–free participants.

Methods: Associations between dementia risk measures (family history, AD genetic

risk score [GRS], and dementia risk scores [combining lifestyle, demographic, and

genetic factors]) and whole-blood DNA methylation were assessed in discovery and

replication samples (n= ~400 to ~5000) fromGeneration Scotland.

Results:ADgenetic risk and twodementia risk scoreswere associatedwithdifferential

methylation. TheGRSassociatedpredominantlywithmethylationdifferences in cisbut

also identified a genomic region implicated in Parkinson disease. Loci associated with

dementia risk scores were enriched for those previously associated with body mass

index and alcohol consumption.

Discussion: Dementia risk measures show widespread association with blood-based

methylation, generating several hypotheses for assessment by future studies.
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1 BACKGROUND

The pathophysiology of dementia beginsmany years, possibly decades,

before the emergence of clinical symptoms.1 This long prodromal

phase highlights the need for preventative strategies prior to the

development of irreversible brain damage. As such, understanding

premorbid risk mechanisms is critical. Several approaches to identify

individuals at risk of developing dementia have been devised, including

the summation of genetic risk, in the form of genetic risk scores (GRSs),

the consideration of family history, and the calculation of risk scores,

which incorporate multiple lifestyle, demographic, and genetic risk

factors.2–4

DNA methylation is an epigenetic modification which, in some

contexts, is associated with gene expression variation. Altered gene

expression has been identified in the blood and post-mortem brains

of AD patients,5,6 and post-mortem brain-based studies have iden-

tified associations between DNA methylation and AD and its neu-

ropathological hallmarks.7–9 Blood-based studies, while limited by

small sample sizes, have also found evidence for AD-associatedmethy-

lation differences.10,11 It is not, however, possible to determine from

these studies whether methylation differences precede AD onset,

making them potentially etiologically informative, or whether they

reflect ongoing pathology, compensatory mechanisms and/or treat-

ment effects. Studies that have identified associations between vari-

ation in blood-based DNA methylation and risk factors for demen-

tia (eg, carrying the apolipoprotein E (APOE) ε4 haplotype,12,13 aging,14

and obesity15) suggest that the assessment of methylation in this tis-

sue may yield insights into the pathways and processes that lead to

dementia.

In this study, by assessing associations between multiple measures

of dementia risk and blood-based DNA methylation in AD-free par-

ticipants, we aim to further understand the mechanisms conferring

dementia risk and characterize the role of methylation in these pro-

cesses.

2 METHODS

2.1 Participants

Participants were drawn from the Generation Scotland: Scottish

Family Health Study (GS:SFHS).16,17 The cohort comprises ≈24,000

participants ≥18 years of age at recruitment. At a baseline clinical

appointment, participants were phenotyped for a range of health,

demographic, and lifestyle factors, and provided physical measure-

ments and samples for DNA extraction. GS:SFHS has been granted

ethical approval from the NHS Tayside Committee on Med-

ical Research Ethics, on behalf of the National Health Service

(05/S1401/89), and has Research Tissue Bank Status (15/ES/0040).

GS:SFHS participants provided broad and enduring written informed

consent for biomedical research.

RESEARCH INCONTEXT

1. Systematic review: Several studies have investigated

associations between DNA methylation and individual

dementia risk factors (eg, aging and obesity) but none

has compared multiple risk measures. We compared the

methylation signatures of multifactorial dementia risk

scores, an Alzheimer’s disease (AD) genetic risk score

(GRS), and dementia family history in the two largest

single-cohort blood-basedmethylation samples.

2. Interpretation: In AD-free participants, we identified

methylation associationswith an ADGRS and twomidlife

dementia risk scores, with no overlap between the GRS-

and risk score–associated loci. The GRS analysis iden-

tified loci in cis to significant genome-wide association

study (GWAS) regions and a new putative AD-risk locus,

previously implicated in Parkinson disease. Loci associ-

ated with a midlife dementia risk overlapped with those

associated with alcohol consumption.

3. Future directions: Longitudinal analyses should be per-

formed to assess the pathogenic role of the identified

loci. Analyses to assess the role of the putative novel

dementia-risk locus are warranted.

2.2 Calculation of dementia risk scores

Four dementia risk scores, henceforth referred to as CAIDE1,

CAIDE2,2 Li,3 and Reitz,4 were calculated using data that were col-

lected at GS:SFHS enrollment or obtained through record linkage

(see Figure 1, Supplementary Methods and Table S1 for information

on the contributing variables). To generate each risk score, the con-

tributing variables were scaled and weighted according to the original

studies, and summed. The Reitz score4 was calculated using weight-

ings devised when considering participants with both a “possible” and

“probable” diagnosis of Alzheimer’s disease (AD). Each score was cal-

culated for participants within the appropriate age-range (CAIDE1/2:

39-64 years2; Li:≥60 years3; Reitz:≥65 years).4

2.3 Genotyping and calculation of Alzheimer’s
disease genetic risk score

GS:SFHS genotyping has been described previously18,19 (Sup-

plementary Methods). The AD GRS was calculated using the

lead single-nucleotide polymorphism (SNP) from each of the 26

genome-wide significant loci identified through a meta-analysis

of parental AD and AD20 (Table S2). Each participant’s score was
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F IGURE 1 The variables contributing to each dementia risk score are indicated by filled blue boxes. Abbreviations: APOE ε4, apolipoprotein E
ε4; BMI, bodymass index; HDL, high-density lipoprotein; chol, cholesterol; SBP, systolic blood pressure; T2, type 2;WHR, waist-hip ratio

generated by summing their dosage of each risk allele, weighted by the

corresponding GWAS effect estimate.

2.4 DNA methylation profiling

Whole blood DNAmethylation was profiled using the InfiniumMethy-

lationEPICBeadChip (Illumina Inc.) in two sets ofGS:SFHS participants

at two separate times, leading to a natural discovery (n = 5190) and

replication (n = 4583) design, as described previously21–23 (Supple-

mentary Methods). Discovery and replication sample normalization

was performed separately and the data were converted to M-values.

Participants in the replication sample were unrelated (SNP-based

relatedness<0.05) to each other and/or those in the discovery sample.

A correction for relatedness was applied to the discovery sample

(SupplementaryMethods).

Prior to analyses, poor-performing probes (Supplementary Meth-

ods), sex chromosome probes, participants with unreliable self-report

data, suspected XXY genotype, or self-reported AD (n = 5) were

excluded. The final discovery data set comprised 777,193 loci in

5087 participants; the replication data set comprised 773,860 loci in

4450 participants. Subsequent analyses of the methylation data were

carried out using R versions 3.6.0. or 3.6.1.24

2.5 Epigenome-wide association studies

Epigenome-wide association studies (EWASs) were performed using

linear regression modeling, implemented in limma.25 CpG sites (M-

values) weremodeled as the dependent variable and the dementia risk

measure was the predictor-of-interest. Additional covariates included

in the standardmodels are detailed below:

2.5.1 Discovery sample

CpG site (M-values pre-corrected for relatedness, estimated cell count

proportions, and processing batch) ∼ dementia risk measure + age +

sex + smoking status + pack years + 20 methylation principal compo-

nents

2.5.2 Replication sample

CpG site (M-values) ∼ dementia risk measure+ age + sex + smok-

ing status + pack years + estimated cell count proportions (granulo-

cytes, natural killer cells, B lymphocytes, CD4+ T lymphocytes, and

CD8+ T lymphocytes) + processing batch + 20 methylation principal

components

The variables “smoking status,” “pack years,” and the methy-

lation principal components are explained in the Supplementary

Methods.

A number of sensitivity analyses for the CAIDE1 score were per-

formed inwhich additional covariateswere included one-by-one, using

the same thresholds for categorizing continuous variables as imple-

mented in the risk score. Thesewere bodymass index (BMI;≤30 kg/m2

or>30 kg/m2); systolic blood pressure (SBP;≤140mmHgor>140mm

Hg); total cholesterol (TC; ≤6.5 mmol/L or > 6.5 mmol/L); years

of education (≥10, >6 and <10, or ≤6); self-reported alcohol con-

sumption (log10-transformed (+1) units of alcohol/week), and a DNA

methylation alcohol consumption score derived using the R package

dnamalci.26,27

Limmawas used to calculate empirical Bayes moderated t-statistics

from which P values were obtained. The significance threshold in

the discovery sample was P ≤ 3.6 × 10−8.28 Sites attaining sig-

nificance in the discovery sample were assessed in the replica-

tion sample using a Bonferroni-adjusted threshold of 0.05/no. sites

assessed.

2.6 EWAS meta-analysis

Inverse standarderror-weighted fixedeffectsmeta-analyses of thedis-

covery and replication EWAS results were performed using METAL.29

Sites attaining a meta-analysis P ≤ 3.6 × 10−8 were considered

significant.
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2.7 Identification of differentially methylated
regions

Differentially methylated regions (DMRs) were identified using the

dmrff.meta function in dmrff.30 DMRs were defined as regions con-

taining 2 to 30 sites with consistent direction of effect and EWAS

meta-analysis P values ≤.05 separated by ≤500 bp. DMRs with

Bonferroni-adjusted P values≤.05 were declared significant.

2.8 EWAS and GWAS catalog look-ups

The GWAS Catalog v1.0.2. was downloaded from https://www.ebi.

ac.uk/gwas/docs/file-downloads (December 16, 2019)34 and queried

using gene names annotated to probes containing differentiallymethy-

lated positions (DMPs) identified in the meta-analysis (meta-DMPs)

for the phenotype-of-interest. GWAS traits enriched for association

(P ≤ 1 × 10−5) with genes containing meta-DMPs were identified

using Fisher’s exact test. Enrichment was declared significant when P

≤ 1.26× 10−5 (0.05/3980 traits assessed).

The EWAS Catalog was downloaded from http://www.ewascatalog.

org/ (03/07/19)35 and queried using the significant DMPs probe IDs.

EWAS traits enriched for association (P ≤ 1 × 10−5) with meta-DMPs

were identified using Fisher’s exact test. Enrichment was declared sig-

nificant when P≤ 3.31× 10−4 (0.05/151 traits assessed).

2.9 Gene ontology/KEGG pathway analyses

Gene ontology (GO) and KEGG pathway analyses were implemented

using a modified version of the missMethyl gometh function31 (Sup-

plementary Methods). The target list comprised probes showing sug-

gestive association with the phenotype-of-interest (P ≤ 1 × 10−5)

in the EWAS or DMR analysis, and the gene universe included all

probes in the analyses. Enrichment was assessed using a hyper-

geometric test, accounting for the bias arising from the variation

in the number of probes per gene. Significance thresholds of P ≤

2.20×10−6 andP≤1.48×10−4 were applied to allow for aBonferroni-

correction for the22,750GOterms and337KEGGpathways assessed,

respectively.

2.10 Identification of meQTLs

Methylation quantitative trait loci (meQTLs) for the AD GRS-

associated DMPs were identified using the discovery sample. The

quality control, normalization, and pre-correction of the data prior

to the meQTL analyses have been described previously32 (Supple-

mentary Methods). The resulting residuals were inverse-rank normal

transformed and entered as the dependent variable in simple linear

model GWASs to identify meQTLs. GWASs were implemented using

REGSCAN v0.5.33 SNPs that were associated with a DMP with P ≤

5× 10−8/49 (Bonferroni correction for the 49DMPs for whichmeQTL

results were available), an info score ≥0.8, and had aMAF> 0.01 were

declared to bemeQTLs.

Where ameta-DMP associated with ADGRS harbored a SNP at the

CpG site, linkage disequilibriumbetween theCpGSNP and the nearest

SNP contributing to the GRS was assessed using the LDpair Tool using

data from the British in England and Scotland (GBR) population (https:

//ldlink.nci.nih.gov/?tab=ldpair; June 09, 2020).36

3 RESULTS

3.1 Epigenome-wide asssociation study sample
demographics

Participant numbers and sample demographic information are shown

in Table S3.

3.2 Genetic risk for Alzheimer’s disease

3.2.1 Identification of differentially methylated
positions

An epigenome-wide association study (EWAS) of the Alzheimer’s dis-

ease (AD) genetic risk score (GRS) identified 32 differentially methy-

lated positions (DMPs) in the discovery sample (1.06 × 10−30 ≤P≤

2.22 × 10−8; Table S4). Of these, 31 showed replicated association

(1.07 × 10−30 ≤ P ≤ 8.33 × 10−4; Table S5). Meta-analysis of the dis-

covery and replication samples identified 68DMPs (6.15× 10−48 ≤ P≤

3.45× 10−8; Table 1; Table S6; Figure 2).

Sixty-one of the 68 meta-DMPs were located within 18 of the

26 genome-wide association study (GWAS) loci used to produce the

GRS,20 with six of the remaining seven being located within 30 kb of

one. Four of the associated CpGs have a single nucleotide polymor-

phism (SNP) at the CpG site. Density plots of the signal at these sites

indicated a potential SNP effect on methylation at three of the CpGs

(Figure S1). All three of these SNPs are in high linkage disequilibrium

with the nearest SNP included in the GRS (D’ = 1 for cg02887598

and cg16618979, and D’ = 0.64 for cg12568536). Formal methylation

quantitative trait loci (meQTL) analysis could be performed for 49/68

DMPs: of these, 48 were associated in cis but not trans, with genetic

variants located in the GWAS loci.20 Methylation at the remaining

DMP, cg14354618, which is not locatedwithin or in proximity (<30 kb)

to aGWAS locus,was associated in transwith genetic variationon chro-

mosome 19 (chr19: 868083-1188756; hg19/GRCh37), which overlaps

a GWAS locus.20

There was no overlap between the meta-DMPs identified as being

associated with the CAIDE1 score and the GRS. To explore the rea-

son for this lack of overlap, the Pearson correlation coefficient was

calculated between the two scores. This was small and non-significant

(r=−.018, P= .326).

Querying the GWAS catalog34 with the 34 gene names annotated

to the 68 meta-DMPs unsurprisingly identified many terms related to

https://www.ebi.ac.uk/gwas/docs/file-downloads
https://www.ebi.ac.uk/gwas/docs/file-downloads
http://www.ewascatalog.org/
http://www.ewascatalog.org/
https://ldlink.nci.nih.gov/?tab=ldpair
https://ldlink.nci.nih.gov/?tab=ldpair
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TABLE 1 Top 20DMPs associated with the ADGRS in ameta-analysis of the discovery and replication samples

ID Chr. BP
a

Gene symbol Effect SE P

cg10757760 2 127893054 0.0568 0.0039 6.15× 10−48

cg04441687 11 85869322 0.0586 0.0041 1.12× 10−46

cg26631131 19 45240591 0.0385 0.0029 1.56× 10−39

cg02887598 2 127841945 BIN1 −0.0986 0.0085 2.51× 10−31

cg19116668 7 99932089 PMS2L1 0.049 0.0051 1.54× 10−21

cg18959616 11 85814918 0.0656 0.0072 5.85× 10−20

cg02521229 11 60019236 0.0658 0.0073 1.61× 10−19

cg03579757 7 100091793 NYAP1 0.0342 0.0038 2.33× 10−19

cg16618979 7 143108841 AC092214.10 0.0974 0.0109 5.11× 10−19

cg03526776 6 41159608 TREML2 −0.0402 0.0045 7.06× 10−19

cg11461311 2 127782614 RP11-521O16.1;RP11-521O16.2 0.0321 0.0036 1.31× 10−18

cg00436254 2 127862614 BIN1 0.0256 0.003 6.76× 10−18

cg06750524 19 45409955 APOE 0.05 0.0059 2.18× 10−17

cg23423086 11 85856245 −0.0365 0.0043 2.37× 10−17

cg22906224 7 99728672 AC073842.19 −0.0392 0.0047 3.55× 10−17

cg05908241 7 143109367 AC092214.10 0.0283 0.0035 6.62× 10−16

cg17830204 7 99819110 GATS;PVRIG;STAG3;AC005071.1 0.0308 0.0039 4.78× 10−15

cg19590598 2 127782813 RP11-521O16.1;RP11-521O16.2 0.0282 0.0036 5.22× 10−15

cg08871934 10 11720283 −0.0343 0.0044 9.59× 10−15

cg09555818 19 45449301 APOC2;APOC4 −0.0498 0.0065 1.24× 10−14

Abbreviations: BP, base position; Chr., chromosome; SE, standard error, DMP; differentially methylated position; GRS, genetic risk score.
aBase position in genome assembly hg19/GRCh37.

F IGURE 2 Manhattan plot showing the results of the epigenome-wide association study (EWAS) meta-analysis of the Alzheimer’s disease
(AD) genetic risk score (GRS), and the positions of differentially methylated regions (DMRs) identified in ameta-DMR analysis. Each point
represents one of the 772,453 loci included in the EWASmeta-analysis, with the point’s position being determined by genomic position (x-axis)
and significance in the EWASmeta-analysis (–log10 P value; y-axis). Sites attaining genome-wide significance (P≤ 3.6× 10−8) are indicated in red
and those that are involved in a significant DMR (Bonferroni-correct P≤ .05) are indicated in blue. The locations of DMRs are further indicated by
vertical blue lines. The solid horizontal line is the threshold for genome-wide significance (P≤ 3.6× 10−8) and the dashed line indicates a
suggestive significance threshold (P≤ 1× 10−5)

AD and its neuropathological hallmarks (Table S7), themost significant

being “AD or family history of AD” (P = 1.77 × 10−27). No significant

enrichment was identified when querying the EWAS catalog; however,

this catalogue comprises results from studies using the 450K array on

which only 30/68meta-DMPsweremeasured.

3.2.2 Identification of differentially methylated
regions

The differentially methylated region (DMR) meta-analysis identified

18 significant DMRs comprising 41 CpGs, of which 20 were identified
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TABLE 2 GO terms showing significant enrichment for probes
wheremethylation is associated the ADGRS

Ontology Term Proportiona P

BP Amyloid beta formation 6/34 3.68× 10-10

BP Negative regulation of

amyloid precursor protein

catabolic process

5/16 4.62× 10-10

BP Amyloid precursor protein

catabolic process

6/44 1.89× 10-9

BP Amyloid-betametabolic

process

6/47 2.88× 10-9

BP Regulation of amyloid-beta

formation

5/28 1.12× 10-8

BP Amyloid precursor protein

metabolic process

6/63 1.66× 10-8

CC Protein-lipid complex 6/39 2.53× 10-8

BP Regulation of amyloid

precursor protein

catabolic process

5/35 3.52× 10-8

BP Negative regulation of

amyloid-beta formation

4/13 3.79× 10-8

BP Reverse cholesterol

transport

4/20 8.38× 10-8

BP Protein-lipid complex

subunit organization

6/49 1.38× 10-7

CC High-density lipoprotein

particle

5/26 2.42× 10-7

BP Chylomicron remnant

clearance

3/9 1.12× 10-6

BP Triglyceride-rich lipoprotein

particle clearance

3/9 1.12× 10-6

BP Protein-lipid complex

assembly

6/32 1.13× 10-6

CC Plasma lipoprotein particle 6/37 1.34× 10-6

CC Lipoprotein particle 5/37 1.34× 10-6

BP Very-low-density lipoprotein

particle remodeling

3/12 2.10× 10-6

Abbreviations: BP, biological process; CC, cellular component; GRS, genetic

risk score; GO, gene ontology.
aNumber of significant target list-associated Entrez IDs associatedwith the

gene ontology term/total number of Entrez IDs associated with the GO

term. The target list comprised probes that met a nominal threshold for

association with the ADGRS of P≤ 1× 10−5

by the meta-EWAS (Table S8; Figure 2). Seventeen of the DMRs over-

lap with loci that were in the GWAS,20 and the 18th is located <7 kb

from the nearest GWAS locus. The longest DMR spans a 302 bp region

≈13.7 kb upstream of BIN1, whereas the most significant spans a

199 bp region ≈22.8 kb downstream of BIN1. Both show increased

methylation with increased GRS.

Gene ontology (GO) analysis using the combined DMP and DMR

results identified 18 terms, themost significant of whichwas “amyloid-

beta formation” (P= 3.68 × 10−10; Table 2). No significant KEGG path-

ways were identified.

3.3 Mid-life dementia risk scores

The CAIDE1 and CAIDE2 risk scores assess the risk of developing

dementia in20years’ time in individuals 39 to64yearsof age.2 CAIDE2

takes into account the same risk factors as CAIDE1 (with different

weightings) and also considers apolipoprotein E (APOE) ε4 carrier status.

3.3.1 Identification of differentially methylated
positions

An EWAS of the CAIDE1 score in the discovery sample identified 76

DMPs (3.29 × 10−20 ≤P≤ 3.49 × 10−8; Table S9), of which 65 repli-

cated (7.76× 10−18 ≤ P≤ 6.48× 10−4; Table S10).Meta-analysis of the

discovery and replication samples identified 227 DMPs (1.20 × 10−29

≤ P≤ 3.58× 10−8; Figure 3; Table 3; Table S11).

An EWAS of the CAIDE2 score in the discovery sample identified 18

DMPs (1.96 × 10−17 ≤P≤ 3.24 × 10−8; Table S12), of which 17 repli-

cated (4.91× 10−12 ≤ P≤ 2.01× 10−3; Table S13).Meta-analysis of the

discovery and replication samples identified 59 DMPs (3.56 × 10−22 ≤

P≤3.21×10−8; Table S14). Fifty-four of theCAIDE2meta-DMPswere

also identified by the CAIDE1meta-analysis; given this overlap, subse-

quent analyses focus on CAIDE1.

TheCAIDE1-associatedmeta-DMPswere exploredusing theEWAS

and GWAS catalogs.34 Significant enrichment was identified for 16

EWAS traits/conditions, with “Body mass index [BMI]” being the most

significantly enriched (P = 2.96 × 10−118; Table S15). Two alcohol-

related traits: “alcohol consumption per day” (P = 9.70 × 10−29) and

“gamma-glutamyl transferase” (P = 8.55 × 10−25) also showed enrich-

ment. GWAS catalog enrichment analysis identified only one signifi-

cant term, “Eosinophil counts” (P= 4.97× 10−8).

Sensitivity analyses

The extent to which the BMI component of the CAIDE1 score drives

the observed CAIDE1 associations was assessed by performing an

EWASmeta-analysis inwhichBMIwas includedas anadditional covari-

ate. Co-varying for BMI resulted in only 11 of the original 227 meta-

DMPs remaining significant (Table S11), with the correlation between

the effect estimates for all sites between the two analyses being

r = 0.745 (95% confidence interval (CI) = 0.744 to 0.746). Com-

paredwith BMI, co-varying for other components of the CAIDE1 score

resulted in a larger numbers of CAIDE1 meta-DMPs remaining signifi-

cant (SBP: 94/227; TC: 190/227; education: 221/227; Table S11); cor-

relations with the effect estimates of the original analysis were higher

(SBP: r=0.815, 95%CI=0.815 to 0.816; TC: r=0.938, 95%CI=0.937

to 0.938); education: r= 0.990, 95%CI= 0.990 to 0.990).

Assessment of the involvement of alcohol consumption in the CAIDE1

EWAS results

Twenty-four of the 88 meta-DMPs that are represented on the 450K

array, including the most significant DMP, cg06690548, have previ-

ously been associated with alcohol consumption (P ≤ 1 × 10−5).26
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F IGURE 3 Manhattan plot showing the results of the epigenome-wide association study (EWAS) meta-analysis of the CAIDE1 dementia risk
score and the positions of differentially methylated regions (DMRs) identified in ameta-DMR analysis. Each point represents one of the 772,453
loci included in the EWASmeta-analysis, with the point’s position being determined by genomic position (x-axis) and significance in the EWAS
meta-analysis (–log10 P value; y-axis). Sites attaining genome-wide significance (P≤ 3.6× 10−8) are indicated in red and those that are involved in a
significant DMR (Bonferroni-correct P≤ .05) are indicated in blue. The locations of DMRs are further indicated by vertical blue lines. The solid
horizontal line is the threshold for genome-wide significance (P≤ 3.6× 10−8) and the dashed line indicates a suggestive significance threshold (P≤

1× 10−5)

TABLE 3 Top 20DMPs associated with the CAIDE1 risk score in ameta-analysis of the discovery and replication samples

ID Chr. BP Gene symbol Direction effect SE P

cg06690548 4 139162808 SLC7A11 – −0.0766 0.0068 1.20× 10-29

cg19758958 11 62319222 AHNAK – −0.0256 0.0024 4.22× 10-27

cg11024682 17 17730094 SREBF1 ++ 0.026 0.0025 5.31× 10-26

cg14476101 1 120255992 PHGDH – −0.0391 0.0039 1.14× 10-23

cg00574958 11 68607622 CPT1A – −0.0413 0.0043 8.30× 10-22

cg06500161 21 43656587 ABCG1 ++ 0.0225 0.0024 2.10× 10-21

cg19693031 1 145441552 TXNIP – −0.0369 0.004 8.74× 10-21

cg22699725 1 207242586 PFKFB2 ++ 0.0275 0.003 6.89× 10-20

cg00683922 1 207242569 PFKFB2 ++ 0.0272 0.003 2.70× 10-19

cg05325763 11 68607719 CPT1A – −0.0394 0.0044 2.90× 10-19

cg22976567 1 156074182 LMNA – −0.026 0.0029 7.06× 10-19

cg02715788 8 119974400 – −0.0225 0.0026 4.44× 10-18

cg18120259 6 43894639 LOC100132354 – −0.0209 0.0024 4.49× 10-18

cg11376147 11 57261198 SLC43A1 – −0.0236 0.0028 2.98× 10-17

cg00163198 11 130767760 SNX19 ++ 0.0237 0.0028 4.89× 10-17

cg16246545 1 120255941 PHGDH – −0.0255 0.003 5.16× 10-17

cg01270753 9 101944336 RP11-96L7.2 – −0.034 0.0041 5.27× 10-17

cg08857797 17 40927699 VPS25 ++ 0.0236 0.0028 5.86× 10-17

cg16740586 21 43655919 ABCG1 ++ 0.0243 0.0029 7.52× 10-17

cg26457483 1 120256112 PHGDH – −0.0308 0.0037 1.76× 10-16

Abbreviations: BP, base position; Chr., chromosome; SE, standard error; DMP, differentially methylated position.
aBase position in genome assembly hg19/GRCh37.

Similarly, an EWAS meta-analysis of self-reported alcohol consump-

tion in our methylation sample identified 5599 DMPs at a suggestive

threshold of P ≤ 1 × 10−5 (unpublished data, Clarke et al.); of these, 49

show a significant association with CAIDE1with a consistent direction

of effect. This overlap is highly significant (P< 2× 10−16).

Because alcohol consumption showed a small but significant cor-

relation with CAIDE1 score (r = 0.091; 95% CI = 0.065 to 0.118;

P = 2.60 × 10−11), the potential for alcohol consumption to drive the

observed associations between CAIDE1 and DNA methylation was

assessed by including alcohol consumptionmeasured by (1) self-report
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or (2) a polyepigenetic risk score26,27 as an additional covariate in the

CAIDE1 EWAS. Neither measure of alcohol consumption resulted in a

substantial change in effect estimates (self-reported: r = 0.948, 95%

CI=0.948 to 0.948;DNAmethylation score: r=0.993, 95%CI=0.993

to 0.993), with 166 and 191 of the 227 CAIDE1meta-DMPs remaining

significant after the inclusion of the self-reported and DNA methyla-

tion score coefficients, respectively (Table S11).

3.3.2 Identification of differentially methylated
regions

The DMR meta-analysis of the discovery and replication samples

identified 57 CAIDE1-associated DMRs (all Bonferroni-adjusted

P < 0.044; Table S16), each comprising two to seven CpGs. In total,

the 57 DMRs involve 179 sites, of which 35 were significant in the

EWAS meta-analysis. The most significant DMR (Bonferroni-adjusted

P = 1.67 × 10−20) comprises four hypomethylated CpGs spanning

a 115 bp intronic region of CPT1A (chr11: 68607622-68607737;

hg19/GRCh37). The longest DMR spans a 1.1 kb intronic region of

JARID2 (chr6: 15504844-15505949; hg19/GRCh37).

GO and KEGG pathway analyses found no enrichment for biologi-

cal processes or pathways among the CAIDE1DMP or DMRCpG sites

(min. PGO= 8.46× 10−4; minutes. PKEGG= 3.51× 10−3).

3.4 Other measures of dementia risk

Theothermeasuresof dementia risk assessedwere (1) dementia family

history (FH) and (2) two late-life dementia risk scores that predict the

risk of developing dementia in those older than60or 65 years of age.3,4

EWASs of the discovery sample (minimum (min). PFH= 8.47 × 10−7;

min. PLi= 3.91 × 10−8; min PReitz= 1.58 × 10−6), meta-EWASs

of the discovery and replication samples (min. PFH= 1.15 × 10−6;

min. PLi= 1.80 × 10−6; min. PReitz= 8.99 × 10−7), and DMR analy-

ses (min. Bonferroni-adjusted PFH= 0.439; min. Bonferroni-adjusted

PLi= 0.208; min. Bonferroni-adjusted PReitz= 1) failed to identify any

significant associations.

4 DISCUSSION

We have assessed DNA methylation associations with a range of

dementia risk measures in large discovery and replication samples

comprising Alzheimer’s disease (AD)-free participants, and we report

multiple loci as being associatedwith ADgenetic risk and twomultifac-

torial mid-life risk scores for dementia.

All but one of the loci associated with the AD genetic risk score

(GRS) were locatedwithin 30 kb of the genome-wide association study

(GWAS) loci used to derive the GRS,20 with methylation quantitative

trait loci (meQTL) analysis supporting involvement of cismeQTLs. Only

one differentially methylated position (DMP), cg14354618 on chro-

mosome 11, was an exception to this pattern, being associated with

trans meQTLs in a GWAS risk locus on chromosome 19. cg14354618

is located in a CpG island in AP001979.1. Genetic variation annotated

toAP001979.1 has been associatedwithParkinson’s disease,37,38 body

fat percentage,39 and sugar consumption40 but has not been associ-

ated with AD in large-scale GWASs.41,42 There is a degree of over-

lap between the clinical features and pathologies associated with AD

and Parkinson’s disease, with certain genetic variants being associated

with both.43,44 Moreover, obesity and hyperglycemia have been impli-

cated as dementia risk factors.45 Taken together, these findings sug-

gest this locus to be a plausible AD-risk locus, which warrants further

investigation.

Considering both the meta-DMP and differentially methylated

region (DMR) results, two regions harbor a large number of AD

GRS-associated sites. These regions contain (1) BIN1 and (2) PVRL2,

APOE, APOC4, and APOC2 (henceforth referred to as the APOE locus).

The APOE locus has not been identified previously by brain-based

epigenome-wide association studies (EWASs) of ADneuropathological

hallmarks7,46 or a blood-based AD case-control EWAS44; larger sam-

ples might be required to detect association between methylation at

this locus and AD.

In contrast, several studies have identified altered methylation

of BIN1 in AD patients or in association with AD neuropathological

hallmarks.7,47,48 These findings are of particular interest, as altered

BIN1brain expression has been reported inAD49–51 andDNAmethyla-

tion has been suggested to regulate BIN1’s expression.52 We identified

a mixture of hyper- and hypomethylation in the upstream region and

gene body and hypermethylation in the downstream region. Although

none of the identified sites directly replicated those identified by

previous studies, it is noteworthy that one of our hypermethylated

meta-DMPs (cg18813565) is located only 31 bp from a site (that failed

our quality control) at which increased methylation in the dorsolateral

prefrontal cortex has been associated with neuritic plaque burden and

AD diagnosis.47 Moreover, this site contributes to a hypermethylated

DMR that spans a 199 bp region located ≈23 kb downstream of BIN1.

This region overlaps with non-coding RNAs, RP11-521O16.1, and

RP11-521O16.2, suggesting the possibility that alteredmethylation of

these non-coding RNAs might alter BIN1 expression. This hypothesis

should be assessed by future studies.

The CAIDE1 risk score is a composite score formed by theweighted

summation of age, sex, body mass index (BMI), years in education, sys-

tolic blood pressure, and total cholesterol.2 It is designed for the pre-

dictionof dementia in20years’ time in individuals 39 to64years of age,

which it does with an area under the curve of 0.77 (95% confidernce

interval 0.71 to 0.83). Because age and sex were covariates in our

analytical models, the differential methylation observed in this study

reflects the modifiable “lifestyle” components of the score. Our anal-

yses revealed BMI to be the primary driver of the CAIDE1-associated

methylation differences.We identified significant overlap between the

sites associated with CAIDE1 and those that have been associated

previously with alcohol consumption. Strikingly, the most significant

CpG in our analysis of CAIDE1 was also the most significant CpG in a

recent Generation Scotland: Scottish Family Health Study (GS:SFHS)

alcohol consumption EWAS (unpublished data, Clarke et al.). Although
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alcohol consumption was significantly correlated with CAIDE1 score,

it could not account for the CAIDE1-associated differences in methy-

lation. This finding is of interest in light of the observed associations

between excessive alcohol consumption and dementia risk.53 Our find-

ings suggest that the risk factors contributing to the CAIDE1 score and

alcohol consumption might confer risk for dementia via independent

effects on common pathways.

The loci implicated by our analyses of the AD GRS and the CAIDE1

score did not overlap, and they did not implicate common genes. In

keeping with this, the correlation between the scores was small and

non-significant. This lack of concordance might be attributable to dif-

ferences in the methodology used to create the scores: although the

CAIDE1 score was trained using a sample comprising mixed demen-

tia cases (of which ≈75% were diagnosed with AD),2 the AD GRS

was devised using a sample comprising AD and proxy AD cases.20

Moreover, the CAIDE 1 score predominantly comprises cardiovascu-

lar risk factors for dementia, meaning that it is likely to identify a sub-

population of those at risk for dementia.

Wedid not observe anyDNAmethylation associationswithAD fam-

ily history (FH) or two late-life dementia risk scores. The lack of asso-

ciations with AD FH is somewhat surprising, as this has been shown

previously to be a good AD proxy-phenotype.20 Our failure to observe

significant associations for these traits may reflect a lack of statistical

power, particularly as the samples available for the late-life dementia

risk scores were relatively small.

It is important to note some additional strengths and limitations to

our study. Although it would clearly be desirable to study DNAmethy-

lation in brain tissue, growing evidence highlights the contribution of

systemic factors todementia pathogenesis.54 Thusmethylation studies

in the blood are necessary to provide a holistic characterization of the

processes that contribute to dementia development. Moreover, pro-

filing blood methylation permits both longitudinal analyses to charac-

terize the dynamic processes underlying dementia pathogenesis and

biomarker identification.

An important limitation of our study is that the use of a cross-

sectional design means that causal inferences cannot be drawn. A

corollary of this is that it is difficult to determine whether the methy-

lation differences assessed play a causal role in the development of

dementia. In some cases, causal inference analyses to assess rela-

tionships with important intermediary variables such as cognitive

ability and cognitive decline together with Mendelian randomization

may help delineate likely causality; future studies should assess this

possibility.

Ultimately, the longitudinal assessment of cognitive decline and the

development of dementia will also be necessary to address questions

about causation. Moreover, the availability of longitudinal data would

also permit the development of an epigenetic (and potentially a multi-

factorial genetic, epigenetic, and lifestyle factors) predictor of demen-

tia. An important conceptual issue that must be considered when

attempting to determine causality from longitudinal data is that that

the pathogenesis of dementia is itself a gradual process involving quan-

titative changes in multiple biological systems, which eventually result

in the binary diagnosis of dementia. As such, it might not be possible to

strictly delineate the temporal relationship between risk factors, their

biological correlates and the onset of dementia. Instead, the identifi-

cation of co-occurring processes might yield experimentally testable

hypotheses. An additional factor to consider is that the non-genetic

risk factors that contribute to the scores assessed are themselves only

associated with the development of dementia and do not necessarily

play a causal role. Future studies that aim to delineate the causal con-

tribution of these factors to dementia will facilitate the development

of risk scores whose primary purpose is for use in the investigation of

pathogenic mechanisms.

Other limitations concern the quality of the variables used in the

dementia risk scores: self-reporting may have resulted in errors, and

the blood samples used for cholesterol measurements were not taken

at a consistent time of day or after a consistent fasting length. Fur-

thermore, we considered only a sub-set of putative dementia risk fac-

tors. The demographic and lifestyle risk factors considered in this study

were selected due to their involvement in validated composite risk

scores;2–4 however, it would be of interest to examine DNA methy-

lation associations of other well-supported dementia risk factors in

future studies.

Here we present the first comprehensive characterization of

associations between blood DNA methylation and dementia risk,

performed in the largest single-cohort methylation samples col-

lected to date. We identify several CpGs where methylation is

associated with dementia risk measures and identify a putative

novel AD risk locus. Our findings suggest a number of hypotheses

for assessment by future studies, which should include longitudi-

nal assessments of the causal nature of methylation in dementia

pathogenesis.
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