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Abstract

Background: Estimating single nucleotide polymorphism (SNP)-heritability (h2
g) of severe malaria resistance and its

distribution across the genome might shed new light in to the underlying biology. Method: We investigated h2
g of severe

malaria resistance from a genome-wide association study (GWAS) dataset (sample size = 11 657). We estimated the h2
g and

partitioned in to chromosomes, allele frequencies and annotations using the genetic relationship-matrix restricted
maximum likelihood approach. We further examined non-cell type-specific and cell type-specific enrichments from
GWAS-summary statistics. Results: The h2

g of severe malaria resistance was estimated at 0.21 (se = 0.05, P = 2.7 × 10−5), 0.20
(se = 0.05, P = 7.5 × 10−5) and 0.17 (se = 0.05, P = 7.2 × 10−4) in Gambian, Kenyan and Malawi populations, respectively. A
comparable range of h2

g [0.21 (se = 0.02, P < 1 × 10−5)] was estimated from GWAS-summary statistics meta-analysed across
the three populations. Partitioning analysis from raw genotype data showed significant enrichment of h2

g in genic SNPs
while summary statistics analysis suggests evidences of enrichment in multiple categories. Supporting the polygenic
inheritance, the h2

g of severe malaria resistance is distributed across the chromosomes and allelic frequency spectrum.
However, the h2

g is disproportionately concentrated on three chromosomes (chr 5, 11 and 20), suggesting cost-effectiveness
of targeting these chromosomes in future malaria genomic sequencing studies. Conclusion: We report for the first time that
the heritability of malaria resistance is largely ascribed by common SNPs and the causal variants are overrepresented in
protein coding regions of the genome. Further studies with larger sample sizes are needed to better understand the
underpinning genetics of severe malaria resistance.

Introduction

In spite of the global eradication efforts, malaria remains a
major global public health problem with 219 million cases and
435 000 deaths in 2017 (1). Plasmodium falciparum malaria results
in diverse clinical manifestations ranging from asymptomatic
parasitaemia to severe malaria (2). Such a wide variation of
clinical outcome is attributed to several factors including genetic
factors of the host, virulence of parasite and environmental
factors (2). Family studies reported that the host genetic factors

(heritability) contributes ∼25% of the variations observed in
clinical severity of malaria in endemic populations (3). Thus,
understanding the molecular basis of the natural immunity
against severe malaria will speed up the development of an
efficient malaria vaccine.

Driven by the wide availability of genome-wide single
nucleotide polymorphism (SNP) arrays, the focus of genetic
studies has been shifted from the traditional candidate gene and
family-based linkage studies to GWASs. However, only a small
fraction of narrow sense heritability is explained by the GWAS
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significant SNPs. This led to a problem commonly termed as
‘missing heritability’ (4). In effort to address this problem, several
statistical methods that aim at quantifying SNP-heritability
without identifying the causal variants were developed (5–7).

Packages such as the genome-wide complex trait analysis
(GCTA) implement genetic relationship-matrix restricted maxi-
mum likelihood (GREML) method in which all SNPs of unrelated
subjects are simultaneously analysed in a linear mixed model
framework to estimate the proportion of phenotypic variations
explained by genotypic variation (5). Apart from GREML
approaches, Golan et al. (7) recently introduced a regression
method called phenotype-correlation-genotype-correlation
(PCGC) for estimation of heritability from case-control datasets.
PCGC is a Haseman–Elston regression model in which a
normalized phenotype is regressed on the genetic covariances
of all unique pair of samples. The slope of the regression is
used as an estimator of h2

g. Application of these methods
provided new insights in to the genetic architecture of complex
diseases including autism, schizophrenia, Parkinson’s disease,
type 2 diabetes, hypertension among others (8–13). Alternative
contemporary statistical methods that enable estimation of h2

g

from publicly available GWAS-summary statistics without the
need of individual genotype data are also widely available (14–16)
and gained popularity due to their privacy advantages and
computational costs.

Because only unrelated individuals are included, the h2
g anal-

ysis offers a greater flexibility of study designs that enable us
to conduct powered studies. The use of only unrelated indi-
viduals also minimizes the biases from shared environments,
one of the greatest challenges in pedigree studies (5). Further-
more, h2

g analytic methods allow partitioning of the cumulative
heritability in to different functional categories and biological
pathways and thus, provide more insights in to the underpinning
biology (6,17).

Even though a number of severe malaria GWASs have
recently been implemented in endemic areas in Africa and
reported few novel association variants (18–21), little is known
about the h2

g and its distribution across the genome. Here we
present results from a comprehensive h2

g study of severe malaria
resistance in three African populations including Gambia,
Kenya and Malawi. We estimated h2

g and partitioned in to
chromosomes, different minor allele frequency (MAF) bins,
functional categories and cell types. We found that the h2

g is
disproportionately concentrated on three chromosomes (chr
5, 11 and 20) and enriched in the coding region of genome.
Overall, our results suggest that malaria resistance is mainly
under polygenic control.

Results
SNP-heritability estimates from genotype datasets

We estimated h2
g at different quality control (QC) levels to deter-

mine the appropriate threshold (see Materials and Methods).
As expected, the estimates were inflated at less stringent QC
thresholds (Supplementary Material, Fig. S1). However, applying
stringent QC protocols including relatedness threshold (5%),
SNP differential missingness proportion (P ≤ 1 × 10−3) and SNPs
missing proportion (P > 0.02) yielded a more stable ranges
of h2

g values that were not affected by the inclusion of
additional principal components (15, 20, 50) as covariates. At
the stringent QC threshold, the h2

g of severe malaria resistance
was 0.21 (se = 0.05, P = 2.7 × 10−5), 0.20 (se = 0.05, P = 7.5 × 10−5)
and 0.17 (se = 0.05, P = 7.2 × 10−4) in Gambian, Kenyan and

Malawi populations, respectively (Table 1). These estimates
were approximately similar in Kenya ethnic groups such as
Chonye (0.20, se = 0.07, P = 5.1 × 10−3) and Giriama (0.19, se = 0.07,
P = 7.3 × 10−3). However, the estimate was slightly inflated in
Mandinka ethnic group of Gambia (0.24, se = 0.06, P = 5.1 × 10−5).
We did not estimate h2

g for other ethnic groups because of
inadequate sample sizes. Furthermore, the PCGC model yielded
broadly similar results including 0.20, (se = 0.06, P = 9.7 × 10−4),
0.16 (se = 0.06, P = 8 × 10−3) and 0.23 (se = 0.07, P = 1.3 × 10−3) in
Gambia, Kenya and Malawi populations, respectively.

Proportion of SNP-heritability attributable to GWAS loci. To quan-
tify the effects of the known variants, we estimated the h2

g with-
out removing the severe malaria GWAS loci from the datasets
(see Materials and Methods). This resulted in slight increment
of the h2

g estimate in Gambian [0.27 (se = 0.05, P = 1 × 10−5)]
and Kenyan [0.26 (se = 0.05, P < 1 × 10−5)] populations. Repeating
the GREML analysis by including rs334 as an additional covari-
ate decreased the estimate to [0.24 (se = 0.05, P < 1 × 10−5)] and
[0.23 (se = 5%, P < 1 × 10−5)] in Gambian and Kenyan populations,
respectively. This suggests that the h2

g attributable to the GWAS
significant loci and HbS locus is approximately 0.07 and 0.03,
respectively.

Partitioning SNP-heritability by chromosomes, minor allele frequen-
cies and functional annotations. We observed no significant
differences in h2

g estimate obtained from separate analysis
(0.24, se = 0.05, P < 1 × 10−5) and the joint analysis (0.22, se = 0.05,
P = 1 × 10−5) (Supplementary Material, Fig. S2), suggesting that
the population structure was adequately controlled. Moreover,
we observed significant correlations between chromosomal
length and h2

g per chromosome (Adj r2 = 0.38, P = 0.001) (Fig. 1).
However, the estimates of three chromosomes (chr 5, 11 and
20) and three other chromosomes (chr 7, 8 and 15) fell above
and below the expected h2

g at 95% CI, respectively. Notably,
chr5 contained a considerable proportion (∼0.035) of the h2

g

(Supplementary Material, Table S1).
We performed MAF stratified analysis to estimate the

relative contribution of variants with various allele frequencies
(Fig. 2). However, we did not find significant differences
between the proportion of h2

g attributed to different MAF
bins [standards errors overlapped at 95% confidence interval
(CI)]. Moreover, the total sum of our h2

g estimate per bin [0.27
(se = 0.08, P = 5.3 × 10−5)] was not significantly different from the
univariate estimate. We further estimated the h2

g explained by
genic SNPs and the intergenic SNPs at 0.165 (se = 0.05) and 0.062
(se = 0.05), respectively (Table 2). On average, a SNP residing in
genic region was enriched 2.9× compared to a SNP residing in an
intergenic region of the genome. This is statistically significant
at 95% CI.

Functional enrichment from GWAS-summary statistics

After imputation of severe malaria GWAS-summary statistics
and QC filtering, we obtained a total of 20 million high qual-
ity SNPs (see Materials and Methods). Using this dataset, we
estimated the liability scale h2

g at 0.21 (se = 0.02, P < 1 × 10−5).
Partitioning the h2

g in to 24 main genomic annotations (base-
line model) showed evidences of enrichment in multiple cat-
egories including 5′UTR (11×), digital genomic footprint (DGF;
10×), enhancer (9×), coding (6×), H3K4me1 (4.9×), TSS (5×), tran-
scription factor binding sites (TFBS; 4×) and FANTOM enhancer

https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddz258#supplementary-data
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Table 1. h2g of severe malaria resistance determined by GCTA and PCGC methods

Population SNPs (n) Samples (n) h2
g-GCTA (%) h2

g-PCGC (%)

Gambia 1 513 822 4128 0.20(se = 0.05) 0.20(se = 0.05)
Kenya 1 579 227 2062 0.20(se = 0.05) 0.16 (se = 0.05)
Malawi 1 502 462 2418 0.17(se = 0.05) 0.23(se = 0.06)
Mandinka 1 513 822 1281 0.24 (se = 0.06) ne∗
Chonye 1 579 227 637 0.20(se = 0.06) ne∗
Giriama 1 579 227 1173 0.19 (se = 0.06) ne∗

ne∗: Model did not fit because of small sample size and there was no reliable estimation SNP: single nucleotide polymorphisms, h2
g-GCTA: h2

g estimated using GCTA

method, h2
g PCGC: h2

g estimated using PCGC method

Figure 1. h2
g per chromosome(y-axis) plotted against chromosome length (x-axis). The blue line represents the h2

g estimates regressed against chromosome length.

The grey shaded areas represent the 95% CI around the slope of the regression model.

Table 2. h2g of severe malaria resistance partitioned in to genic and
intergenic genomic regions

SNP
location

10 kb boundary
SNPs(n) h2g h2g per SNP

Genic 727 996 0.165(se = 0.05) 2.3 × 10−5

Inter-genic 785 826 0.062(se = 0.05) 7.9 × 10−6

(4×) as shown in Figure 3. However, none of the enrichments
was statistically significant after correction for multiple testing.
Further cell-type specific and cell group analysis did not show
significant enrichments.

Discussions
In this study, we estimated the h2

g and functional enrichment
of malaria resistance in three African populations and their
meta-analysis. After excluding the severe malaria resistance
GWAS loci, we performed GREML analysis at different QC
levels to determine the appropriate threshold; indeed, the
estimates were inflated upward at less stringent QC levels and
became stable at more stringent QC levels. These estimates
were broadly similar across the three study populations.
Except a slight inflation observed in Mandinka ethnic group
which might have been underpowered because of small
sample size, the estimates were also similar across the major
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Figure 2. h2
g partitioned in to different allele frequency spectrum. We created six MAF-bins and estimated the proportion of h2

g attributed to each bin. The proportion

of h2
g attributed to each bin is shown in red bar and the proportion of SNPs per bin is shown by the blue bar. Error bars represent the 95% CI of the estimate.

ethnic groups. Approximately a similar range of h2
g of severe

malaria resistance was recently reported (22). This might
suggest that substantial human genetic factors that influence
malaria disease severity have been maintained across endemic
populations. Consistent with our findings, a previous family-
based study reported a similar range of heritability of severe
malaria resistance in two different endemic populations in
Kenya (4).

In contrast to the findings from other complex disease stud-
ies in which h2

g is much smaller than family-based heritability
values (23), our current h2

g estimates were roughly close to a
report from a previous family-based study (4). This might be due
to the fact that the previous study underestimated the heritabil-
ity estimates: First, only additive genetic effects (narrow-sense
heritability) was calculated i.e. the contributions of nonadditive
effects including epistasis, dominance and gene-gene interac-
tions were not taken in to account. Second, the authors indicated
that their paternity assessment was prone to misclassification,
which might have underestimated the actual narrow-heritability
estimate (4).

In the current study, including GWAS significant SNPs in
the GREML analysis resulted in an increment of the h2

g esti-
mates by ∼ 0.07 in the study populations, suggesting that the h2

g

attributable to the known malaria resistance GWAS loci (h2
g-GWAS)

is generally small. This is consistent with the hypothesis that

the vast proportion of heritability of complex traits/diseases
is explained by SNPs with effect sizes too small to attain the
stringent genome wide significance threshold (P < 5 × 10−8) at
the current sample sizes (24). Repeating the analysis by including
rs334 as an additional covariate brought down these estimates
by ∼ 0.03, suggesting that more than a third of the h2

g-GWAS is
attributable to the HbS locus. This might be explained by the
fact that the HbS locus has relatively larger effect sizes in the
endemic populations (18).

To gain better insights in to the genetic architecture of severe
malaria resistance, we partitioned the h2

g in to different chro-
mosomes, allele frequency spectrum and annotations. Separate
GREML analysis and joint analysis yielded broadly similar h2

g

estimates, suggesting that population structure is adequately
controlled. The rationale is that. However, the joint analysis in
which genomic relatedness matrix (GRMs) of all chromosomes
are simultaneously fitted in to a single GREML model, can effec-
tively control the upward biases that can be created by correlated
SNPs on different chromosomes (29).

Supporting the polygenic view of genetic architecture, we
found a correlation between h2

g per chromosome and chro-
mosomal lengths (Adj r2 = 0.39, P = 0.001). However, the h2

g is
disproportionately concentrated on three chromosomes (chr 5,
11 and 20), suggesting that these chromosomes might contain
loci with larger effects against the polygenic background. Thus,
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Figure 3. Enrichment estimates of h2
g for the 24 main annotations. Error bars represent jackknife standard errors around the estimates of enrichment.

targeting these chromosomes using more powered studies (e.g.
DNA sequencing) might be a cost-effective approach to discover
new severe malaria resistance loci. Previous family-based stud-
ies reported that a region on chr5 (5q31–q33) is associated with
susceptibility to mild malaria (25,26).

MAF-stratified analysis didn’t reveal significant differences
between the proportion of h2

g attributed to different MAF bins.
This might assert that h2

g of severe malaria resistance is broadly
uniform across the allele frequency spectrum and is not over-
represented by rare alleles. Partitioning by annotation revealed
that the h2

g of severe malaria resistance is significantly enriched
in SNPs residing in protein coding regions of the genome, sug-
gesting that further studies focusing on coding regions (e.g.
exome sequencing and/or exome array genotyping) might lead
to the discovery novel variants.

In addition to the direct estimation of h2
g from raw genotype

datasets, we performed functional enrichment analysis from
GWAS-summary statistics using stratified linkage disequilib-
rium score regression (LDSC) approach (14). To improve the
performance of the analysis, we created a reference panel that
is more specific to our study populations by merging the African
population datasets obtained from 1000 Genomes Project and
African Genome Variation Project (27). Using this panel, we cre-
ated annotation files and estimated h2

g of severe malaria resis-
tance from GWAS-summary statistics meta-analysed across the
study populations.

Our liability scale h2
g estimate [0.21 (se = 0.02, P < 1 × 10−5)]

was comparable to the direct estimates from raw genotype
datasets. However, our functional enrichment analyses did not
reveal significant results. One of the downsides of stratified
LDSC method is that it requires very large sample sizes to
detect significant enrichments (14). Of note, the coding genes
and the surrounding categories were among the top annotations
in our base line model. This further highlights the importance of
protein coding regions of the genome in influencing the malaria
disease severity.

Finally, our study had a number of caveats that might
directly or indirectly affect the accuracy of estimating the true
genetic heritability. First, the controls used in this study were
not screened for mild malaria that might potentially bias the
accuracy of h2

g estimates. Second, assumptions of the models
implemented for the analyses might not adequately explain the
true genetic architecture of severe malaria resistance. Third, all
the models implemented here do not measure the variances
attributable to environmental factors. Fourth, the study is
underpowered for the functional enrichment anlyses.

Conclusions
In conclusion, our study showed for the first time that heri-
tability of severe malaria resistance is largely explained by com-
mon SNPs and is disproportionately enriched in SNPs residing
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in protein coding regions of the genome. Consistent with the
polygenic genetic architecture, we observed that the h2

g of severe
malaria resistance is distributed across chromosomes and allele
frequency spectrum. However, the h2

g is disproportionately con-
centrated on three chromosomes (chr 5, 11 and 20), suggesting
the cost-effectiveness of targeting these chromosomes in future
malaria genomic sequencing studies. In this study, we created
annotation files using population specific reference panel and
showed that stratified LDSC analysis can provide reliable SNP-
heritability estimates in African populations. Further studies
with larger sample sizes are needed to understand the unpin-
ning genetics and biology of severe malaria resistance trait.

Materials and Methods
Description of the study datasets

GWAS datasets of three African populations including Gam-
bia, Kenya and Malawi were obtained from European Phenome
Genome Archive (EGA) through the MalariaGen consortium stan-
dard data access protocols (28,29). The datasets contain infor-
mation about a total of 11 657 samples including 4921 sam-
ples from Gambia (2491 cases and 2430 controls), 3752 samples
from Malawi (3752 cases and 3220 controls) and 2984 samples
from Kenya (1506 cases and 1478 controls). Cases were obtained
from children who were admitted to Hospitals and fulfilled
WHO case definition for severe malaria (29) and controls were
obtained from the general population (18–21). All the samples
were genotyped on Illumina Omni 2.5 M array. Information about
phenotypes, imputation and QC was also provided.

Quality control

The basic QC protocols including plate effects, sample related-
ness, Hardy–Weinberg equilibrium, heterozygosity, missingness
and differential missingness were done as described elsewhere
(18,30). Taking in to consideration that small artifacts can
have substantial cumulative effects in h2

g analysis (31), we
applied further stringent QC filtering steps. Briefly, we aligned
the quality filtered VCF files to forward stand of the human
reference sequence (GRCh3) using the illumina supplied files
(www.well.ox.ac.uk/∼wrayner/strand) and removed all SNPs
with position and strand mismatches. We further removed SNPs
with MAF below 0.01, deviate from Hardy–Weinberg at P-value
below 0.01 using PLINK software (32). We then implemented
step-wise QC filtering based on SNPs missingness proportion,
differential missingness and sample relatedness as described
in (6).

Estimating heritability from genotype data

We applied GCTA (5) and PCGC (7) models to estimate the
h2

g of severe malaria resistance from raw genotype datasets.
Briefly, we excluded the region of extended inversion (7 238 552–
12 442 658) on chromosome 8p23 (33), the major histocompati-
bility complex (MHC) region (25 000 000–40,000,000) on chr 6 and
the known severe malaria resistance loci including the ATP2B4
region on chr1:203 154 024–204 154 024, cluster of glycophorin
(GYPA/B/E) region on chr4:143 000 000–146 000 000, ABO blood
group region on chr9:135 630 000–136 630 000, and the sickle cell
(HbS) region on chr11:2 500 000–6 500 000 to avoid potential biases
from large effects.

We constructed GRMs from pruned high quality independent
autosomal SNPs using GCTA software (5) and obtained list of
samples with relatedness threshold >5%. We then computed
GRMs using all the autosomal SNPs for each cohort and
excluded one of any pair of samples with relatedness threshold
>5% as recommended elsewhere (6). The final sample of
unrelated individuals was 4128, 2062 and 2418 for Gambia,
Kenya and Malawi, respectively. The distribution of off-
diagonal element of the GRMs for each population is shown
in Supplementary Material, Fig. S3.

We used population prevalence of 1% of severe malaria as
previously described in (29) and included the top 10 PCs as
fixed effects in the GREML analysis. We then transformed the
estimates to liability scale as described in Lee et al. (34). Using
the same GRMs, we estimated the h2

g using PCGC model as
outlined in Golan et al. (12). We also computed separate GRMs
and estimated h2

g for major ethnic groups in Gambia (Mandinka)
and Kenya (Girimia and Chonye). Furthermore, we created GRMs
in the presence of the GWAS significant SNPs and performed
GREML analysis to quantify the effects of malaria resistance
GWAS loci. We repeated the analysis by including rs334 as addi-
tional covariate to estimate the h2

g attributable to HbS.

Partitioning SNP-heritability from genotype data. Using Gambian
dataset (largest sample size), we partitioned h2

g by chromo-
somes, MAF bins and annotations. For the partitioning analy-
ses, we excluded the severe malaria resistance GWAS loci to
minimize the potential biases from SNPs with large effects. To
investigate the biases that might be created by population struc-
ture, we performed separate and joint GREML analysis using all
autosomal chromosomes. We first computed GRMs for individ-
ual autosomal chromosome and estimated h2

g attributed to each
chromosome by separate GREML in which one chromosome is
fitted to the model at a time. We then performed a joint analysis
in which GRMs of all autosomal chromosomes are simultane-
ously fitted in to a single GREML analysis and compared the
results obtained from both analyses.

In addition to this, we partitioned the h2
g in to different

allele frequencies and annotations. Briefly, we created five MAF
bins including > 0.01–0.05, > 0.05–0.1, > 0.1–0.2, > 0.2–0.3, > 0.3–
04, > 0.4–0.5, computed separate GRMs for each bin and per-
formed joint GREML analysis. For partitioning by annotation,
we mapped all the autosomal SNPs to the human reference
panel hg19 in UCSC genome database (http://genome.ucsc.edu)
using QCTOOLV2 (https://www.well.ox.ac.uk/∼gav/qctool) and
obtained a list of genic and intergenic variants. Genic variants
included those SNPs mapped to genomic regions within 10 kilo-
bases (kb) upstream and downstream of a protein coding gene.
Intergenic variants included all the SNPs mapped to genomic
regions outside 10 kb of a protein coding gene. We constructed
separate GRMs and estimated h2

g attributable to each category
using the joint analysis implemented in GCTA software (5).

Functional enrichment analysis of SNP-heritability
from GWAS-summary statistics

African-specific reference panel. Partitioning h2
g in to cell-types

and functional categories using stratified LDSC approach has
recently been shedding new lights in to the genetic architecture
of several complex diseases (14,35,36). The method is based on
the fact that a given category of SNPs is enriched for h2

g if
SNPs with high LD to that category have higher χ2 statistics
than SNPs with low LD to that category (35,36). However, the

http://www.well.ox.ac.uk/~wrayner/strand
tel:7238552-12442658
tel:25000000-40000000
tel:2500000-6500000
https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddz258#supplementary-data
http://genome.ucsc.edu
https://www.well.ox.ac.uk/~gav/qctool
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stratified LDSC analysis require population specific reference
panel and very large sample sizes to produce reliable results (14).
Consequently, the current European 1000G haplotype reference
panel that is used as a default in LDSC software (14,35) might not
well represent our study populations.

To address this challenge, we created a reference panel
that matches with our study populations. Briefly, we merged
African population datasets obtained from 1000 Genomes
Project and African Genome Variation Project (27) based on
overlapped variants and removed structural variants and
ambiguous SNPs using plink tool (32). This resulted in a
combined dataset of sample size (n = 4975). After excluding the
admixed populations including Americans of African Ancestry
and African Caribbean, we clustered the dataset in to East
African and west African sub-regions using smart pca software
(37) as shown in Supplementary Material, Fig. S4. We removed
SNPs with MAF < 1%, missingness > 0.05 and HWE in controls
(alpha level 0.0001), and retained a total of 22 473 268 SNPs
(sample size = 2112) and 18 919 068 SNPs (sample size = 380) in
east African and west African sub-regions, respectively. We
finally calculated the MAF of the panel for later partitioning
analysis. Owing to the fact that our study populations are
comprised of both east African (Malawi and Kenya) and west
Africa (Gambian) populations, we used the entire dataset as a
reference panel for functional enrichment analysis.

Baseline model and functional annotations. We created baseline
model and cell type specific annotations for our reference panel
as described in (14). The baseline-LD model included 24 main
annotations that are not cell type-specific including coding,
UTRs (3′UTR and 5′UTR), promoter and intronic regions obtained
from UCSC genome browser and processed by Gusev et al. (12),
the histone marks (H3) such as: acetylation of histone at lysine
9 (H3K9ac), monomethylation (H3K4me1) and trimethylation
(H3K4me3) of H3 at lysine 4 obtained from Trynka et al. (38),
acetylation of H3 at lysine 27(H3K27ac) version one processed by
Hnisz et al. (39) and version two Psychiatric Genomics Consor-
tium, combined chromHMM and Segway predictions obtained
from Hoffman et al. (40), regions that are conserved in mammals
(41,42), super enhancers (39), FANTOM5 enhancers (43), TFBS and
DGF post-processed by Gusev et al (12). Around each partition, we
added 500 bp windows as separate categories to prevent biases
that might arise from adjacent annotations.

The 24 main annotations together with the additional win-
dows and a category containing all SNPs yielded 53 overlapping
baseline model. Next, we created 220 cell type-specific annota-
tions for the four histone marks: H3K4me1, H3K4me3, H3K9ac
and H3K27ac (14) using our reference panel and computed LD
score for each annotation. We then combined the 120 cell spe-
cific annotations in to 10 cell groups including adrenal and
pancreas, central nervous system, cardiovascular, connective
and bone, gastrointestinal, immune and hematopoietic, kidney,
liver, skeletal muscle and other as described in (14). For each of
the 10 categories, we computed the corresponding LD scores.

Stratified LDSC analysis. We obtained meta-analysed GWAS-
summary statistics of the three populations (n = 15 122 094 SNPs)
from the previous GWAS (18). We performed imputation on this
dataset using ImpG software (44). Briefly, we removed SNPs
that mismatch with 1000G phase three markers, computed z-
score from the association statistics and performed the impu-
tation using ImGv.1.1 under default settings. We used all the 661
individuals labeled as ‘AFRICAN’ haplotypes in phase 1 of 1000

Genome Project version-3 calls (45). We removed all imputed
SNPs with a predicted accuracy less than 0.9 and SNPs with
MAF < 0.01. After QC filtering, we performed stratified LD score
regression analysis using our reference panels as described in
(14). Briefly, we converted the summary statistics to LDSC for-
mat, filtered SNPs with imputation accuracy greater than nine
and MAF >1%, removed structural variants, ambiguous SNPs, the
MHC region and significant SNPs. We then performed non-cell
type- and cell type- specific analyses as described in (14).
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