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SUMMARY

PD-1 blockade-based combination therapy has been approved as a first-line treatment for head and 

neck squamous cell carcinoma (HNSCC). However, the responsive rate remains relatively low, and 

the patients with HNSCC eventually relapses. Here we show that the combination treatment of 

anti-PD1 and cisplatin enriched BMI1+ CSCs in HNSCC while inhibiting HNSCC growth. In 

contrast, the pharmacological and genetic inhibition of BMI1 eliminated BMI1+ CSCs and 

enabled PD1 blockade therapy, resulting in the inhibition of metastatic HNSCC and prevention of 

HNSCC relapses. Unexpectedly, BMI1 inhibition strongly induced tumor cell-intrinsic immune 

responses by recruiting and activating CD8+ T cells in addition to eliminating BMI1+ CSCs. 

Mechanistically, BMI1 inhibition induced CD8+ T cell-recruiting chemokines by stimulating 

IRF3-mediated transcription and erasing repressive H2A ubiquitination. Our results suggest that 

targeting BMI1 might enable immune checkpoint blockade to inhibit metastatic tumor growth and 

prevent tumor relapse by activating cell-intrinsic immunity in addition to purging CSCs.

eTOC BLURB

Jia et al. show that the pharmacological or genetic inhibition of BMI1 not only helps to eliminate 

BMI1+ CSCs, but also to augment PD1 blockade by activating tumor cell-intrinsic immunity, 

resulting in the inhibition of metastatic tumor growth and the prevention of tumor relapse.
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Graphical Abstract

INTRODUCTION

Cancer stem cells (CSCs), also known as cancer initiating cells, are associated with tumor 

initiation, growth and metastasis. Growing evidence suggest that CSCs might be responsible 

for cancer therapy resistance and relapse or recurrence (Al-Hajj et al., 2003; Boumahdi et 

al., 2014; Brooks et al., 2015; Prager et al., 2019; Saygin et al., 2019). In order to achieve 

complete regression of tumors, CSCs have to be targeted based on the CSC theory (Chen 

and Wang, 2019). Moloney murine leukemia virus insertion site 1 (BMI1) has been found to 

control CSC self-renewal and functions in several human cancers including HNSCC (Chen 

et al., 2017; Kreso et al., 2014). BMI1 is a core component of the polycomb repressive 

complex 1 (PRC1) that mediates gene silencing via monoubiquitination of histone H2A. 

Targeting BMI1 with the small molecule inhibitor PTC209 was shown to abolish the self-

renewal of CSCs isolated from human colorectal cancers in the xenografted nude mouse 

model (Kreso et al., 2014). Using in vivo lineage tracing in a spontaneously-formed mouse 

model, we convincingly demonstrated that BMI1+ CSCs were responsible for HNSCC 

initiation, invasive growth, and metastasis. Targeting BMI1+ CSCs collaborated with the 

chemotherapeutic agent cisplatin to inhibit HNSCC growth (Chen et al., 2017), thereby 

suggesting that the combination therapy to debulk tumor and eliminate CSCs can achieve 

better cancer therapy efficacy.
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HNSCC is an aggressive malignancy with a low 5-year survival rate and poor prognosis and 

is highly invasive and frequently metastasizes to cervical lymph nodes (Hedberg et al., 2016; 

Lee et al., 2018; Wang et al., 2012). PD1 blockade combined with chemotherapy has been 

approved for treating recurrent or metastatic HNSCC and has significantly changed the 

therapeutic landscape of HNSCC. Unfortunately, the objective responsive rates are not very 

high and the median response duration is relatively short, indicating that HNSCC might be 

intrinsically resistant to PD1 blockade and eventually relapse after treatment (Burtness et al., 

2019; Ferris et al., 2016; Seiwert et al., 2016). Because CSCs were often defined by using 

immunodeficient mouse models, it is largely unknown whether PD1 blockade-based 

immunotherapy can target CSCs. Growing evidence suggests that CSCs may secrete various 

growth factors and cytokines to inhibit immune responses and promote immunosuppressive 

tumor microenvironment (Zhang et al., 2018; Prager et al., 2019; Clara et al., 2020). The 

expression of components of the antigen processing and major histocompatibility complex 

molecules have been found to be downregulated in CSCs of glioblastoma and prostate 

cancer (Tomaso et al., 2010; Cancer Genome Atlas Research Network, 2015). On the other 

hand, PD-L1 was shown to be elevated in CSCs of human HNSCC and other solid tumors 

(Zhang et al., 2018). Very recently, it has been shown that CSCs directly inhibited cytotoxic 

T cell activity and mediated tumor resistance to adoptive cytotoxic T cell transfer-based 

immunotherapy by expressing CD80 (Miao et al., 2019). Taken together, these studies 

suggest that targeting CSCs may be critical for improving the efficacy of immunotherapy 

and preventing tumor relapses.

The limited model systems available for the genetic lineage analysis of CSCs in intact tumor 

immune microenvironment has hampered the development of novel therapeutic strategies. 

Despite exciting progresses in cancer immunotherapy, currently, there are no pre-clinical or 

clinical studies to show that immune checkpoint blockade can eliminate CSCs by activating 

antitumor immunity. Recently, we established a 4 nitroquinoline-1 oxide (4NQO) induced 

Bmi1CreER;RosatdTomato mouse model of HNSCC, which fully mimics human HNSCC 

development and metastasis and allows us to perform in vivo lineage tracing of BMI1+ 

CSCs in an unperturbed tumor immune microenvironment (Chen et al., 2017). Taking 

advantage of this model, we tested whether BMI1+ CSCs could be eradicated by PD1 

blockade-based combination therapy. Unexpectedly, we found that the pharmacological or 

genetic inhibition of BMI1 not only helped to eliminate BMI1+ CSCs, but also to augment 

PD1 blockade by activating tumor cell-intrinsic immunity, resulting in inhibition of 

metastatic tumor growth and prevention of tumor relapse. Our preclinical studies provide an 

important foundation for developing a new clinical trial for PD1 blockade-based 

combination therapy with BMI1 inhibitors.

Results

BMI1+ CSCs Are Enriched after Combination of Cisplatin and Anti-PD1

To examine whether anti-PD1 plus cisplatin could eliminate BMI1+ CSCs of HNSCC, we 

treated Bmi1CreER;RosatdTomato mice with 4NQO in their drinking water for 16 weeks and 

then provided them with normal drinking water. At 22 weeks, the tumor-bearing mice were 

randomly divided into four groups and treated with cisplatin, anti-PD1, anti-PD1 plus 
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cisplatin, or IgG control for 4 weeks. A single dose of tamoxifen was administered 1 day 

prior to sacrificing the mice in order to label Tomato+ BMI1+ CSCs (Figure 1A). Whereas 

the treatment of cisplatin alone reduced the lesion surface areas, anti-PD1 did not show the 

inhibition compared with vehicle control. The addition of anti-PD1 to cisplatin did not 

further enhance inhibitory effects compared with cisplatin alone (Figures 1B and 1C). 

Histological analysis found that cisplatin plus anti-PD1 significantly reduced HNSCC 

numbers and areas, while such inhibitory effect was not observed by anti-PD1 treatment 

alone. Although antitumor effects between cisplatin alone and anti-PD1 plus cisplatin did 

not show a statistically significant difference, we observed a trend that anti-PD1 plus 

cisplatin more effectively reduced SCC numbers (**p < 0.01, cisplatin plus anti-PD1 vs. 
control; not significant, cisplatin vs. control) and areas (**p < 0.01, cisplatin plus anti-PD1 

vs. control; *p < 0.05, cisplatin vs. control) compared with cisplatin treatment alone (Figures 

1D and 1E). Moreover, anti-PD1 plus cisplatin also significantly reduced the invasiveness of 

HNSCC (Figure 1F). Immunostaining with anti-active caspase-3 antibodies (anti-Ac-casp3) 

demonstrated that apoptotic cells were significantly increased by anti-PD1 plus cisplatin. 

However, apoptosis was mainly induced in Bmi1− tumor cells rather than BMI1+ CSCs 

(Figures S1A and S1B). The cervical lymph nodes are the most common site of HNSCC 

metastasis which is a key prognostic factor for patients. To accurately detect whether the 

treatment inhibited HNSCC lymph node metastasis, cervical lymph nodes of mice were 

immunostained with anti-pan-keratin (PCK) antibodies. Anti-PCK immunostaining revealed 

that anti-PD1 plus cisplatin, but not cisplatin or anti-PD1 alone, significantly reduced the 

lymph node metastasis (Figures 1G–1I).

Next, we investigated the effect of the combination treatment on antitumor T cell immunity. 

Anti-PD1 or cisplatin alone did not significantly increase CD8+ T cell infiltration in 

HNSCC. However, immunostaining showed that anti-PD1 plus cisplatin significantly 

increased CD8+ T cell infiltration (Figures 1J and 1K). Since anti-PD1 plus cisplatin 

efficiently inhibited HNSCC, we wondered whether the combination could efficiently 

eliminate BMI1+ CSCs by in vivo labeling BMI1+ CSCs since BMI1+ CSCs were found to 

play a critical role in HNSCC chemoresistance and relapse (Chen et al., 2017). Anti-PD1 

treatment alone did not affect BMI1+ CSCs compared with IgG control. Consistent with our 

previous studies, cisplatin significantly enriched BMI1+ CSCs in HNSCC. Interestingly, 

anti-PD1 plus cisplatin further enriched BMI1+ CSCs compared with cisplatin alone, 

probably due to anti-PD1 plus cisplatin capability to efficiently kill non-stem tumor cells 

(Figures 1L and 1M), indicating that BMI1+ CSCs also evaded cytotoxic CD8+ T cell 

killing.

BMI1 Inhibitor plus Anti-PD1 Eliminates CSCs and Inhibits HNSCC progression

To explore whether targeting BMI1+ CSCs augmented PD1 blockade therapy, we took 

advantage of the specific Bmi1 inhibitor PTC209, which has be shown to effectively destroy 

BMI1+ CSCs by others and us (Chen et al., 2017; Kreso et al., 2014). The reduction of 

BMI1 expression by PTC209 in tumors was confirmed by immunostaining (Figure S2A) and 

Western blot (Figure S2B). Flow cytometry analysis showed that there was no significant 

alteration in the percentage of CD8+ T cells and IFNγ-produced CD8+ T cells in the lymph 

nodes, blood and spleen after PTC209 treatment (Figures S2C–S2F). Tumor-bearing 
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Bmi1CreER;RosatdTomato mice were treated with anti-PD1, PTC209, anti-PD1 plus PTC209, 

or control vehicle. PTC209 plus anti-PD1 significantly reduced more lesion surface areas 

compared with PTC209 alone (Figures 2A and 2B). Histological analysis found that anti-

PD1 plus PTC209 significantly reduced HNSCC numbers, areas and invasiveness compared 

with PTC209 or anti-PD1 (Figures 2C–2E). Consistently, anti-Ac-casp3 staining revealed 

that PTC209 plus anti-PD1 potently induced apoptosis in HNSCC compared with PTC209 

or anti-PD1 (Figures 2F ad 2G). We further examined whether apoptosis was induced in 

CSCs or non-stem tumor cells. While anti-PD1 did not induce apoptosis in CSCs, PTC209 

was able to induce apoptosis in Tomato+ CSCs. However, we could not find apoptotic 

Tomato+ cells after PTC209 plus anti-PD1 treatment, probably because the combination 

treatment potently induced apoptosis in BMI1+ CSCs and impaired their self-renewal 

(Figures S3A–S3C). PTC209 plus anti-PD1 effectively eliminated the majority of lymph 

node metastasis of HNSCC as determined by anti-PCK immunostaining (Figures 2H–2J). 

Unexpectedly, immunostaining found that PTC209, but not anti-PD1, could induce CD8+ T 

cell infiltration in tumors, which were further significantly increased in HNSCC treated with 

PTC209 plus anti-PD1 (Figures 2K and 2L). To assess the functional activity of CD8+ T 

cells, we analyzed the expression of the Granzyme-B (GzmB) in CD8+ T cells. 

Immunostaining found that anti-PD1 plus PTC209 also significantly increased GzmB+CD8+ 

T cell infiltration in tumors (Figures S3D and S3E). In vivo labeling showed that PTC209 

was able to reduce BMI1+ CSCs while anti-PD1 did not. In sharp contrast to anti-PD1 plus 

cisplatin, in vivo labeling showed that anti-PD1 plus PTC209 efficiently eliminated BMI1+ 

CSCs in HNSCC (Figures 2M and 2N). SOX2+ cells have been identified to represent CSCs 

in the skin SCC (Boumahdi et al., 2014), and our previous study has shown that most of the 

BMI1+ cells had increasing SOX2 protein expression in HNSCC (Chen et al., 2017). 

Because of weak positive staining in some non-stem tumor cells, we only counted SOX2+ 

cells which were strongly stained. Immunostaining revealed that the number of SOX2+ cells 

were significantly reduced after PTC209 treatment, which were further decreased in tumors 

treated with PTC209 plus anti-PD1 (Figures S3F and S3G)

Intratumoral CD8+ T Cells Provide Antitumor Immunity Induced by BMI1 Inhibitor plus Anti-
PD1

To test whether intratumoral CD8+ cells were required for PTC209 plus anti-PD1 -mediated 

antitumor immunity, we concurrently treated tumor-bearing mice with anti-CD8 antibodies 

to immunodeplete CD8+ cells. Immunostaining showed that anti-CD8 significantly 

abrogated CD8+ T cells infiltration in HNSCC induced by PTC-209 plus anti-PD1 (Figures 

3A and 3B). Anti-CD8 significantly restored visible lesion areas inhibited by PTC-209 plus 

anti-PD1 (Figures 3C and 3D). Histological analysis found that anti-CD8 significantly 

reversed the inhibition of HNSCC growth by PTC209 plus anti-PD1 (Figures 3E–3G). 

Consistently, anti-CD8 attenuated PTC209 plus anti-PD1-induced apoptosis in HNSCC 

(Figures 3H and 3I). Furthermore, anti-CD8 also significantly lessened the inhibition of 

lymph node metastasis of HNSCC mediated by PTC209 plus anti-PD1 (Figures 3J–3L).

To further determine whether targeting tumor cell-intrinsic BMI1 promoted CD8+ T cells 

infiltration, we crossed Bmi1flox/flox (Bmi1f/f) mice with keratin 14-Cre/ERT2 mice 

(K14CreER) to generate K14CreER;Bmi1f/f mice in which epithelial BMI1 can be inducibly 
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deleted by tamoxifen treatment. To achieve efficient recombination activity, three successive 

applications of tamoxifen were applied to both K14CreER;Bmi1f/f and the control Bmi1f/f 

mice 22 weeks after the initial 4NQO treatment (Figure 4A). BMI1 knockout (BMI1 KO) in 

mouse HNSCC was confirmed by immunostaining (Figure S4A) and Western blot (Figure 

S4B). Consistently, whereas BMI1 KO alone reduced the lesion surface areas, BMI1 KO 

plus anti-PD1 had superior inhibitory effects (Figures 4B and 4C). Histological analysis 

revealed that BMI1 KO plus anti-PD1 significantly inhibited the numbers, areas and invasive 

grades of HNSCC compared with BMI1 KO or anti-PD1 alone (Figures 4D–4F). 

Consistently, BMI1 KO plus anti-PD1 also potently induced apoptosis in HNSCC (Figures 

S4C and S4D). Moreover, BMI1 KO plus anti-PD1 also exhibited superior inhibitory effects 

on lymph node metastasis compared with BMI1 KO alone (Figures 4G–4I). Importantly, 

immunostaining revealed that BMI1 KO alone could induce CD8+ T cell infiltration in 

HNSCC, which was further increased in HNSCC treated with BMI1 KO plus anti-PD1 

(Figures 4J and 4K). Moreover, BMI1 KO plus anti-PD1 also significantly increased GzmB
+CD8+ T cells in HNSCC (Figures S4E and S4F). Taken together, these findings confirm 

that the inhibition of BMI1 in tumor cells collaborates with PD1 blockade to inhibit HNSCC 

invasive growth and metastasis by recruiting and activating CD8+ T cells.

Activating Tumor Cell-Intrinsic Immune Response by BMI1 Inhibition

To further elucidate the molecular and epigenetic mechanisms by which BMI1 inhibition 

recruited CD8+ T cells to augment PD1 blockade therapy, we knocked down BMI1 

expression in SCC23 and SCC1 cells using the lentivirus-based short-hairpin RNA for BMI1 

(shBMI1). Western blot analysis confirmed that shBMI1 reduced the expression of BMI1. 

Since BMI1 is required for H2AUb, the level of H2AUb was reduced in SCC23 and SCC1 

cells (Figure S5A). Similarly, PTC209 also reduced BMI1 and H2AUb in SCC23 and SCC1 

cells in a dose-dependent manner (Figure S5A). Next, we performed RNA-Seq to determine 

whether PTC209 treatment or BMI1 knockdown affected the gene expression in SCC23 

cells. Interestingly, GO analysis revealed that the inhibition of BMI1 by PTC209 induced the 

expression of genes associated with immune response and chemotaxis (Figure S5B). 

Similarly, BMI1 knockdown also increased the expression of genes associated with 

inflammatory response, IFNγ signaling and chemotaxis (Figure S5C). Heatmap from the 

RNA-seq data showed that IFN-regulated chemokines (CCL5, CXCL9, CXCL10, and 

CXCL11), which promote the recruitment of CD8+ T lymphocytes into tumor sites (Gao et 

al., 2019; Qin et al., 2019), were significantly increased by BMI1 knockdown or PTC209 

(Figure 5A). PTC209 or BMI1 knockdown also significantly increased the expression of 

CCL5, CXCL9, CXCL10, and CXCL11 in both SCC1 and SCC23 cells (Figures 5B and 

S5D–S5F) as determined by both qRT-PCR and enzyme-linked immunosorbent assays 

(ELISA). We also performed immunostaining to examine expression of BMI1, CD8, CCL5, 

and CXCL10 in human HNSCC samples. Immunostaining demonstrated that there was a 

negative correlation between BMI1 and CD8, CCL5, and CXCL10 in human HNSCC 

tissues (Figures S6A–S6C).

BMI1 has been found to play a regulatory role in DNA damage response and repair (Ismail 

et al., 2010; Lin et al., 2015). Upon DNA damage, BMI1 is recruited to sites of double-

stranded DNA breaks (DSBs) where they promote the ubiquitylation of pH2A.X, thereby 
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facilitating the repair of DSBs by stimulating homologous recombination and non-

homologous end joining. To explore how BMI1 inhibition induced IFN-regulated 

chemokines, we observed that pH2A.X, a specific marker for DNA damage, was 

significantly increased in PTC209-treated HNSCC (Figure 5C). Similarly, BMI1 KO also 

increased pH2A.X in HNSCC, indicating that BMI1 inhibition induces DNA damage in 

HNSCC (Figure 5C). Furthermore, PTC209 or shBMI1 treatment also increased pH2A.X in 

SCC23 and SCC1 cells as determined by immunostaining (Figure S7A) and Western blot 

(Figure S7B). PTC209 or shBMI1 treatment also significantly increased the Olive tail 

moment in SCC23 and SCC1 cells as determined by the alkaline comet assay for the 

detection of dsDNA damage (Figure S7C). To examine whether DNA damages induced by 

BMI1 inhibition caused the accumulation of cytosolic double strand DNA (dsDNA) in SCC 

cells, we stained SCC cells with PicoGreen, a dsDNA-specific vital dye. Since PicoGreen 

also stains mitochondrial DNA (Ashley et al., 2005), we also stained mitochondrial dsDNA 

with MitoTracker simultaneously. Multiple PicoGreen staining areas in the cytoplasm of 

SCC23 and SCC1 cells, which were not overlapped with MitoTracker, were detected upon 

PTC209 or shBMI1 treatment, indicating that PTC209 and shBMI1 induced the 

accumulation of cytosolic dsDNA (Figures 5D, S7D and S7E). It is well known that 

cytosolic DNA could activate the cyclic GMP-AMP synthase/stimulator of interferon genes 

(cGAS-STING) signaling axis by the sequential phosphorylation of STING, TBK1, and 

IRF3 and subsequently induce transcription of IFN and IFN-regulated chemokines (Wu et 

al., 2013). Western blot analysis showed that BMI1 inhibition induced the phosphorylation 

of STING, TBK1, and IRF3 in SCC23 and SCC1 cells (Figures 5E and S7F). Consistently, 

BMI1 inhibition also induced IFNβ in SCC23 and SCC1 cells (Figures 5F and S7G). We 

also observed that pIRF3 was significantly increased in HNSCC upon PTC209 treatment or 

BMI1 KO, confirming that BMI1 inhibition activated the cGAS-STING-IRF3 pathway in 

vivo (Figure S7H).

Very recently, PRC1 was found to activate CCL2 transcription to promote cancer stemness 

and bone metastasis in prostate cancers by recruiting macrophages and regulatory T cells 

(Su et al., 2019). However, our RNA-seq analysis did not detect that BMI inhibition 

regulated CCL2 transcription in HNSCC. In contrast, BMI1 inhibition induced the 

transcription of chemokines associated with CD8+ T cell recruitments. We further explored 

whether BMI1 could repress the transcription of chemokines by H2AUb and whether BMI1 

inhibition might erase the repressive H2AUb by chromatin immunoprecipitation-qPCR 

(ChIP-qPCR). ChIP-qPCR revealed that BMI1 specifically occupied on the promoters of 

CCL5, CXCL9, CXCL10 and CXCL11. PTC209 treatment significantly reduced the levels 

of BMI1 on their promoters in SCC23 cells (Figure 5G). Consistently, the levels of H2AUb 

marks on the promoters of CCL5, CXCL9, CXCL10 and CXCL11 were significantly 

decreased in SCC23 cells by PTC209 (Figure 5H). Furthermore, shBMI1 also confirmed 

that BMI1 was present on the promoters of CCL5, CXCL9, CXCL10 and CXCL11 and that 

the knockdown of BMI1 reduced the levels of H2AUb on their promoters (Figures 5I and 

5J), indicating that BMI1 inhibition could also de-repress chemokine expression 

intrinsically. Taken together, our results suggest that BMI1 inhibition stimulated chemokines 

in tumor cells by two interrelated mechanisms: inducing cGAS-STING signaling to activate 
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IRF3-mediated transcription and erasing repressive H2AUb marks on the promoter of 

chemokines.

To test whether IFN-regulated chemokines and the recruitment of CD8+ T cells were 

required for anti-PD1 plus PTC209-mediated antitumor immunity, we concurrently treated 

tumor-bearing mice with TAK779, an inhibitor of CCR5 and CXCR3, which are the 

receptors for CCL5, CXCL9, CXCL10 and CXCL11, respectively (Akahori et al., 2006). 

Immunostaining showed that TAK779 significantly abrogated CD8+ T cells infiltration in 

HNSCC induced by anti-PD1 plus PTC209 (Figures 6A and 6B). TAK779 significantly 

restored visible lesion areas inhibited by anti-PD1 plus PTC209 (Figures 6C and 6D). 

Histological analysis found that TAK779 significantly reversed the inhibition of HNSCC 

growth by anti-PD1 plus PTC209 (Figures 6E–6G). Consistently, TAK779 attenuated 

apoptosis in HNSCC induced by PTC209 plus anti-PD1 (Figures 6H and 6I). TAK779 also 

significantly lessened the inhibition of lymph node metastasis of HNSCC mediated by anti-

PD1 plus PTC209 (Figures 6J–6L).

BMI1 Inhibitor plus anti-PD1 Prevents Relapse of HNSCC

HNSCC frequently relapse although they initially respond to chemotherapies (Hedberg et 

al., 2016; Lee et al., 2018). Our in vivo labeling revealed that BMI1+ CSCs were enriched 

after anti-PD1 plus cisplatin while PTC209 plus anti-PD1 efficiently eliminated BMI1+ 

CSCs. To determine whether BMI1+ CSCs were responsible for HNSCC relapse, in vivo 

lineage tracing was performed. Tumor-bearing Bmi1CreER;RosatdTomato mice were treated 

with anti-PD1 plus cisplatin, anti-PD1 plus PTC209, or control vehicle for 4 weeks and then 

given tamoxifen to trace Tomato+ cells derived from BMI1+ CSCs in HNSCC over a period 

of 4 weeks (Figure 7A). In vivo lineage tracing revealed that more than 70% of tumor cells 

were Tomato+ cells in HNSCC treated with anti-PD1 plus cisplatin, which were similar to 

HNSCC treated with control vehicle. In contrast, Tomato+ tumor cells were sparsely present 

or not detected in regressed HNSCC upon anti-PD1 plus PTC209 (Figures 7B and 7C), 

suggesting that enriched BMI1+ CSCs are responsible for HNSCC relapse. Although 

antitumor effects between these two combination treatments did not show a significant 

difference, we observed a trend that HNSCC treated by anti-PD1 plus PTC209 might have 

less HNSCC relapse compared with anti-PD1 plus cisplatin (Figures 7D–7F).

To further confirm whether HNSCC treated with anti-PD1 plus PTC209 had less relapse 

compared with anti-PD1 plus cisplatin, we extended our combination treatment for 

additional 4 weeks in order to obtain recurrent HNSCC (Figure 7G). Compared with anti-

PD1 plus cisplatin, anti-PD1 plus PTC209 had much smaller lesion areas, and even in some 

cases lesions were undetectable (Figures 7H and 7I). Following a prolonged observation, 

histological analysis found that there was no difference in the numbers, areas and invasion 

grades of HNSCC between the treatment with control vehicle and anti-PD1 plus cisplatin, 

thereby validating that HNSCC treated with anti-PD1 plus cisplatin relapsed (Figures 7J–

7L). In contrast, the inhibition of HNSCC growth by anti-PD1 plus PTC209 was sustained 

compared with anti-PD1 plus cisplatin, and tumors could not be detected in 3 of the 8 mice 

after anti-PD1 plus PTC209 (Figures 7J–7L). The lymph node metastasis is an important 

predictor for the relapse and prognosis of HNSCC patients. Furthermore, immunostaining 
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with anti-PCK revealed that only 30% of lymph nodes had metastatic tumor cells in mice 

treated with anti-PD1 plus PTC209 whereas 74% of lymph nodes had metastatic tumor cells 

in mice treated with anti-PD1 plus cisplatin (Figures 7M–7O). Of note, because the majority 

of mice treated with anti-PD1 plus cisplatin were very weak due to recurrent HNSCC, we 

needed to euthanize these mice which did not allow us to perform a long-term in vivo 

tracing of the fate of BMI1+ CSCs. In vivo labeling BMI1+ CSCs revealed that anti-PD1 

plus PTC209 efficiently eliminated BMI1+ CSCs in regressed HNSCC while BMI1+ CSCs 

remained in recurrent HNSCC treated with anti-PD1 plus cisplatin (Figures 7P and 7Q).

DISCUSSION

Treating or preventing recurrent and metastatic HNSCC remains a great therapeutic 

challenge regardless of the promising progress in immune checkpoint therapy. In this study, 

we showed that the combination treatment of anti-PD1 and cisplatin enriched BMI1+ CSCs, 

although the combination could inhibit HNSCC growth by recruiting CD8+ T cells. Not 

surprisingly, dwindling HNSCC after treatment with anti-PD1 plus cisplatin regrew and 

eventually relapsed. In contrast, the combination treatment of anti-PD1 and PTC209 not 

only potently inhibited HNSCC invasive growth, but also significantly reduced HNSCC 

relapse and lymph node metastasis compared with anti-PD1 plus cisplatin. Mechanistically, 

while BMI1 inhibition destroyed CSCs, it also induced tumor cell-intrinsic immune 

responses and augmented PD1 blockade to kill non-stem tumor cells in HNSCC by 

recruiting and activating CD8+ T cells. Given the fact that a large number of PD1 blockade-

based combination therapies are currently in clinical trials, our preclinical studies suggest 

that targeting BMI1 might be a new strategy of the combination therapy in order to 

effectively inhibit metastatic tumor growth and prevent relapse.

HNSCC has an immunosuppressive tumor microenvironment with low tumor-infiltrating 

lymphocytes (Polverini et al., 2018; Tan et al., 2018; Wang et al., 2019). Previous studies 

have shown that cisplatin could enhance antitumor immunity by increasing the expression of 

antigen-processing machinery components or impair antitumor immunity by inducing the 

expression of PD-L1 (de Biasi et al., 2014; Hato et al., 2014; Hodge et al., 2013). In our 

model, cisplatin did collaborate with anti-PD1 to recruit CD8+ T cells into HNSCC although 

cisplatin alone could not. However, we found that anti-PD1 plus cisplatin could not 

effectively kill BMI1+ CSCs based on in vivo lineage tracing. Supporting our studies, it was 

reported that CSCs selectively acquired the expression of CD80 to inhibit cytotoxic T cell 

activity recently (Miao et al., 2019). Interestingly, CD80 was highly expressed in BMI1+ 

CSCs based on our RNA-seq results (Chen et al., 2017). Therefore, it is possible that CSCs 

in HNSCC might be intrinsically resistant to CD8+ T cell killing. Although the conventional 

therapy combined with PD-1 blockade has been approved for treating HNSCC, the durable 

response is limited, indicating that PD-1 blockade combined with the conventional therapy 

may be unable to eliminate CSCs in HNSCC.

We demonstrated that combination therapy of BMI1 inhibitor and anti-PD1 effectively 

inhibited tumor growth metastasis by eliminating CSCs. Although use of the BMI1 inhibitor 

alone also suppressed HNSCC growth and metastasis, it was not as effective as the 

combination therapy. Previously, it has been reported that PTC209 inhibited colorectal tumor 
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growth and reduced the frequency of CSCs in mouse xenograft models (Kreso et al., 2014). 

However, because the study transplanted human tumor cells into immunodeficient mice, the 

potential impact of antitumor immune responses could not be observed. In this study, 

unexpectedly, we found that BMI1 inhibitor not only inhibited CSC self-renewal, but also 

activated CSC-intrinsic immune response. Our results showed that CD8+ T cells recruited to 

tumor tissues were significantly increased by PTC209 treatment. BMI1 inhibitor could boost 

the immunotherapy effect of anti-PD1 in addition to targeting BMI1+ CSCs, thereby 

sensitizing non-stem tumor cells to immunotherapy-induced apoptosis.

SCC cells, frequently metastasize to cervical lymph nodes which are enriched with immune 

cells (Ding et al., 2013), indicating that immune evasion plays a critical role in HNSCC 

progression and metastasis. Growing evidence demonstrates that targeting tumor cell-

intrinsic genetic and epigenetic alterations is crucial to unleash antitumor immunity, thereby 

inhibiting tumor growth and metastasis (Sen et al., 2019). The inhibition of PRC2-mediated 

histone H3 lysine 27 trimethylation, leads to increased responses to cancer immunotherapy 

(Nagarsheth et al., 2016; Peng et al., 2015). BMI1 is a core component of the PRC1 that 

mediates gene silencing via H2Aub (Wang et al., 2004). PRC1 also cooperates with PRC2 to 

control chromatin compaction and repress gene expression (Blackledge et al., 2015). BMI1, 

as an important epigenetic factor, regulates cancer invasive growth and progression in 

addition to cancer stemness. BMI1 is also associated with DNA damage response and repair. 

BMI1 ablation impairs the recruitment of DNA repair factors to DSBs which are dependent 

on ubiquitin signaling, thereby promoting DNA damage (Ismail et al., 2010; Lin et al., 

2015). Here, we found that BMI1 inhibition induced chemokines by two interconnected 

mechanisms: 1) stimulating cGAS-STING signaling to activate IRF3-mediated transcription 

by induction of DNA damage and 2) erasing repressive H2AUb markers epigenetically. We 

observed that pH2A.X, a known hallmark of DNA double strand break and DNA damage 

response activation, was increased in SCC cells upon BMI1 inhibition in vitro and in vivo. 

Consistent with ongoing DNA damage, cytosolic dsDNA was accumulated which 

subsequently activated the STING-TBK1-IRF3 pathway to induce the expression of the type 

I IFN chemokines (CCL5, CXCL9, CXCL10, and CXCL11) (Brzostek-Racine et al., 2011; 

Sen et al., 2019). The removal of repressive H2Aub marks on the promoters of the type I 

IFN chemokines may further facilitate the transactivation of IRF3 upon BMI1 inhibition.

While Tomato+ BMI1+ CSCs might represent a rare population of CSCs in HNSCC which 

have high BMI1 transcription, we have previously found that the basal level of BMI1 was 

also increased in non-stem tumor cells. Immunostaining found that human HNSCC tumor 

samples had a more broad expression pattern because BMI1 proteins could also be post-

translationally regulated (Chen et al., 2017). Therefore, BMI1 inhibition in these tumor cells 

should also intrinsically activate their immune response and recruit CD8+ T cells. Targeting 

BMI1 could also sensitize non-stem tumor cells to anti-PD1 by recruiting CD8+ T cells in 

addition to purging CSCs. The combination of PD1 blockade and BMI1 inhibition not only 

inhibited metastatic HNSCC growth, but also efficiently prevented HNSCC relapses. 

PTC596, an analog of PTC209 has been in clinical trials to treat advanced solid tumors. The 

phase 1 study suggested that PTC596 is tolerable with manageable gastrointestinal side 

effects (Infante et al., 2017). In the future, it will be interesting to perform a clinical trial to 

determine whether anti-PD1 and PTC596 collaboratively inhibit human HNSCC growth and 
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lymph node metastasis. Taken together, our results have important implications in 

developing a new combination treatment for advanced cancer by targeting CSCs and 

activating tumor cell-intrinsic immune responses.

Limitation of the Study

There are some limitations of the mouse model of tumorigenesis in general. 4NQO-induced 

HNSCC mice model in vivo is not convenient for us to observe the tumor growth 

dynamically. The HNSCC of the tongue grow invasively underneath the mucosa so that 

these tumors cannot be measured directly without sacrificing mice and dissecting tissues. 

There are two major subsets of HNSCC, HPV-positive and HPV-negative. Our model mainly 

mimics the pathology of HPV-negative HNSCC, but not HPV-positive HNSCC.

STAR★ METHODS

Detailed methods are provided in the online version of this paper and include the following:

RESOURCE AVAILABILITY

Lead Contact—Further information and requests for reagents may be directed to, and will 

be fulfilled by the Lead Contact, Cun-Yu Wang (cwang@dentistry.ucla.edu).

Materials Availability—Cell lines and plasmids used in this study are described in the 

Key Resource Table and available upon request. Bmi1CreER;R26tdTomato and K14CreER; 
Bmi1flox/flox mice are available upon request with the approved animal protocol. All requests 

need to execute a suitable Materials Transfer Agreement.

Data and Code Availability—RNA-seq data was deposited at the Gene Expression 

Omnibus (GEO) under the accession number GEO: GSE140433.

EXPERIMNTAL MODEL AND SUBJECT DETAILS

Mice—Bmi1CreER (JAX:010531) and R26tdTomato (JAX:007908) mouse strains were 

crossmated to generate Bmi1CreER;R26tdTomato. K14CreER (JAX: 005107) and Bmi1flox/flox 

(JAX: 028974) mouse strains were crossmated to generate K14CreER; Bmi1flox/flox. All these 

above mice were purchased from The Jackson Laboratory and housed under specific-

pathogen-free (SPF) conditions in the UCLA animal facility. All mouse experiments were 

performed per protocols approved by UCLA Animal Research Committee. For induction of 

HNSCC, six-week-old mice were treated with drinking water containing 50 μg/ml 4NQO 

(Santa Cruz, Cat# 256815) for 16 weeks and then given normal drinking water for tumor 

formation and lymph node metastasis. For lineage tracing and Bmi1 knock out studies, mice 

were intraperitoneally injected with tamoxifen (9 mg per 40 g body weight; Sigma-Aldrich, 

Cat#T5648) to activate Cre.

Cell lines—Human HNSCC cell lines SCC23 and SCC1 were from the University of 

Michigan. B16 cells were from American Type Culture Collection (ATCC, Manassas, VA). 

Cells were maintained in DMEM containing 10% FBS and antibiotics (streptomycin and 

penicillin) at 37°C in 5% CO2 atmosphere.
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Human HNSCC samples—The use of human HNSCC samples for immunostaining was 

approved by the UCLA Institutional Review Board. Human HNSCC paraffin-embedded 

blocks were obtained from the UCLA Translational Pathological Core Laboratory and 

processed as described previously (Chen et al., 2017; Ding et al., 2013).

METHOD DETAILS

4NQO mouse model of HNSCC, treatment and histology—Cisplatin (Sigma-

Aldrich, Cat#479306) was dissolved in saline. PTC209 (MedChem Express, Cat#HY-15888) 

was dissolved in 14% DMSO, 36% polyethylene glycol 400 (Sigma-Aldrich, Cat#202304) 

and 50% polypropylene glycol (Sigma-Aldrich Cat#4347). For treatment, tumor-bearing 

mice were randomly divided into 4 groups and given: 1) control vehicle and antibody 

InVivoPlus rat IgG2a isotype (BioXcell Cat#BP0089, 200 μg/mouse); 2) anti-PD1 

(BioXcell, Cat#BE0146, 200 μg/mouse twice/week); 3) cisplatin (5 mg/kg body weight once 

a week) or PTC209 (60 mg/kg body weight twice/week); and 4) anti-PD1 plus cisplatin or 

anti-PD1 plus PTC-209. The cisplatin dose and frequency chosen was the weekly tolerated 

dose that did not have severe side effects on mice based on previous studies (Tran et al., 

2017). For depletion of CD8+ T cells, mice were given anti-mouse CD8 (InVivoPlus, 

BioXcell Cat#BP0061, 100 μg/mouse twice/week). For the inhibition of CXCR3 and 

CXCR5, mice were given TAK779 (Sigma-Aldrich, Cat#SML0911, 150 μg/mouse twice/

week).

Tumor growth and cervical lymph node metastasis were examined as described before (Chen 

et al., 2017). Briefly, mice were sacrificed, and tongues and cervical lymph nodes were 

harvested immediately and the lesion surface areas were measured. For histological analysis 

and immunostaining, longitudinally cut tongues (dorsal/ventral) and intact lymph nodes 

were fixed overnight in 10% buffered formalin and paraffin-embedded. Tissue blocks were 

cut into 10–15 sections in 4 μm thickness and stained with hematoxylin and Eosin (H&E). 

The SCC number was counted and areas were measured as described before (Chen et al., 

2017). The HNSCC invasiveness was scored based on the following criteria: showing signs 

of normal or epithelial dysplasia appearance (grade 1); distinct invasion, unclearness of 

basement membrane, drop and diffuse infiltration into the superficial portion of the muscle 

layer (grade 2); loss of the basement membrane, extensive invasion into deep muscle layer 

(grade 3). To assess lymph node metastasis, the sections of cervical lymph nodes were 

immunostained with anti-PCK antibodies which specifically detected epithelial tumor cells 

in lymph nodes (Santa Cruz, Cat#sc-8018). The percentage of lymph nodes with metastasis 

and their metastatic areas were measured.

Immunostaining—Mouse HNSCC and cervical lymph nodes were harvested and 

cytosections were prepared and processed as previously described (Chen et al., 2017). For 

immunofluorescent staining, sections were stained with the following primary antibodies: 

anti-PCK (Abcam Cat#ab9377; 1:200), anti-Ac-casp3 (Cell Signaling Technology, 

Cat#9661; 1:200), anti-CD8 (Cell Signaling Technology Cat#98941; 1:200), anti-Granzyme-

B, (R&D Systems, Cat#AF1865; 1:100), and anti-S100 (Abcam Cat#ab4066; 1:200). The 

immunocomplexes were detected and visualized using related secondary antibodies 

conjugated with Cy2 or Cy3 (Jackson ImmunoResearch Laboratories). Sections were then 
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counterstained with 4’6’-diamidino-2-phenilindole (DAPI; Sigma-Aldrich Cat#D9542) and 

mounted with SlowFade Antifade Reagents (Thermo Fisher Scientific Cat#S36937) for 

imaging and analysis. For the quantification of CD8+, Ac-casp3+ and Tomato+ cells, we 

followed the methods described previously (Miao et al., 2019) with some modifications. At 

least three sections from each HNSCC lesions were immunostained and analyzed. Tumor 

cells (>150) and CD8+, Ac-casp3+ and Tomato+ cells of these tumor cell areas were counted 

manually in each section. The percentage of CD8+, Ac-casp3+ and Tomato+ cells were 

calculated by dividing those cells with tumor cells and averaged from the sections.

For immunohistochemistry of human or murine HNSCC samples, sections were incubated 

with the following primary antibodies at 4°C overnight: anti-BMI1 (Cell Signaling 

Technology, Cat#5856; 1:50), anti-CD8α (Cell Signaling Technology Cat#85336; 1:100), 

anti-CCL5 (Abcam Cat# ab9679; 1:100), and anti-CXCL10 (Santa Cruz, Cat# sc-101500; 

1:100). The sections were then incubated with horseradish perioxidase-labeled polymer for 

60 min. The signals were detected with AEC+ chromogen (Dako EnVision System 

Cat#MP-6401–15) and counterstained with hematoxylin. The intensity of immunostaining 

was scored as follows: 0, no staining; 1, weak staining; 2, moderate staining; 3, strong 

staining; and 4, very strong staining as described before (Chen et al., 2017). The Spearman 

or Pearson correlation coefficient of liner regression was used to determine the correlation 

between different proteins in human HNSCC samples.

Flow Cytometry Analysis—PBMCs were isolated from blood using Ficoll-Paque Plus 

density gradient centrifugation (GE Healthcare Life Sciences, Cat#17–1440). Cervical 

lymph nodes and spleens were collected and processed into single-cell suspensions through 

mechanical separation. The isolated or dissociated cells were stained with the specific 

surface marker antibodies, anti-CD3-FITC (eBioscience, Cat#11–0031), anti-CD4-APC 

(eBioscience, Cat#17–0041), and anti-CD8-PerCP-Cy5.5 (eBioscience, Cat#45–0081) in 

PBS with FBS for 30 min at 4°C. Intracellular staining of IFNγ was performed as follows: 

Cells were stimulated with PMA and ionomysin cocktail (eBioscience, Cat#00–4970) for 5 

h at 37°C with 5% CO2. Cells were washed and stained with surface marker antibodies, then 

fixed and permeabilized with a fixation/permeabilization kit (BD Bioscience, Cat#554715) 

and intracellularly stained with anti-IFNγ-PE (eBioscience, Cat#12–7311). For proper 

compensation of flow cytometry channels, single-stain samples were utilized, and for gating, 

isotype controls were applied. The stained cells were analyzed on the BD FACS flow 

cytometer, and data analyzed using Flowjo software.

Cell culture and BMI1 knockdown by shRNA—Human SCC23 and SCC1 cells were 

grown in DMEM containing 10% FBS and antibiotics (streptomycin and penicillin) at 37°C 

in a 5% CO2 atmosphere. To generate lentiviruses, scramble control (shCtrl, Addgene, 

Cat#1864) and BMI1 specific shRNA lentiviral plasmids (shBmi1, Sigma-Aldrich, 

Cat#N0000020156) were transfected into HEK293T cells with two helper plasmids psPAX2 

(Addgene, Cat#12260) and pMD2.G (Addgene, Cat#12259). Viral supernatant was 

harvested 72 h after transfection and passed through a 0.45 μm filter to remove cell debris 

and live cells. Collected lentiviruses were used directly to infect cells with the addition of 

polybrene (Sigma-Aldrich, Cat#H9268), or frozen at −80°C for later use. 24 hr after 
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infection, cells were selected with puromycin (Sigma-Aldrich, Cat#P9620) at 1 μg/ml for 5 

days and then expanded before being used for subsequent assays. The knockdown of BMI1 

was confirmed by Western blot analysis.

qRT-PCR and ChIP-qPCR—For qRT-PCR, total RNA was prepared using TRIzol 

reagent (Thermo Fisher Scientific Cat#15596026), and 1 μg of RNA was reversely 

transcribed with random primer (Thermo Fisher Scientific Cat#48190011), dNTP mix 

(Thermo Fisher Scientific, Cat#18427013), and M-MuLV Reverse Transcriptase (New 

England Biolabs, Cat#M0253L). The levels of mRNA were qualitatively measured using a 

SYBRGreen supermix (Bio-Rad, Cat#1708880). GAPDH was used as an internal control.

ChIP-qPCR assays were performed as previously described (Ding et al, 2013). Briefly, SCC 

cells were sequentially treated with dimethyl 3,3’-dithiobispropionimidate-HCl (DTBP; 

Cat#20665, Thermo Fisher Scientific) solution and formaldehyde, and harvested with a cell 

scraper. The cell pellet was lysed with ChIP lysis buffer and sonicated to generate 200–500 

bp DNA fragments with a sonicator. The fragmented chromatins were immunoprecipitated 

with anti-BMI1 (Cell Signaling Technology, Cat#6964), anti-Ubiquityl-Histone H2A 

(Lys119) (Cell Signaling Technology, Cat#8240) overnight at 4°C. The precipitated DNA-

chromatin products were purified with ChIP DNA clean & concentrator kit (Cat#D5205, 

Zymo Research) and the DNA levels were quantified by qPCR. Data is presented as the 

percentage of input DNA. The primer sequences used for qRT-PCR and ChIP-qPCR were 

listed in Table S1.

Western blot and ELISA assays—Cells were lysed using the radioimmunoprecipitation 

assay (RIPA) buffer (Sigma-Aldrich, Cat#R0278) added with a cocktail of protease 

inhibitors (Thermo Fisher Scientific, Cat##78430) and phosphatase inhibitors (Sigma-

Aldrich, Cat#4906845001). Protein extracts were resolved on a 10% or 15% SDS 

polyacrylamide gel and then transferred to a polyvinylidene difluoride membrane. 

Membranes were blocked with 5% milk for 1 h and incubated with primary antibodies 

overnight at 4°C. Primary antibodies used in this study were: anti-phospho-STING (Ser366) 

(1: 1,000; Cell Signaling Technology, Cat#19781), anti-STING (1:1,000; Cell Signaling 

Technology, Cat#13647), anti-phospho-TBK1 (Ser172) (1:1,000; Cell Signaling Technology, 

Cat#5483), anti-TBK1 (1:1,000; Cell Signaling Technology, Cat#3504), anti-phospho-IRF3 

(Ser396) (1:1,000; Cell Signaling Technology, Cat#29047), anti-IRF3 (1:1,000; Cell 

Signaling Technology, Cat#4302), anti-BMI1 (1:1,000; Cell Signaling Technology, 

Cat#6964), anti-Ubiquityl-Histone H2A (Lys119) (1:1000, Cell Signaling Technology, 

Cat#8240), anti-phospho Histone H2A.X (Ser139) (1:1000; Cell Signaling Technology, 

Cat#9718), and anti-GAPDH (1:1000; Cell Signaling Technology, Cat# 5174), anti-Histone 

H3 (1:2,000; Cell Signaling Technology, Cat#4499). The signals were detected using the 

Clarity Western ECL kit (Bio-Rad, Cat#1705060).

To measure the protein levels of CCL5, CXCL9, CXCL10 and CXCL11, cells were treated 

with PTC209 or shBMI1 knockdown for 48 hr. After treatment, supernatants were collected, 

and the protein levels of CCL5, CXCL9, CXCL10 and CXCL11 were measured with ELISA 

(R&D Systems, Cat#DRN00B, DCX900, DIP100, DCX110) according to the 

manufacturer’s instructions.
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RNA-Seq and pathway enrichment analysis—Total RNA was isolated from PTC209-

treated or shBMI1 knockdown SCC cells using a RNeasy Micro Kit (QIAGEN, Cat# 

74004). RNA Quality was examined using an Agilent 2100 Bioanalyzer. Library preparation 

using the KAPA RNA-Seq Library Preparation Kits (KAPA Biosystems, Cat#07960140001) 

was performed at the UCLA sequencing core facility, and RNAs were single-end sequenced 

on Illumina HiSeq 3000 machines. The online DAVID (https://david.ncifcrf.gov/

summary.jsp) bioinformatics resources were used to analyze the differentially expressed 

genes under the category of GOTERM_BP_DIRECT. The heatmap was generated with 

Heatmap Builder (http://ashleylab.stanford.edu/tools/tools-scripts.html).

Cytosolic dsDNA Staining—Following the treatment, SCC23 and SCC1 cells were 

incubated with culture media containing PicoGreen (dsDNA stain, 200-fold dilution, 

Thermo Fisher Scientific, Cat#P11496) and MitoTracker (mitochondrial dsDNA stain, 100 

nM, Thermo Fisher Scientific, Cat#M7512). One hour after incubation, cells were fixed with 

4% paraformaldehyde for 10 min. Cells were then washed twice with PBS and stained with 

DAPI (Sigma-Aldrich, Cat#D9542) and mounted with SlowFade Antifade Reagents 

(Thermo Fisher Scientific, Cat#S36937). Staining was imaged and assessed using a Leica 

SP5X laser scanning confocal microscope.

Comet assays—Single cell gel electrophoresis comet assays were performed using the 

SCGE assay Kit (Enzo Life Sciences, Cat# ADI-900–166). Following the treatment, cells 

were mixed with low melting point agarose at a volume ratio of 1:50, and 100 μl of aliquots 

were loaded onto pre-warmed slides. Slides were incubated in pre-chilled lysis solution for 1 

h and then in pre-chilled alkaline solution for 1 h. Electrophoresis was run at 22 V in the 

TBE buffer for 30 min. Comets were stained with CYGREEN dye for 30 min and imaged. 

50 individual cells at least per sample were evaluated in duplicates by the CASP Version 

1.2.2 analysis tool.

Statistical analyses—Statistical parameters of the analyses are reported in the Figure 

Legends. All in vitro experiments were repeated at least twice, and in vivo experiments were 

repeated at least once. Statistical analyses were performed using GraphPad Prism 6.0 for 

windows (GraphPad software, Inc.). To compare HNSCC lesion size, number and area in 

control and knockout mice, the differences were assessed using two-way ANOVA. For 

comparison of treatment in same stain of mouse, the differences were evaluated by one-way 

ANOVA followed by the Tukey’s HSD post-hoc tests to minimize type I errors. For ANOVA 

analyses, we utilized Shapiro-Wilk test to validate normal distribution of data and that all 

data met the assumptions of no significant outliers. A total of 60 human HNSCC samples 

were used in this study, and the parameters for scores was reported in the Figure legends 

(Figure S6). The Pearson and Spearman correlation coefficient of liner regression was used 

to assess the correlation between different proteins.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• BMI1+ CSCs enriched in HNSCC after cisplatin plus anti-PD1 treatment

• BMI1 inhibitor plus anti-PD1 eliminates BMI1+ CSCs and inhibits tumor 

progression

• BMI1 inhibition increased type 1 IFN chemokines and CD8+ T cell 

infiltration

• BMI1 inhibitor plus anti-PD1 prevents BMI1+ CSCs-mediated tumor relapse
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Figure 1. Enrichment of BMI1+ CSCs after the combination treatment of anti-PD1 and cisplatin.
(A) Schematic diagrams show the treatment and lineage tracing of primary HNSCC in 

Bmi1CreER;RosatdTomato mice. Tamoxifen (Tam) was administered 1 day prior to sacrificing 

(Sac) mice in order to label BMI1+ CSCs.

(B) Representative image of tongue visible lesions in different treatment groups. Black 

dashed lines demark lesion areas. Scale bar, 2 mm.
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(C) Quantification of HNSCC lesion area from mice with treatment as indicated. Values are 

mean ± SD from the pool of two independent experiments. n = 10. *p < 0.05 and **p < 0.01 

by one-way ANOVA.

(D) Representative H&E staining of HNSCC from mice with treatment as indicated. Scale 

bar, 200 μm. Enlarged images are shown in the lower panels. Scale bar, 50 μm.

(E) Quantification of HNSCC number and area from mice with treatment as indicated. 

Values are mean ± SD from the pool of two independent experiments. n = 10. *p < 0.05 and 

**p < 0.01 by one-way ANOVA.

(F) Quantification of HNSCC invasion grades from mice with treatment as indicated. Data 

was pooled from two independent experiments. n = 10. *p < 0.05 by Cochran-Armitage test.

(G) Immunostaining of metastatic cells in cervical lymph nodes using anti-PCK. Scale bar, 

200 μm.

(H) Percentage of metastatic lymph nodes from mice with treatment as indicated. Number of 

metastatic lymph nodes in each group is indicated in the figure. Data was pooled from two 

independent experiments. *p < 0.05 by Chi-square test.

(I) Quantification of metastatic area in lymph nodes from mice with treatment as indicated. 

Values are mean ± SEM from the pool of two independent experiments. *p < 0.05 by one-

way ANOVA.

(J) Immunofluorescent images for CD8+ T from mice with treatment as indicated. Scale bar, 

10 μm.

(K) Quantifications of CD8+ T cells in HNSCC from mice with treatment as indicated. 

Values are mean ± SD from the pool of two independent experiments. n = 10, **p < 0.01 by 

one-way ANOVA.

(L) Representative images of Tomato+ BMI1+ CSCs in HNSCC from mice with treatment as 

indicated. White dashed lines demark tumor-stromal junction. Scale bar, 10 μm.

(M) Quantification of the percentage of Tomato+ cells in HNSCC from mice with treatment 

as indicated. Values are mean ± SD from the pool of two independent experiments. n = 10. 

*p < 0.05 and **p < 0.01 by one-way ANOVA.

Also see Figure S1
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Figure 2. PTC-209 eliminates BMI1+ CSCs and collaborates with anti-PD1 to suppress HNSCC 
growth and metastasis by recruiting CD8+ Cells.
(A) Representative image of tongue visible lesions in different treatment groups as indicated. 

Black dashed lines demark lesion areas. Scale bar, 2 mm.

(B) Quantification of HNSCC lesion areas from mice. Values are mean ± SD from the pool 

of two independent experiments. n = 12, *p < 0.05 and **p < 0.01 by one-way ANOVA.

(C) Representative H&E staining of HNSCC from mice with treatment as indicated. Scale 

bar, 200 μm. Enlarged images are shown in the lower panels. Scale bar, 50 μm.
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(D) Quantification of HNSCC number and area. Values are mean ± SD from the pool of two 

independent experiments. n = 12, *p < 0.05 and **p < 0.01 by one-way ANOVA.

(E) Quantification of HNSCC invasion grades. *p < 0.05 and **p < 0.01 by Cochran-

Armitage test.

(F) Representative images of active caspase3 (Ac-casp3, green) in HNSCC. Nuclei were 

stained with DAPI (blue). White dashed lines demark tumor-stromal junction. Scale bar, 10 

μm.

(G) Percentage of Ac-Casp3+ cells in HNSCC from mice with indicated treatments. Values 

are mean ± SD from the pool of two independent experiments. n = 12, **p < 0.01 by one-

way ANOVA.

(H) Immunostaining of metastatic cells in cervical lymph nodes by anti-PCK. Scale bar, 200 

μm.

(I) Quantification of percentage of metastatic lymph nodes from mice with treatment as 

indicated. Number of metastatic lymph nodes in each group is indicated in the figure. *p < 

0.05 and **p < 0.01 by Chi-square test.

(J) Quantification of metastatic areas in lymph nodes from mice with treatment as indicated. 

Values are mean ± SEM from the pool of two independent experiments. *p < 0.05 and **p < 

0.01 by one-way ANOVA.

(K) Representative immunofluorescent images for CD8 (red) and PCK (green) of HNSCC 

from mice with treatment as indicated. Nuclei were visualized by DAPI (blue). Scale bar, 10 

μm.

(L) Quantifications of CD8+ T cells percentage from mice with treatment as indicated. 

Values are mean ± SD from the pool of two independent experiments. n = 12, **p < 0.01 by 

one-way ANOVA.

(M) Representative images of Bmi1+ cell-driven lineage tracing in HNSCC from mice with 

treatment as indicated. White dashed lines demark tumor-stromal junction. Scale bar, 10 μm.

(N) Quantification of the percentage of Tomato+ cells in HNSCC from mice with treatment 

as indicated. Values are mean ± SD from the pool of two independent experiments. n = 12, 

*p < 0.05 and **p < 0.01 by one-way ANOVA.

Also see Figures S2 and S3
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Figure 3. Depletion of intratumoral CD8+ T cells reverse PTC209 plus anti-PD1-mediated 
antitumor immunity.
(A) Representative immunofluorescent images for CD8 (red) and PCK (green) in HNSCC 

from mice with indicated treatments. Nuclei were visualized by DAPI (Blue). Scale bar, 10 

μm.

(B) Quantifications of percentage of CD8+ T cells in HNSCC. Values are mean ± SD from 

the pool of two independent experiments. n = 8, *p < 0.05 and **p < 0.01 by one-way 

ANOVA.

(C) Representative image of tongue visible lesions. Scale bar, 2 mm.
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(D) Quantification of HNSCC lesion areas. Values are mean ± SD from the pool of two 

independent experiments. n = 8, **p < 0.01 by one-way ANOVA.

(E) Representative H&E staining of HNSCC. Scale bar, 200 μm. Enlarged images are shown 

in the lower panels. Scale bar, 50 μm.

(F) Quantification of HNSCC number and area. Values are mean ± SD from the pool of two 

independent experiments. n = 8, *p < 0.05 and **p < 0.01 by one-way ANOVA.

(G) Quantification of HNSCC invasion grades. *p < 0.05 by Cochran-Armitage test.

(H) Representative images of Ac-casp3 (red) and PCK (green) in HNSCC. Nuclei were 

visualized by DAPI (Blue). Scale bar, 10 μm.

(I) Percentage of Ac-casp3+ apoptotic cells in all tumor cells. Values are mean ± SD from 

the pool of two independent experiments. n = 8, **p < 0.01 by one-way ANOVA.

(J) Immunostaining of metastatic cells in cervical lymph nodes using anti-PCK. Scale bar, 

200 μm.

(K) Percentage of metastatic lymph nodes from mice. Number of metastatic lymph nodes in 

each group is indicated in the figure. *p < 0.05 and **p < 0.01 by Chi-square test.

(L) Quantification of metastatic areas in cervical lymph nodes. Values are mean ± SEM from 

the pool of two independent experiments. *p < 0.05 and **p < 0.01 by one-way ANOVA.
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Figure 4. Epithelial deletion of BMI1 collaborates with anti-PD1 to suppress HNSCC growth and 
metastasis by recruiting CD8+ cells.
(A) Experimental design for Bmi1 knockout in tumor cells and anti-PD1 treatment in vivo. 

Three administrations of Tam were given to tumor-bearing mice. Mice were randomly 

divided into four experimental groups (n = 14 per group from two independent experiments): 

BMI1f/f with IgG isotype, BMI1f/f with anti-PD1, K14Cre;BMI1f/f with IgG isotype, and 

K14Cre;BMI1f/f with anti-PD1.

(B) Representative image of tongue visible lesions. Black dashed lines demark lesion area. 

Scale bar, 2 mm.
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(C) Quantification of lesion areas from mice treated with different conditions as indicated. 

Values are mean ± SD from the pool of two independent experiments. *p < 0.05 and **p < 

0.01 by two-way ANOVA.

(D) Representative H&E staining of HNSCC from mice treated with different conditions as 

indicated. Scale bar, 200 μm. Enlarged images are shown in the lower panels. Scale bar, 50 

μm.

(E) Quantification of HNSCC area and number from mice treated with different conditions 

as indicated. Values are mean ± SD from the pool of two independent experiments. *p < 

0.05 and **p < 0.01 by two-way ANOVA.

(F) Quantification of HNSCC invasion grades from mice treated with different conditions as 

indicated. *p < 0.05 and **p < 0.01 by Cochran-Armitage test.

(G) Represent immunostaining of metastatic cells in cervical lymph nodes by anti-PCK. 

Scale bar, 200 μm.

(H) Quantification of percentage of metastatic lymph nodes. Number of metastatic lymph 

nodes in each group is indicated in the figure. *p < 0.05 and **p < 0.01 by Chi-square test.

(I) Quantification of metastatic area in lymph nodes from mice treated with different 

conditions as indicated. Values are mean ± SEM from the pool of two independent 

experiments. *p < 0.05 and **p < 0.01 by two-way ANOVA.

(J) Representative immunofluorescent images for CD8 (red) and PCK (green) in HNSCC. 

Nuclei were visualized by DAPI (blue). Scale bar, 10 μm.

(K) Quantification of the percentage of CD8+ T cells from mice treated with different 

conditions as indicated. Values are mean ± SD from the pool of two independent 

experiments. **p < 0.01 by two-way ANOVA. ##p < 0.01 treatment x genotype interaction.

Also see Figure S4.
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Figure 5. BMI1 Inhibition induces expression of effector T cell attracting chemokines in SCC 
cells by activating cGAS-STING-IRF3 signaling and erasing repressive H2AUb on their 
promoters.
(A) Heatmap from RNA-sequencing data showing the differentially expressed genes related 

to chemokines-mediated signaling in SCC23 cells upon PTC209 or BMI1 knockdown. Blue 

rectangles indicate the genes related to IFN-regulated chemokines.

(B) qRT-PCR showed that the expression of CCL5, CXCL9, CXCL10, and CXCL11 in 

SCC23 cells were induced by PTC209 or BMI1 knockdown. Means ± SD were shown. **p 

< 0.01 by unpaired Student’s t test.
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(C) Immunofluorescent staining of pH2A.X (green) in 4NQO-induced HNSCC by PTC209 

or BMI1 knockout and their quantifications. Nuclei were stained with DAPI (blue). Scale 

bar, 10 μm. Means ± SD were shown (n = 8). **p<0.01 by unpaired Student’s t test.

(D) Confocal images showing cytosolic DNA accumulations and their quantifications in 

SCC23 cells upon PTC209 or shBMI1 treatment. Double strand DNA (dsDNA) was stained 

by Picogreen (green). Mitochondria and nuclei were respectively stained with Mito-tracker 

(Red) and DAPI (blue). White arrows indicate cytosolic dsDNA. Scale bar, 10 μm. More 

than 100 cells were analyzed per group. Means ± SD were shown. **p < 0.01 by one-way 

ANOVA.

(E) Induction of phosphorylation of STING (S366), TBK1 (S172) and IRF3 (S396) in 

SCC23 cells by PTC209 or shBMi1 treatment.

(F) qRT-PCR showing the induction of IFNβ mRNA expression in SCC23 cells by PTC209 

or shBMI1 treatment. **p < 0.01 by unpaired Student’s t test.

(G) The reduction of BMI1 occupied on the promoters of CCL5, CXCL9, CXCL10, and 

CXCL11 in SCC23 cells by PTC209.

(H) The reduction of H2AUb levels on the promoters of CCL5, CXCL9, CXCL10, and 

CXCL11 in SCC23 cells by PTC209.

(I) The reduction of BMI1 occupied on the promoters of CCL5, CXCL9, CXCL10, and 

CXCL11 in SCC23 cells by shBMI1.

(J) The reduction of H2AUb levels on the promoters of CCL5, CXCL9, CXCL10, and 

CXCL11 in SCC23 cells by shBMI1. n = 3, means ± SD are shown. *p < 0.05 and **p < 

0.01 by unpaired Student’s t test.

Also see Figures S5, S6 and S7.
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Figures 6. Inhibition of chemokine signaling impairs PTC209 plus anti-PD1-mediated antitumor 
immunity.
(A) Representative immunofluorescent images for CD8 (red) and PCK (green) in HNSCC 

from mice with indicated treatments. Nuclei were visualized by DAPI (Blue). Scale bar, 10 

μm.

(B) Quantifications of percentage of CD8+ T cells in HNSCC. Values are mean ± SD from 

the pool of two independent experiments. n = 8, *p < 0.05 and **p < 0.01 by one-way 

ANOVA.

(C) Representative image of tongue visible lesions. Scale bar, 2 mm.
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(D) Quantification of HNSCC lesion areas. Values are mean ± SD from the pool of two 

independent experiments. n = 8, *p < 0.05 and **p < 0.01 by one-way ANOVA.

(E) Representative H&E staining of HNSCC. Scale bar, 200 μm. Enlarged images are shown 

in the lower panels. Scale bar, 50 μm.

(F) Quantification of HNSCC number and area. Values are mean ± SD from the pool of two 

independent experiments. n = 8, *p < 0.05 and **p< 0.01 by one-way ANOVA.

(G) Quantification of HNSCC invasion grades. n = 8, *p < 0.05 by Cochran-Armitage test.

(H) Representative images of Ac-casp3 (red) and PCK (green) in HNSCC. Nuclei were 

visualized by DAPI (Blue). Scale bar, 10 μm.

(I) Percentage of Ac-casp3+ apoptotic cells in all tumor cells. Values are mean ± SD from 

the pool of two independent experiments. n = 8, *p < 0.05 and **p < 0.01 by one-way 

ANOVA.

(J) Immunostaining of metastatic cells in cervical lymph nodes using anti-PCK. Scale bar, 

200 μm.

(K) Percentage of metastatic lymph nodes from mice. Number of metastatic lymph nodes in 

each group is indicated in the figure. *p < 0.05 and **p < 0.01 by Chi-square test.

(L) Quantification of metastatic areas in cervical lymph nodes. Values are mean ± SEM from 

the pool of two independent experiments. *p < 0.05 and **p < 0.01 by one-way ANOVA.
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Figures 7. The combination treatment of anti-PD1 and PTC209 prevents BMI1+ CSC-mediated 
tumor relapse.
(A) Experimental design for BMI1+ CSCs lineage tracing in HNSCC after treatment with 

anti-PD1 plus cisplatin or anti-PD1 plus PTC209 (n = 7 per group). After treatment, mice 

were injected with Tam and maintained for 4 additional weeks.

(B) Representative images of Tomato+ tumor cells (red) derived from BMI1+ CSCs one 

month after treatment. Nuclei are stained with DAPI (blue). White dashed lines demark 

tumor-stromal junction. Scale bar, 10 μm.
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(C) Quantification of the percentage of Tomato+ tumor cells in HNSCC. Values are mean ± 

SD from the pool of two independent experiments. ns, not significant, *p < 0.05 and **p < 

0.01 by one-way ANOVA.

(D) Quantification of HNSCC lesion areas. Values are mean ± SD from the pool of two 

independent experiments. ns, not significant, *p < 0.05 and **p < 0.01 by one-way ANOVA.

(E) Quantification of HNSCC number and area from mice with treatment as indicated. 

Values are mean ± SD from the pool of two independent experiments. ns, not significant, *p 

< 0.05 and **p< 0.01 by one-way ANOVA.

(F) Quantification of HNSCC invasion grades. ns, not significant, *p < 0.05 by Cochran-

Armitage test.

(G) Experimental design for examining HNSCC relapse after treatment. 

BmiCreER;RosatdTomato mice with 4NQO induced HNSCC were randomly divided into three 

experimental groups (n = 8). After treatment, mice were maintained for 8 additional weeks 

for the tumor relapse. Tamoxifen (Tam) was administered 1 day prior to sacrificing (Sac) the 

mice in order to label BMI1+ CSCs.

(H) Representative image of tongue visible lesions. Black dashed lines demark lesion area. 

Scale bar, 2 mm.

(I) Quantification of HNSCC lesion areas. Mean ± SD from the pool of two independent 

experiments. ns, not significant, *p < 0.05 and **p < 0.01 by one-way ANOVA.

(J) H&E staining of HNSCC. Scale bar, 200 μm. Enlarged images are shown in the lower 

panels. Scale bar, 50 μm.

(K) Quantification of HNSCC number and area. Mean ± SD from the pool of two 

independent experiments. ns, not significant, *p < 0.05 and **p< 0.01 by one-way ANOVA.

(L) Quantification of HNSCC invasion grades. ns, not significant, *p < 0.05 by Cochran-

Armitage test.

(M) Immunostaining of metastatic cells in cervical lymph nodes by anti-PCK. Scale bar, 200 

μm.

(N) Percentage of metastatic lymph nodes in HNSCC. Number of metastatic lymph nodes in 

each group is indicated. ns, not significant, **p < 0.01 by Chi-square test.

(O) Quantification of metastatic areas in lymph nodes. Mean ± SEM from the pool of two 

independent experiments. ns, not significant, *p < 0.05 and **p < 0.01 by one-way ANOVA.

(P) Representative images of Tomato+ BMI1+ CSCs in HNSCC after treatment. White 

dashed lines demark tumor-stromal junction. Scale bar, 10 μm.

(Q) Quantification of the percentage of Tomato+ BMI1+ CSCs in HNSCC after treatment. 

Mean ± SD from the pool of two independent experiments. *p < 0.05 and **p < 0.01 by 

one-way ANOVA.

Jia et al. Page 33

Cell Stem Cell. Author manuscript; available in PMC 2021 August 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Jia et al. Page 34

KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Rabbit polyclonal anti-wide spectrum Cytokeratin Abcam Cat#ab9377; RRID: AB_307222

Rabbit Cleaved Caspase-3 (Asp175) Cell Signaling Technology Cat#9661; RRID: AB_2341188

Rabbit monoclonal anti-CD8α (D4W2Z) Cell Signaling Technology Cat#98941; RRID: AB_2756376

Goat polyclonal anti-Granzyme B R&D Systems Cat#AF1865; RRID: AB_2294988

Mouse monoclonal (4C4.9) to S100 Abcam Cat#ab4066; RRID: AB_304258

Rabbit monoclonal anti-BMI1 (D42B3) Cell Signaling Technology Cat#5856; RRID: AB_10838137

Rabbit monoclonal anti-CD8α (D8A8Y) Cell Signaling Technology Cat#85336; RRID: AB_2800052

Rabbit polyclonal to CCL5 Abcam Cat#ab9679; RRID: AB_308752

Mouse monoclonal anti-CXCL10 Santa Cruz Cat#sc-101500; RRID: AB_1564138

Rabbit monoclonal anti-Phospho-STING (Ser366) 
(D7C3S)

Cell Signaling Technology Cat#19781; RRID: AB_2737062

Rabbit monoclonal anti-STING (D2P2F) Cell Signaling Technology Cat#13647; RRID: AB_2732796

Rabbit monoclonal anti-Phospho-TBK1 (Ser172) 
(D52C2)

Cell Signaling Technology Cat#5483; RRID: AB_10693472

Rabbit monoclonal anti-TBK1 (D1B4) Cell Signaling Technology Cat#3504; RRID: AB_2255663

Rabbit monoclonal anti-Phospho-IRF3 (Ser396) 
(D6O1M)

Cell Signaling Technology Cat#29047; RRID: AB_2773013

Rabbit monoclonal anti-IRF3 (D83B9) Cell Signaling Technology Cat#4302; RRID: AB_1904036

Rabbit monoclonal anti-Ubiquityl-Histone H2A 
(Lys119)

Cell Signaling Technology, Cat#8240; RRID: AB_10891618

Rabbit monoclonal anti-BMI1 (D20B7) Cell Signaling Technology Cat#6964; RRID: AB_10828713

Rabbit monoclonal anti-phospho-Histone H2A.X 
(Ser139) (20E3)

Cell Signaling Technology Cat#9718; RRID: AB_2118009

Rabbit monoclonal anti-GAPDH (D16H11) Cell Signaling Technology Cat#5174; RRID: AB_10622025

Rabbit monoclonal anti-Histone H3 (D1H2) Cell Signaling Technology Cat#4499; RRID: AB_10544537

FITC anti-CD3e monoclonal antibody (145-2C11) eBioscience Cat#11-0031; RRID: AB_464883

APC anti-CD4 monoclonal antibody (GK1.5) eBioscience Cat#17-0041; RRID: AB_469319

PerCP-Cyanine5.5 anti-CD8 monoclonal antibody 
(53-6.7)

eBioscience Cat#45-0081; RRID: AB_906236

PE anti-IFNγ monoclonal antibody (XMG1.2) eBioscience Cat#12-7311; RRID: AB_1907418

InVivoMab anti-mouse PD-1 (CD279) antibody Bio X Cell Cat#BE0146; RRID: AB_10949053

InVivoPlus anti-mouse CD8a antibody Bio X Cell Cat#BP0061, RRID: AB_1125541

InVivoMAb rat IgG2a isotype control Bio X Cell Cat#BE0089; RRID: AB_1107769

Biological Samples

Human HNSCC embedded tumor samples UCLA translational pathology core 
laboratory

http://pathology.ucla.edu/tpcl

Chemicals, Peptides, and Recombinant Proteins

Cisplatin Sigma-Aldrich Cat#479306

PTC209 MedChem Express Cat#HY-15888

TAK779 Sigma-Aldrich Cat#SML0911

Cell Stem Cell. Author manuscript; available in PMC 2021 August 06.

http://pathology.ucla.edu/tpcl


A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Jia et al. Page 35

REAGENT or RESOURCE SOURCE IDENTIFIER

Polyethylene glycol 400 Sigma-Aldrich Cat#202304

Polyethylene glycol Sigma-Aldrich Cat#4347

Fisherbrand Superfrost Plus Microscope Slides Thermo Fisher Scientific Cat#12-550-15

DAPI Sigma-Aldrich Cat#D9542

SlowFade Antifade Reagents Thermo Fisher Scientific Cat#S36937

MitoTracker™ Red CMXRos Thermo Fisher Scientific Cat#M7512

Polybrene Sigma-Aldrich Cat#H9268

Puromycin Sigma-Aldrich Cat#P9620

DMEM Thermo Fisher Scientific Cat#11995065

Fetal Bovine Serum Thermo Fisher Scientific Cat#10437028

Trypsin-EDTA Thermo Fisher Scientific Cat#R001100

M-MuLV Reverse Transcriptase New England Biolabs Cat#M0253L

Random Primers Thermo Fisher Scientific Cat#48190011

dNTP Thermo Fisher Scientific Cat#18427013

Dynabeads™ Protein A Thermo Fisher Scientific Cat#10002D

Hot Start DNA Polymerase New England Biolabs Cat#M0481L

RNase Inhibitor New England Biolabs Cat#0307L

4-Nitroquinoline N-oxide (4NQO) Santa Cruz Cat#sc-256815

ProLong™ Diamond Antifade Mountant with DAPI Thermo Fisher Scientific Cat#P36962

RIPA Buffer Sigma-Aldrich Cat#R0278

TRIzol Reagent Thermo Fisher Scientific Cat#15596026

PhosSTOP™ Sigma-Aldrich Cat#4906845001

Halt™ Protease Inhibitor Cocktail Thermo Fisher Scientific Cat#78430

Ficoll Paque Plus GE Healthcare Sciences Cat#17-1440

Cell Stimulation Cocktail (500X) eBioscience Cat#00-4970

Tamoxifen Sigma-Aldrich Cat#5648

KAPA Library Quantification Kit KAPA Biosystems Cat#07960140001

SYBR™ Green I Nucleic Acid Gel Stain Thermo Fisher Scientific Cat#S7563

Critical Commercial Assays

Clarity Western ECL Substrate Bio-Rad Cat#1705060

Human CCL5/RANTES Quantikine ELISA Kit R&D Systems Cat#DRN00B

Human CXCL9/MIG Quantikine ELISA Kit R&D Systems Cat#DCX900

Human CXCL10/IP-10 Quantikine ELISA Kit R&D Systems Cat#DIP100

Human CXCL11/I-TAC Quantikine ELISA Kit R&D Systems Cat#DCX110

Fixation/Permeabilization Solution Kit BD Biosciences Cat#554715

Comet SCGE assay kit Enzo Life Sciences Cat#ADI-900-166

Quant-iT™ PicoGreen™ dsDNA Assay Kit Thermo Fisher Scientific Cat# P11496

ChIP DNA Clean & Concentrator Zymo Research Cat#D5205

Experimental Models: Cell Lines
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REAGENT or RESOURCE SOURCE IDENTIFIER

Human cell line: SCC23 Laboratory of T. Carey Ding et al., 2013

Human cell line: SCC1 Laboratory of T. Carey Ding et al., 2013

Experimental Models: Organisms/Strains

Mouse: C57BL/6J The Jackson Laboratory JAX: 000664

Mouse: Bmi1CreER The Jackson Laboratory JAX: 010531

Mouse: R26tdTomato The Jackson Laboratory JAX: 007908

Mouse: K14CreER The Jackson Laboratory JAX: 005107

Mouse: Bmi1flox/flox The Jackson Laboratory JAX: 028974

Oligonucleotides

See Table S1 This paper N/A

Recombinant DNA

Plasmid: PLKO.1-shCtrl Addgene Cat#1864

Plasmid: PLKO.1-shBmi1 Sigma-Aldrich Cat#N0000020156

Plasmid: psPAX2 Addgene Cat#12260

Plasmid: pMD2.G Addgene Cat#12259

Software and Algorithms

CellSens Olympus http://www.olympus-lifescience.com/en/
software/cellsens/

LAS X Leica https://www.leica-microsystems.com/
products/microscope-software/p/leica-las-x-
ls/

FlowJo FlowJo https://www.flow.com

CASP CASP lab http://casplab.com/

GraphPad Prism 6.0 GraphPad Prism https://www.graphpad.com/

Heatmap Builder Ashley lab http://ashleylab.stanford.edu/tools/

Deposited Data

Raw and analyzed RNAseq data This paper GEO: GSE140433
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