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Abstract

In this brief review, we describe current computational models of drug-use and addiction that fall 

into two broad categories: mathematically-based models that rely on computational theories, and 

brain-based models that link computations to brain areas or circuits. Across categories, many are 

models of learning and decision-making, which may be compromised in addiction. Several 

mathematical models take predictive coding approaches, focusing on Bayesian prediction error. 

Other models focus on learning processes and (traditional) prediction error. Brain-based models 

have incorporated prefrontal cortex, basal ganglia, and the dopamine system, based on the effects 

of drugs on dopamine, motivation, and executive control circuits. Several models specifically 

describe how behavioral control may transition from habitual to goal-directed systems, consistent 

with computational accounts of compromised “model-based” control. Some brain-based models 

have linked this to the transition of behavioral control from ventral to dorsal striatum. Overall, we 

propose that while computational models capture some aspects of addiction and have advanced 

our thinking, most have focused on the effects of drug use rather than addiction per-se, most have 

not been tested on and/or supported by human data, and few capture multiple stages and symptoms 

of addiction. We conclude by suggesting a path forward for computational models of addiction.

Scientific Summary

One of the approaches that has been used to understand addiction is computational modeling; this 

involves simulating key variables and, in some cases, neural circuits, that contribute to the 

disorder. We propose that while published models have captured some aspects of addiction and 

have advanced our thinking, most have not captured multiple stages and symptoms of addiction 

and have focused on simple forms of drug use behavior instead. We briefly review those models 

and suggest a path forward for computational models of addiction.
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Introduction

Substance use disorders (SUDs; addictions) are the most prevalent and costly psychiatric 

conditions, associated with lifetime prevalence of 35.3% (NIMH, 2007), and costs exceeding 

$700 billion in the US alone (Suzuki & Kober, 2018). Clinically, SUDs are chronic, 

relapsing conditions, characterized by problematic drug use leading to clinically-significant 
impairment or distress (APA, 2013). For diagnosis, patients must also report at least two of 

eleven symptoms, which describe risky/compulsive use, impaired control, physiological 

alterations, and craving. The complexity of this clinical disorder highlights the need to 

understand the different components that contribute to the development and maintenance of 

SUDs. Further, understanding the underlying neural circuitry will help us develop more 

effective treatments for SUDs as well as prevention strategies. Thus, it is unsurprising that 

many models have been proposed to explain these disorders.

As Box (1979) noted: “all models are wrong but some are useful”. This is particularly true 

for addiction, because it is a complex phenomenon that develops in stages, involves many 

symptoms, and has many underlying environmental, biological, and neuropsychological 

causes. Thus, models of addiction are necessarily a simplification, and yet can still describe 

important aspects of the disorder, and drive thinking forward. Models have ranged from 

purely-psychological (e.g., Kavanagh, Andrade, & May, 2005; Prochaska, DiClemente, & 

Norcross, 1992; Ryan, 2002; Tiffany, 1990) to primarily circuit-based (e.g., Lüscher, 2016; 

Lüscher & Malenka, 2011; Nestler, 2005). Within this range, many prominent theoretical 

models of addiction are either neurobiologically-inspired or posit neurobiological 

components (e.g., Goldstein & Volkow, 2002; Koob & Volkow, 2010). Such models have 

been useful for linking psychology/psychopathology to addiction, providing a framework for 

understanding addiction, formalizing components and pathways, synthesizing data, 

providing graphical representations, and inspiring considerable bodies of work (Everitt & 

Robbins, 2005; Koob & Volkow, 2010).

Furthermore, several of these theoretical brain-based models of addiction have been 

particularly useful in understanding its complexity. They have done so by describing the 

different stages of addiction, their underlying neurobiological adaptations, differentiating 

addiction from casual drug use, honoring psychological states of craving (and cue-

reactivity), and incorporating impaired cognitive control, binge patterns, and the 

consequences that follow, including negative affect and withdrawal (e.g., Goldstein & 

Volkow, 2002; Koob & Volkow, 2010; Lüscher, 2016; Lüscher & Malenka, 2011). However, 

such theoretical models have not formalized the specific functions or processes involved in 

the development and maintenance of SUDs, and have not always led to testable hypotheses. 

In contrast, computational models can both formalize the relevant processes and allow 

descriptions of specific computations and predictions.

Computational approaches are particularly useful for clinical psychology because they force 

us to make explicit predictions about the representational properties of model components 

and their interactions. Further, the level of detail in such models allows them to make 

specific predictions that can be tested experimentally (Wang & Krystal, 2014). In the context 

of SUDs, computational models might formalize how basic components relate to the 
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symptoms of this multi-faceted disorder. Modeling might also help us understand the 

considerable heterogeneity of substance users and predict effective treatments for different 

subcategories of substance users. Indeed, both heterogeneity and comorbidity of clinical 

disorders were flagged as some of the major problems in psychiatry that computational 

modeling approaches can address (Wiecki, Poland, & Frank, 2015). Further advantages 

include the ability to formally compare the evidence for different theories (Adams, Huys, & 

Roiser, 2016), and the ability to integrate and move between models at different levels of 

analysis, abstraction, and biological plausibility (Wang & Krystal, 2014). However, 

computational models in themselves have not been a panacea: they occasionally lack theory, 

and their components do not necessarily link well with underlying psychological processes, 

or to human data more broadly. In our view, an effective model of SUDs should describe a 

range of addiction symptoms, as well as the progression and stages of addiction beyond 

repetitive drug use, to be of practical clinical use. Below, we briefly review the existing 

literature with this view in mind.

Computational Models of Addiction and/or Drug Use

As SUDs are characterized by many brain changes in reward and motivation circuitry (Belin, 

Belin-Rauscent, Murray, & Everitt, 2013; Goldstein & Volkow, 2002; Koob & Volkow, 

2010), most computational models for drug use and addiction focused specifically on these 

systems. Broadly, such computational models fall into two categories: (1) mathematical 

models that do not make precise mappings of model components to neural circuits, and (2) 

biologically-based models that map components to specific brain regions or systems. These 

categories are related to Marr’s levels of analysis (Marr, 1982), such that mathematical 

models are at the algorithmic level, as they describe the particular algorithm implementing 

the computations described. In contrast, biologically-based models are at the 

implementational level, as they describe the specific brain hardware that makes those 

computations. We will explain key computational mechanisms of several models in each 

category and describe the evidence for each model, when available (see Table 1, for a 

summary).

Mathematical models—Perhaps the earliest model is Becker’s “rational theory of 

addiction” (e.g., Becker & Murphy, 1988). This model proposes that individuals plan to 

maximize their utility, by making choices to take drugs when the benefits outweigh costs, 

which further increase the utility of using drugs. The model also considered factors that 

decrease utility, including price, effort, and penalties. Bernheim and Rangel (2004) 

incorporated some of these elements to characterize drug use as an irrational mistake, or a 

divergence between choices and preferences. They further specify that drugs sensitize an 

individual to environmental cues that promote use, by activating a “hot” decision-making 

system that exaggerates positive consequences of drug use. This increases subsequent 

choices to use drugs, even if it is not the most rational option. This model accounts for 

precommitment (limiting drug exposure) and for regret over drug-taking, as decisions made 

by the rational or “cold” system. Neither model has been applied to human data or 

differentiates between drug use and addiction per-se.
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Reinforcement learning and dopamine-based models.: One category of mathematical 

models focuses on reinforcement learning mechanisms, and how they are changed by drug 

use. These models focus on the mesolimbic dopamine system, based on data suggesting that 

dopamine neurons encode prediction errors (PE) – the difference between expectations and 

outcomes (Schultz, 1997). Such models typically do not describe how drug-induced learning 

affects other brain regions, but instead focus on simulating behavioral effects of drug use. 

One such account suggests that drug use sensitizes the dopamine system, enhancing the 

attribution of incentive salience to drug cues, leading to enhanced craving and motivation to 

use (Berridge, 2012). Specifically, Zhang, Berridge, Tindell, Smith, and Aldridge (2009) 

suggested that a physiological drive state multiplies the value of a conditioned cue, without 

needing new learning to enhance the cue’s value. The model is consistent with findings that 

salt deprivation increases neural signaling in the ventral pallidum (a region associated with 

value encoding) for a salt-predictive cue before the animal had experienced the new value of 

salt (Tindell, Berridge, Zhang, Pecina, & Aldridge, 2005). Recent work showing that craving 

has a multiplicative effect on value for food provides support for this model (Konova, Louie, 

& Glimcher, 2018). However, this model does not describe addiction per-se, but rather drug 

use. Further, it is inconsistent with prediction-error (PE) based accounts (described below) 

that assume that new learning must occur prior to any changes in value.

Indeed, other models have focused on the effect of drug use on dopamine, capitalizing on 

cocaine’s effect on the dopamine transporter (Redish, 2004). These models predict that PEs 

would consistently occur for drug rewards, such that cues that lead to drug rewards would 

continue to grow in value. In turn, the model predicts that blocking – the ability of previous 

learning about a cue to prevent new learning about another cue – would not occur. This 

model is consistent with reduced blocking in human methamphetamine users (Freeman et 

al., 2013), and yet inconsistent with the occurrence of blocking in drug-taking animals 

(Panlilio, Thorndike, & Schindler, 2007) and human cigarette smokers (Freeman, Morgan, 

Beesley, & Curran, 2012). Additional evidence suggests that negative PEs can occur for drug 

rewards, as rats reduce lever pressing for a smaller-than-expected drug reward (Marks, 

Kearns, Christensen, Silberberg, & Weiss, 2010), in contrast to the model’s prediction that 

drug rewards always cause positive PEs.

Drug taking as instrumental behavior.: Several models extend this focus on learning and 

PEs to understand drug-taking as instrumental behavior. One of these models uses the state-

action value learning framework to model the effects of drug use on learning values for 

states and actions (Dezfouli et al., 2009). This model proposes that drug use raises the basal 

reward level, and that PEs are calculated relative to a capped reward level. This enhances 

PEs and thus the value of drug-taking actions, especially early in learning. This model 

simulates data whereby rats continue lever pressing for a drug even when the lever is 

presented with a punishment cue (Vanderschuren & Everitt, 2004). This is because drug 

value grows over time, allowing it to compete with the lower-valued punishment. 

Importantly, this model makes additional predictions about extended drug use, whereby drug 

value plateaus, because the basal reward level slowly rises. Thus, PEs are minimized over 

time, reducing the value of drug-related actions (e.g., lever pressing). This reduction in drug 

value allows the model to simulate blocking after extended drug use, consistent with prior 
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data (Freeman et al., 2012; Panlilio et al., 2007), and in contrast with the model proposed by 

Redish (2004). This model also simulates impulsivity. However, it also focuses on drug-

taking, and does not incorporate many aspects of addiction. Further, the evidence regarding 

reward PE in addiction is mixed, such that some studies have shown differences between 

participants with and without SUDs (Parvaz et al., 2015; Rose et al., 2014; Tanabe et al., 

2013), while others have not (Park et al., 2010; Reiter et al., 2016).

“Model-based,” “model-free,” goals, and habits.: Another class of mathematical models 

differentiates between “model-free” and “model-based” decision-making. While 

neurobiological substrates have been proposed for these systems, the primary mechanisms 

are computational (Doll, Simon, & Daw, 2012). In “model-free” control, PEs update action 

values based on past experience, and these action values are saved and used to guide future 

action-selection. However, in “model-based” control, an internal model of the world 

evaluates actions based on their prospective consequences, allowing updating of action 

values without directly experiencing all potential outcomes (Daw, Niv, & Dayan, 2005; Doll 

et al., 2012). “Model-based” control has been linked to goal-directed instrumental control 

that is sensitive to the current outcome values, in contrast to “model-free” habitual 

instrumental control, whereby responding persists despite changes in outcome values (Voon, 

Reiter, Sebold, & Groman, 2017). It has been proposed that both systems interact to control 

ongoing behavior (Daw et al., 2005) and rely on value computation in ventral striatum (VS; 

Daw, Gershman, Seymour, Dayan, & Dolan, 2011; Simon & Daw, 2011). Simon and Daw 

(2012) applied the Dyna computational framework to the interactions of “model-based” and 

“model-free” systems in drug use. This model suggests that the high value of actions 

associated with drug-reward leads to enhanced “model-based” updating of states (e.g., cue-

induced reactivity) and actions (e.g., conditioned drug-seeking) that precede drug-taking, via 

mental simulation, which is a feature of the Dyna framework.

Further, another advantage of this model is that it provides a framework for both “model-

based” and “model-free” control to contribute to learning. Another advantage of this model 

is that it incorporates goal-directed states and craving; however, it does not discuss the 

different stages of addiction, or model human data.

Paralleling “model-based” and “model-free” systems, Redish, Jensen, and Johnson (2008) 

proposed a decision-making model of addiction focusing on the interaction of a goal-based 

planning system, and a habit-learning process. The planning system consists of interacting 

components: a recognition component that identifies the current situation, a prediction 

component that calculates potential action consequences, and an evaluative component that 

calculates the value of consequences. However, this model does not discuss the different 

factors leading to the deployment of habit-based or goal-directed control. In an earlier 

version of this model, Redish and Johnson (2007) suggested that cravings may occur when 

the planning system recognizes a high-value drug option. This causes a bias towards 

retrieving associated actions in memory, which leads to recurrent drug-seeking. Redish and 

Johnson (2007) further propose that the planning system component is consistent with 

findings that rats pause before making decisions, and that hippocampal firing during pauses 

reflects evaluation of different maze trajectories (Johnson & Redish, 2007). In a later 

iteration, Redish et al. (2008) proposed that behavioral control shifts from the planning 
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system to the habitual system, consistent with some animal studies (e. g., Hikosaka et al., 

1999; Packard & McGaugh, 1996). However, this model conflates Pavlovian and 

instrumental learning processes within a single planning system because it uses situational 

cues to calculate the consequences of future actions, and the value of those consequences 

(Ostlund & Balleine, 2008). Indeed, Pavlovian-instrumental transfer effects (when a 

conditioned stimulus invigorates an instrumental response) are not sensitive to outcome 

devaluation (Holland, 2004; Rescorla, 1994). Further, valuations from Pavlovian and 

instrumental systems are neurally dissociable (Ostlund & Balleine, 2008). In response, 

Redish et al. (2008) suggested adding another system to encode Pavlovian stimulus-outcome 

associations, which could drive actions through Pavlovian conditioning (separately from the 

planning system, which would then only represent instrumental action). However, it is not 

clear how this planning system might interact with the new Pavlovian system, which is an 

important aspect of addictive behaviors.

Broadly, computational models of drug use that propose “model-based” vs. “model-free” 

components are consistent with animal models that describe addiction as a transition from 

goal-directed to habitual behavioral control (Everitt & Robbins, 2005; Lucantonio, Caprioli, 

& Schoenbaum, 2014). They are further supported by data from a study with abstinent 

methamphetamine users who exhibited relatively more “model-free” behavior in a two-step 

choice task (Voon et al., 2015), and another study suggesting impaired “model-based” 

control in alcohol-dependent subjects (Sebold et al., 2014). However, such models are 

inconsistent with evidence suggesting that drug using animals can and do make goal-

directed or “model-based” decisions (Halbout, Liu, & Ostlund, 2016; Root et al., 2009), as 

can human drug users (Hogarth, 2012), and humans with SUDs (Hogarth & Chase, 2011). 

These models are also inconsistent with evidence suggesting that both systems can operate 

in parallel (Balleine & O’Doherty, 2010). Further, evidence is lacking that the complex 

pattern of behaviors exhibited in human addiction can become fully habitual under any 

circumstances (e.g., getting up, obtaining money, going to purchase drugs, etc). These 

models also do not account for craving states creating the explicit goal to get drugs, which 

renders future instrumental drug-seeking actions goal-directed (as they are directed towards 

reducing craving). Nevertheless, these approaches are useful, as they provide a way for 

thinking about the process that determines value estimates, and have been applied to many 

clinical phenomena (Voon et al., 2017).

Predictive coding models.: Other models are based on Bayesian probability theory, which 

provides a framework for performing inference, and has also been applied to drug use and 

addiction. Specifically, it formalizes how prior beliefs are integrated with observed data to 

calculate the posterior probability of a particular hypothesis. In Bayesian inference, the prior 
reflects prior knowledge (before considering data), while the likelihood reflects the 

probability of the observed data, given the hypothesis. These two terms are multiplied to 

calculate the posterior probability – the probability of the hypothesis given the data and the 

prior, normalized by the probability of the data given all possible hypotheses. The next time 

data are encountered, this updated posterior probability serves as the prior (Griffiths, Kemp, 

& Tenenbaum, 2008; Olshausen, 2004).
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Friston (2005) applied the Bayesian framework to perception and cognition and their 

underlying neural mechanisms in a predictive coding framework. He suggested that the brain 

uses an internal model of the world to generate predictions about causes of sensations; 

sensory samples are then tested against these predictions to update beliefs about their causes 

(Friston, 2005, 2009, 2010). Generally, he proposed that internal brain states and actions are 

selected to minimize free-energy, or the difference between prior and posterior beliefs. In 

turn, posterior beliefs are updated after sampling the data using Bayesian updating. In 

Friston’s view, the difference between the prior and posterior probabilities corresponds to 

Bayesian surprise, or Bayesian prediction error (BPE), which is used to update beliefs and 

drive learning (Friston, 2005, 2009, 2010). Friston extended this account to neural 

hierarchies by suggesting that higher-level brain regions predict the inputs expected in the 

lower level, and minimize BPEs (Friston, 2005, 2009). Thus, BPEs are an algorithmic 

element of this predictive coding model inasmuch as they update other levels in a hierarchy. 

Importantly, in this framework, BPEs resulting from sensory states are weighted by their 

confidence, or precision (inverse variance), which is captured by the dopamine system in this 

formulation (Friston et al., 2012). Interestingly, other Bayesian models have used signed 

prediction errors to update beliefs (Mathys, Daunizeau, Friston, & Stephan, 2011; see 

Supplemenatry materials for additional discussion).

Based on his own approach, Friston (2012) proposed the first Bayesian account of addiction 

as a natural consequence of impaired perceptual learning. Incorporating physiological states, 

physical states, and hidden states governing causal dynamics, Friston (2012) suggests that 

drug-taking – which increases dopamine (Di Chiara & Imperato, 1988) – leads to high 

precision. This subsequently impairs learning, precision-weighed BPEs, and subsequent 

updating of priors. Further, this leads to a strong expectation of reward in a previously-

rewarded state while ignoring sensory evidence to the contrary (e.g., inaccurate priors). 

Given these parameters, the model further predicts that reversal learning (updating values 

after contingencies change) would be greatly impaired. Consistently, this model is supported 

by several animal studies showing that perseverative responses are enhanced after cocaine 

use (Calu et al., 2007; Schoenbaum, Saddoris, Ramus, Shaham, & Setlow, 2004), and two 

human studies demonstrating perseverative responses in drug users (Ersche et al., 2011; 

Ersche, Roiser, Robbins, & Sahakian, 2008). Further, the dopamine system is known to be 

involved in reversal learning, as administering a D2 dopamine receptor agonist reversed 

performance deficits in stimulant users (Ersche et al., 2011). However, impaired reversal 

learning could also be due to impaired encoding of (non-Bayesian) PEs or value updating, 

rather than enhanced precision. Further, multiple aspects of addiction are not modeled.

Gu and Filbey (2017) recently proposed a Bayesian account focused on the effect of prior 

beliefs on drug craving. This model draws on the effects of drugs on the dopamine system, 

increasing precision (Friston et al., 2012), leading specifically to more precise beliefs about 

physiological states in addicted individuals. The model proposes that drug-addicted 

individuals form priors about drug effects, including reduction in craving. Thus, with no 

expectation to use, the prior would shift towards greater discomfort, leading the posterior 

probability to shift toward greater discomfort, or more craving, upon unexpected drug 

receipt. In comparison, the model predicts that when drug-addicted individuals expect and 

receive drugs, the posterior belief would shift towards reduction of craving and lower 
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relative discomfort. This model simulated data showing that craving was only significantly 

reduced when participants both expected and received drugs (Gu et al., 2016); however, it is 

unclear which real-life situations are modeled in this study.

Recently, Gu (2018) extended this framework to reflect changes in craving over the 

abstinence period, moving towards stages of addiction and recovery. However, this model – 

and the notion of enhanced precision of bodily state estimates – is inconsistent with findings 

of impaired interoceptive insight in addiction (Bechara & Damasio, 2002; Çöl, Sönmez, & 

Vardar, 2016; Goldstein et al., 2009; Sönmez, Kahyacı Kılıç, Ateş Çöl, Görgülü, & Köse 

Çınar, 2017; Verdejo-Garcia, Clark, & Dunn, 2012), unless such estimates are both more 

precise and inaccurate. Further, the idea that drug use increases precision contradicts another 

Bayesian predictive coding account of addiction, which proposes that individuals with 

addiction have decreased precision in beliefs about policies (mappings from states of the 

world to actions), which reflects lower confidence in reaching a goal (Schwartenbeck et al., 

2015). This decreased precision makes individuals more impulsive, which would increase 

habitual behavior, consistent with accounts of “model-based” control (Schwartenbeck et al., 

2015).

Overall, predictive coding models posit several useful concepts, like the idea of uncertainty 

arbitrating behavioral control, and the importance of priors and beliefs. However, given these 

conflicting accounts, we suggest that such models should clarify the role of precision in 

learning and decision-making behavior, or integrate these accounts to discuss how precision 

may operate differently for bodily state estimates and policy selection.

Brain-based models—Several brain-based models extend the focus on learning, PEs, and 

action selection to the interactions between the dopamine system, prefrontal cortex (PFC), 

and basal ganglia – crucial circuits involved in addiction (Everitt & Robbins, 2005; 

Goldstein & Volkow, 2011; Koob & Volkow, 2010). These include actor-critic models 

(Barto, 1995; Barto, Sutton, & Anderson, 1983), whereby the actor system selects different 

actions with an action-selection policy, while the critic system evaluates selected actions as 

good or bad. Importantly, the critic system does this using PEs, which in these models 

indicates whether outcomes were better or worse than expected (unlike BPEs).

Actor-critic models were applied to interactions between the VS and dorsal striatum (DS) in 

addiction, as studies suggest that DS encodes action values (the actor; Burton, Nakamura, & 

Roesch, 2015; O’Doherty et al., 2004), while the VS encodes values of different states that 

contribute to PEs (the critic). An early model by Takahashi, Schoenbaum, and Niv (2008) 

suggests that impaired encoding of state values (cue or contexts) by the VS critic could lead 

to inappropriate action selection. The model is consistent with animal findings that cocaine 

use disrupts encoding in rat VS, while DS encoding remains (mostly) intact (Takahashi, 

Roesch, Stalnaker, & Schoenbaum, 2007). Impaired VS encoding could then contribute to 

inappropriate PEs and thus impaired updating of action values in the actor system. This 

could allow the model to capture later stages of addiction; however, this was not explicitly 

simulated.
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Another actor-critic model suggests that a higher learning rate for appetitive learning 

compared to aversive learning (which increases the value of drug cues) in the VS critic could 

explain compulsive addictive behavior (Piray, Keramati, Dezfouli, Lucas, & Mokri, 2010). 

They model data observed by Deroche-Gamonet, Belin, and Piazza (2004), where a subset 

of vulnerable rats continued to nose-poke for a drug reward cue even when the drug cue was 

paired with a shock-predictive cue. Specifically, higher appetitive learning rates caused the 

positive value of nose-poking to outweigh the punishment. Further, the model captures 

enhanced control of behavior by the actor in later stages of addiction. However, neither 

actor-critic model has been tested in human addiction.

A related action-selection model extended the idea that control might pass from VS to DS to 

consider interactions between basal ganglia circuits and the PFC (Keramati & Gutkin, 2013). 

This model also computes action values based on PEs. Further, the model incorporates 

hierarchical PFC and basal ganglia loops organized by level of abstraction, such that higher 

levels of the model that encode abstract knowledge about the value of different options are 

used for updating action values at more detailed levels. This is based on anatomical and 

functional evidence suggesting that representations in rostral regions of the PFC and basal 

ganglia are more abstract, while those in dorsal regions are more specific (Badre, 2008; 

Badre & Frank, 2011; Nee et al., 2012; Verstynen, Badre, Jarbo, & Schneider, 2012). 

Importantly, the model proposes that abstract processes control behavior in the early stages 

of learning, due to higher flexibility. However, abstract regions (VS) are also less precise, 

leading to greater uncertainty as learning progresses, allowing control to pass to the more 

specific/less abstract regions (DS). In support of this model, some data suggest that 

dopamine responses to reward cues are initially higher in VS, but shift to DS over the course 

of learning (Willuhn, Burgeno, Everitt, & Phillips, 2012); control of drug-seeking responses 

may also gradually shift from the VS to DS over the course of drug use (Corbit, Nie, & 

Janak, 2012; Everitt & Robbins, 2016; Vanderschuren, Di Ciano, & Everitt, 2005). The 

model thus captures early and late addiction, but does not model many addiction symptoms 

like withdrawal or craving.

Summary and Path Forward

Theoretical and neurobiological models describe addictions as complex, multi-stage 

diseases, characterized by disturbances in subcortical (midbrain, basal ganglia, amygdala) 

and cortical (prefrontal) systems, and are often based on findings from human addiction. 

Conversely, computational models have often focused on limited aspects of drug-taking 

decisions, and have relied on animal findings, which has limited their ecological validity and 

utility in understanding human addiction. While each modeled aspect of drug-taking may be 

important, few computational models captured the complexity of SUDs, as they have not 

integrated both the multiple stages of addiction and the multi-faceted set of symptoms 

occurring in SUDs. Furthermore, none of the models addressed processes associated with 

treatment for or recovery from addiction.

Indeed, although computational models have formalized specific functions or processes 

involved in drug use, they have often conceptualized addiction as continued drug-taking 

actions that occur when drug rewards affect learning and action selection. The latter occurs 
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either by enhancing the value of drug cues, enhancing the value of drug-taking actions, 

(Berridge, 2012; Dezfouli et al., 2009; Gutkin, Dehaene, & Changeux, 2006; Keramati & 

Gutkin, 2013; Piray et al., 2010; Redish, 2004), or by affecting precision of estimates as in 

predictive coding accounts (Friston, 2012; Gu & Filbey, 2017; Schwartenbeck et al., 2015). 

Some models address stages of addiction by proposing that control gradually shifts towards 

more habitual processes (Keramati & Gutkin, 2013; Redish et al., 2008), while others allow 

for goal-directed processes (Redish & Johnson, 2007; Simon & Daw, 2011). Commendably, 

a few of the models were fit to human data, focusing on craving (Gu, 2018; Gu & Filbey, 

2017) and drug valuation (Redish, 2004). Others simulated animal data with addiction-

relevant features such as continued drug-taking despite punishment (Dezfouli et al., 2009; 

Keramati & Gutkin, 2013; Piray et al., 2010). However, humans reliably develop multiple 

addiction symptoms concurrently (APA, 2013), and recent reverse-translational work 

successfully demonstrated that some drug-taking animals also develop several addiction-like 

symptoms, including difficulty stopping drug intake, increased effort to take drugs, and 

continued use despite punishment (Belin-Rauscent, Fouyssac, Bonci, & Belin, 2016; 

Deroche-Gamonet et al., 2004). Thus, across species, more of these behaviors could be 

incorporated into – and simulated by – computational models to further link them to human 

addiction. Finally, while each of the models made important theoretical contributions by 

pointing out relevant components, the lack of integration between components makes it 

difficult to make clinically-relevant predictions or draw clinically-relevant conclusions (i.e., 

an intervention improving one component could potentially worsen another).

In our view, the most clinically-useful models are those that integrate the best of all worlds: 

those that are grounded in theory, describe psychological phenomena associated with 

addiction (not just drug use), rely on both psychological and neurobiological data (including 

circuits, whenever possible), formalize the components into modules, and specify 

computations to allow clinically-relevant predictions, preferably fit to human data. An 

effective model of SUDs should describe the full range of addiction symptoms, along with 

the progression and different stages of addiction. To date, few if any such models have been 

put forth for addiction. Comprehensive models of this type are promising for understanding 

clinical disorders because they allow us to understand how addiction arises from an 

interaction of underlying components, and how these contribute to symptoms, which may 

help tailor treatments to heterogeneous patient groups or sub-groups.

One promising approach that can integrate the best features of existing models is a value-

based decision-making (VBDM) framework, grounded in neurobiological circuits (Mollick 

& Kober, In prep). A VBDM framework in the context of addiction is similar to the 

“Decision Theoretic Psychiatry” framework proposed by Huys, Guitart-Masip, Dolan, and 

Dayan (2015). This account broadly proposes that normative, instrumental choice behavior 

can break down – across psychiatric disorders – along three different major fault lines: 

determining what problem to solve, how to solve the problem, and the effects of experience. 

Comparatively, a VBDM framework is more specific, in proposing component 

computational processes that contribute to the decision-making processes described by Huys 

and colleagues (2015). Furthermore, we propose a specific application of the VBDM 

framework to SUDs, and outline several components that are unique to these disorders. As 

such, this VBDM framework can be applied to form a specific theory of substance use 
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development and maintenance (see Wellman and Gelman (1992) for a discussion of specific 

theories).

Indeed, VBDM seems particularly fitting to SUDs because their clinical definition explicitly 

describes decisions to continue using drugs despite negative consequences (Bernheim & 

Rangel, 2004; Redish et al., 2008). Ideally, this framework can model stages of SUD 

development, whereby the initial decision to take drugs can be understood in the context of 

interacting brain systems (e.g., craving, control), and the computation of priors. SUDs might 

then develop from a series of subsequent decisions, changing the weights between different 

nodes in the computational model, leading to future decisions to take drugs. This idea is 

consistent with models that showed how drug use leads to increased valuation of drug cues 

and actions and decisions to use despite negative consequences (Dezfouli et al., 2009; Piray 

et al., 2010). Building on Redish and Johnson (2007) and Simon and Daw (2012), this 

VBDM framework can incorporate the maintenance of goal-directed cognition in the PFC, 

and enhanced incentive salience to drug cues (Berridge, 2012), which characterizes craving 

states, and contributes to impaired executive control in addiction (Goldstein & Volkow, 

2011).

Further, a VBDM framework can also incorporate learning processes, using Pavlovian and 

instrumental conditioning circuits in basal ganglia and amygdala. Such a framework can also 

incorporate the effects of beliefs on goals to take drugs, building on Bayesian models that 

capture the effect of beliefs on behavior, as well as the effect of bodily states on goals and 

motivational states (Gu & Filbey, 2017). Building on goal-directed and habitual processes 

(Redish et al., 2008), as well as “model-based” and “model-free” decision-making (Daw et 

al., 2005; Lucantonio et al., 2014; Voon et al., 2017), we suggest that engaging executive 

control during decision-making depends on the incentives provided, and becomes more 

difficult in the face of strong cue-induced craving.

Finally, unlike existing models, a VBDM framework is well-positioned to provide some 

insight into the ways that people recover from addiction. For example, motivational 
interviewing increases treatment initiation and reduces drug use by helping patients consider 

their long-term goals, and the relationship between their substance use and these goals. 

Within the VBDM framework, it can be described as enhancing the acquisition of alternative 

goals to drug use, which decreases the impact of drug-seeking motivations on valuation of 

drug cues. Contingency management (CM) is an effective treatment (Higgins, Heil, & 

Lussier, 2004; Regier & Redish, 2015) that provides tangible rewards for abstinence (e.g., a 

voucher or money for each drug-negative urine sample). In the VBDM framework, CM can 

be understood as changing the incentive structure for abstinence, leading to enhanced 

executive control in moments of craving (Kober, Kross, Mischel, Hart, & Ochsner, 2010). In 

turn, this makes making the decision to abstain more likely. Further, cognitive behavioral 
therapies (CBT) emphasize understanding of drug use within the context of antecedents and 

consequences, and provide skills training to recognize situations and states where one would 

be vulnerable to use, including strategies for regulating craving. Within a VBDM 

framework, CBT can be understood as enhancing executive control systems, allowing for 

more deliberative, less-impulsive decision-making. This is consistent with data showing that 

CBT-based strategies engage executive control systems (Kober, Mende-Siedlecki, et al., 
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2010) and that CBT leads to lasting changes in these systems (DeVito et al., 2017; DeVito et 

al., 2012). Additionally, recent evidence suggests that mindfulness-based treatments reduce 

drug-use (Bowen et al., 2009; Bowen et al., 2014); they may do so by reducing the 

likelihood of maintaining a craving state after seeing drug cues, which reduces substance use 

behavior (e.g., Elwafi, Witkiewitz, Mallik, & Brewer, 2013; Kober, Brewer, Tuit, & Sinha, 

2017).

Importantly, the complexity of the described VBDM framework may allow it to model 

human behavior and its many underlying causes and consequences. As such, this framework 

integrates recent neurobiological research on decision-making and addiction with features 

from existing computational models. In doing so, it expands their scope by considering the 

different stages involved in drug-taking, as well as multiple addiction symptoms, and 

making clinically-relevant predictions. Ultimately, to be of practical use, any model of 

addiction would need to allow for the complexity as well as the heterogeneity of clinical 

presentation in humans suffering from SUDs.
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