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Abstract

The American dog tick, Dermacentor variabilis, is a veterinary- and medically- significant

tick species that is known to transmit several diseases to animal and human hosts. The spa-

tial distribution of this species in North America is not well understood, however; and knowl-

edge of likely changes to its future geographic distribution owing to ongoing climate change

is needed for proper public health planning and messaging. Two recent studies have evalu-

ated these topics for D. variabilis; however, less-rigorous modeling approaches in those

studies may have led to erroneous predictions. We evaluated the present and future distri-

bution of this species using a correlative maximum entropy approach, using publicly avail-

able occurrence information. Future potential distributions were predicted under two

representative concentration pathway (RCP) scenarios; RCP 4.5 for low-emissions and

RCP 8.5 for high-emissions. Our results indicated a broader current distribution of this spe-

cies in all directions relative to its currently known extent, and dramatic potential for west-

ward and northward expansion of suitable areas under both climate change scenarios.

Implications for disease ecology and public health are discussed.

1. Introduction

Dermacentor variabilis (Say) (Acari: Ixodidae), commonly referred as the American dog tick

or wood tick is a broadly distributed tick species throughout central and eastern North Amer-

ica [1,2], extending north to southern Canada east of Saskatchewan [3], and ranging in
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California along west of the Cascade and Sierra Nevada mountain ranges [2,4], and reaching

to Mexico to the south [5]. The medical and veterinary significance of D. variabilis is well doc-

umented (e.g., Winer and Strakosch, 1941; Kocan et al., 1981; Schriefer and Azad, 1994) [6–8],

and incidence rates of some of the diseases vectored by D. variabilis appear to have worsened

over recent decades in the US. Year-to-year and county-to-county increase in incidence of

Rocky Mountain spotted fever (RMSF) [9] and bovine anaplasmosis cases [10] are just two

examples of this trend. Even though RMSF is reported along with other spotted fever group

rickettsioses, which are likely transmitted by other ticks and mites, the most serious and com-

monly reported spotted fever group rickettsiosis (SFGR) in the U.S is RMSF [11]. The reasons

for these trends could be an increased abundance of D. variabilis in the environment and sub-

sequent higher human contact rates with these ticks, and potentially also the expansion and/or

shifts in its geographic distribution. Changes to the spatial distribution of D. variabilis, in

terms of an increase in geographic area or a shift in distribution can have direct implications

on the burden of diseases transmitted by this species, as well as exert severe economic impacts

due to an increase in production losses attributable to bovine anaplasmosis. For instance, the

local maintenance of Anaplasma marginale, the causative agent of bovine anaplasmosis along

the current northern distributional extent that are currently free of D. variabilis, such as Mani-

toba may permanently change the ecology of this disease [12].

Spatial distributions of ticks are influenced by many factors, viz., land cover/landscape, host

availability, host density and dispersal, and vegetation all modulate the spatial dynamics of

ticks [13,14]. As ticks are ectothermic, hematophagous arthropods, their life-cycle, phenology,

and spatial distribution are largely influenced by ambient temperature and other abiotic and

biotic environmental conditions. Different species of ticks require unique but optimal weather

conditions to start and finish their life cycle, to start looking for blood-meal hosts (questing

behavior), and to transmit pathogens without killing their hosts [15]. It has also been known

that other biological functions of a tick, such as reproduction [16] and ability to survive [17]

depend on optimal weather conditions. Changes to the abiotic determinants of tick biology is

likely to affect the way they adapt to newer environments and subsequently affect tick-borne

disease ecology.

Recent changes in temperature and humidity profiles for different regions of the world are

attributed to climate change (https://www.ipcc.ch/site/assets/uploads/2018/02/SYR_AR5_

FINAL_full.pdf). For this reason, ongoing climate change is suggested already to have caused

[e.g., 18], or is anticipated to cause in the near future, range shifts [e.g., 19,20], range expan-

sions [21], and increased in incidence of tick-borne diseases worldwide [22]. Naturally, such

changes have direct implications for public health, and, in the case of D. variabilis, losses in

bovine production in the hundreds of millions of dollars every year in the U.S alone. The

American dog tick is presently implicated in the transmission of RMSF, tularemia [23], and

bovine anaplasmosis [7]. Reports indicate that these ticks may also carry Anaplasma phagocy-
tophilum, which causes human granulocytic ehrlichiosis, and Ehrlichia chaffensis that causes

human monocytic ehrlichiosis but further studies are essential to prove vector-competence

[24]. Public health practice relies on accurate and up-to-date information on vector distribu-

tion patterns at fine spatial scales for efficient planning and resource allocation.

Species distribution modeling using presence-only data allows us to predict present and

future distributions of ticks [e.g., 25,26], and to a limited extent also their potential abun-

dances, which can be useful information in public health settings. A general view of the geo-

graphic distribution of D. variabilis is given in the form of a map by CDC [2]; however, the

methods used in developing that are not available in detail, so its accuracy cannot be ascer-

tained. Two recent studies used ecological niche modeling approach to determine the habitat

suitability and potential distribution of D. variabilis in the United States; (James et al., 2015)
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[27] and for North America by (Minigan et al., 2017) [28]. These studies, however, have not

taken advantage of some of the current recommendations for niche modeling that have signifi-

cant implications for the reliability of predictions. Briefly, these studies did not adequately rar-

efy occurrence locations, consider an accessible area (M) for the species in calibrating models

[29,30] did not adequately explore the complexity of covariate relationships with occurrence

data [31], used AICc and/or AUC criteria alone for model selection, which is problematic

[32,33]. Also, the extent to which their models are affected by explicit extrapolation alone,

which can be evaluated using the Mobility-oriented Parity (MOP) metric [34], is not clear. We

recently showed that neglect of some or all these issues could lead to biased distributional esti-

mates for a different tick species, Ixodes scapularis [25,26].

The purpose of this study was to evaluate the spatial distribution of D. variabilis in North

America under present-day and future climatic conditions using presence-only occurrence

data. We used Maxent, a widely utilized approach among ecologists and public health

researchers for species distribution modeling in this study. One could expect variations in the

spatial distribution of D. variabilis on the use of a different model algorithm, the evaluation of

which was beyond the scope of this study. We simulated future potential distributions under

low- and high- greenhouse gas emission scenarios to account for uncertainties in projections

of climate change. Our results indicate potential distribution of this medically important tick

species in N. America is broader than the species’ currently assumed range, with different lev-

els of suitability within its range; and, D. variabilis is likely to expand in to newer territories in

the coming decades under both low and high emissions climate change scenarios.

2. Materials and methods

2.1 Occurrence data

Occurrence data for D. variabilis were obtained from the Walter Reed Bio-systematics Unit

(WRBU), a unique national resource for systematics research on medically important arthro-

pods and maintenance of the U.S. national mosquito collection [35]. This collection also

includes tick specimen records for North America and other parts of the world. Records in the

WRBU database included specimens submitted by 9 institutions, Australian museum (1),

Berkeley Natural History Museum (22), Illinois Natural History Survey (308), Ohio State Uni-

versity Acarology Collection (373), The University of Arizona School of Geography and Devel-

opment (13), U.S Army Institute of Public Health (5114), Uniformed Services University of

the Health Sciences (9), University of Alberta, Entomology Collection (276), and Walter Reed

Biosystematics Unit (108). The earliest specimen in the record was collected in July of 1898

submitted by Ohio State University Acarology Collection. There were 2228 specimens submit-

ted between years 1898 and 1999, and 3967 specimens collected between 2000 to 2014. Of

these, 1690 were between 2010 and 2014. Twenty-nine records lacked collection date. Five

thousand one hundred and thirty-seven specimens were based on human observations, which

were likely ticks attached to humans, 1016 were preserved specimens, which likely included

field collections of questing ticks as well as human and animal host-attached ticks. The source

of 71 specimens were not recorded. Quality control filters were applied to this dataset in

sequential steps. First, data records with inadequacies (misspelled species names, no location

information, or uncertainty information, and records with uncertainty >10,000 m) were

excluded. Verbal descriptions of occurrence locations had previously been converted by

WRBU to geographic coordinates following the Biogeomancer (http://www.biogeomancer.

org) and Mammal Networked Information System (MANIS) protocol (http://www.manisnet.

org). It is not uncommon for museum records such as those available from WRBU to include

spatial biases, with some regions being better represented than others. To remove such bias,
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multiple occurrences at the same location were removed, followed by removal of occurrence

points falling within 10,000 m from each other; one from each such pair was removed in ran-

dom order using the Spatial Analyst Toolbox in ArcGIS. The occurrence data thus rarefied

were then randomly divided into two equal sets, one for calibrating models, and the other for

evaluating model performances. The geographic latitude and longitude coordinates of rarefied

occurrences are present in (S1 File).

A search for D. variabilis records at WRBU archive yielded 6224 records, each representing

a location at which one or more D. variabilis ticks of any of the three post-emergent life stages

was collected. Among these records, the species’ name was spelled in two different ways: varia-
bilis (correct) and variablis (incorrect); We corrected the latter to D. variabilis. Following

removal of data records without location information and records with uncertainty measures

>10,000 m, 2956 occurrence locations were available for analysis. Filtering data to 10 km sepa-

rations, 109 occurrence data remained fit for ecological niche modeling. These steps helped

reduce problems associated with artificial clustering of occurrence locations related to biases

in sampling and reporting (Peterson and Raghavan 2017a, 2017b) [25,26]. The occurrence

data were randomly divided equally into calibration and evaluation datasets (Fig 1). The

hypothesized accessible area for D. variabilis, M is depicted in Fig 1.

Dermacentor variabilis is established in Mexico [36,37]. Our search for occurrence data in

public data repositories viz., Global Biodiversity Information Facility (GBIF) (GBIF.org, 2016),

species Link (http://www.splink.org.br/index?lang=en), and REMIB (http://www.conabio.gob.

mx/remib_ingles/doctos/remib_ing.html) in Mexico and Central American countries did not

return results. A recent publication [5] documented extensive historic observations on the

presence of different Dermacentor spp. in Mexico, including some new records of D. variabilis
collected from dog, bobcat, bovine and wildcat hosts, in three states, Coahuila, Nuevo Leon,

Fig 1. Occurrence locations of Dermacentor variabilis used for calibrating and evaluating ecological niche models,

and the accessible area, M used in the study.

https://doi.org/10.1371/journal.pone.0237191.g001
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and Tamaulipas. However, uncertainties associated with these occurrences could not be veri-

fied, and therefore they were not used in calibrating the models in this study.

Based on the rarefied occurrence locations, the accessible area (M) for D. variabilis was esti-

mated using a 7.5 circular buffer surrounding each location in ArcGIS. Briefly, accessible area,

M is the area that has been accessible to a species by dispersal over relevant time periods

[29,30]. This area is the appropriate area for model calibration, testing and comparison [39].

2.2 Environmental data

We used a climatic dataset from WorldClim [38] at 30” spatial resolution for model develop-

ment. WorldClim is derived from historical (1950–2000) monthly temperature and rainfall

data to generate biologically meaningful variables. Of the 19 bioclim variables, mean tempera-

ture of the wettest quarter (bioclim 8), mean temperature of the driest quarter (bioclim 9), pre-

cipitation of the warmest quarter (bioclim 18), precipitation of the coldest quarter (bioclim 19)

were a priori not considered because they include known spatial artifacts [39]. The jackknife

procedure identified climatic variables contributing to shaping the spatial distribution of D.

variabilis. The jackknife manipulation revealed minimum temperature seasonality, tempera-

ture annual range, and mean temperature of coldest quarter were the least contributors. These

variables were removed and the model refit; the resulting model revealed minimum tempera-

ture of the coldest month, precipitation of the driest quarter, and mean temperature of the

warmest quarter had low contributions. In a further step, precipitation of wettest month,

annual precipitation, and isothermality were least contributors. Further jackknife iterations

did not identify any low-contributing variables, so we used the final three sets of environmen-

tal variables in our model selection efforts. The jackknife plots used for variable selection and

the three variable sets used for model evaluation are present in (S1 File). The final model that

met all three statistical criteria included bioclimatic variables in Set-3, regularization multiplier

value of 4. This model was constructed with quadratic, threshold and hinge feature classes.

The performance statistics for the final model were: mean AUC value = 1.67, partial ROC = 0,

omission rate (5%) = 0.03, AICc = 2173.56, @AIC = 0, and WAICc = 0.99. Detailed model eval-

uation results are present in (S2 and S3 Files).

For estimating future distributional potential of D. variabilis, data representing future cli-

mate conditions in year 2050 were downloaded from the Climate Change, Agriculture and

Food Security (CCAFS)—Climate data portal (http://ccafs-climate.org/). To account for

uncertainty in future climate, we considered two representative concentration pathways, RCP

4.5 and RCP 8.5, that correspond to the lower and higher greenhouse gas emissions scenarios,

respectively. Under both scenarios, we considered four general circulation models (GCMs)

representing different simulations of global climate dynamics CSIRO MK3, MIROC, NCAR

CCSM4, and CCCMA CANESM2. Data for these models were downloaded in ASCII grid for-

mat for the North American region at 30” spatial resolution.

2.3. Ecological niche modeling

In view of the presence-only nature of the occurrence data that were available for this study,

we used MaxEnt (version 3.3.3k) [40], which has design features that are particularly in accord

with such data to create models [41]. One could expect distinct estimates of the geographic dis-

tribution of D. variabilis were a different model algorithm to be used, but we focused on Max-

ent because the assumptions of the approach were most appropriate. The software allows users

to specify different model parameters; the caveats and the need for careful consideration of

these options have been pointed out [31]. In particular, the feature type options represent

mathematical transformation of environmental data allowing complex relationships [42], and
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the regularization multiplier, which determines the complexity or generality of the modeled

response, in model calibration. Further, the number and the types of environmental covariates

influence models.

Contributions of different covariates to model performance were determined using jack-

knife procedures in Maxent. Starting from a model based on 15 BioClim covariates, we con-

structed several models with progressively fewer covariates, each time removing the covariate

or covariates that contributed least to model gain (a measure of fitness) in the previous step.

Covariates in the final three jackknife iterations were kept as three sets of covariates (set 1, set

2, and set 3) for evaluating model performance.

In all, we explored and tested a total of 1479 models with different settings of regularization

multiplier, response type, and environmental data set using the KUENM package in R-Statisti-

cal Program [43]. This included a combination of 17 regularization multipliers, 29 feature clas-

ses, and 3 distinct sets of environmental variables. Models were thresholded using a fixed,

allowable omission error rate of E = 10% [44]. This trimming allows 10% of records (both

occurrence and environmental data) with the lowest suitability, representing potential errors

to be omitted without affecting results [44]. We used three model selection criteria to choose

an adequate model; first, only models with significant partial ROC value (< 0.05) were consid-

ered, followed by models with an omission rate (OR) </ = 10%. Among the significant, low-

omission models, we identified the model with lowest AICc value (i.e., least complex) and

included all models within 2 AICc units from the least complex model. The median of these

model outputs (predicted suitability) was used as the basis of interpretations.

The best model or models was then transferred to future climate scenarios (two RCP sce-

narios and four GCMs), and these models were replicated 10 times with the bootstrap func-

tion. The median of medians (predicted suitability) was used to interpret future potential

geographic distributions of D. variabilis under different climate-change scenarios.

In a final step, the mobility-oriented parity (MOP) metric [34] was calculated in order to

determine the novelty of future climate conditions relative to present-day conditions in the

calibration area. MOP analysis helps reveal areas where strict extrapolation (i.e., transfer areas

with values outside the range of climates in the calibration area) occurs. Areas with higher

extrapolative values indicate higher uncertainty; and caution is required when interpreting

likelihood of species presence in such areas [45,46].

3. Results

The spatial distribution of D. variabilis based on the median of 10 individual replicate models

and associated uncertainty in model predictions, are presented in Fig 2A and 2B. Predicted

suitability patterns indicate that the entire eastern half of the United States Central Plains east

to the east coast, and most areas along the west coast are also highly suitable. Southern Canada,

most of Mexico, and parts of Central America the Caribbean are also climatically suitable for

this tick species. Model uncertainty does not raise serious concerns for much of the United

States but medium to low level uncertainty can be observed was higher on the west coast, in

Saskatchewan and Manitoba in Canada, and in central Mexico (Fig 2B). Annual mean temper-

ature and precipitation of wettest quarter together accounted for more than 74% of the varia-

tion in the models, annual precipitation contributed 16.3% and the remaining variables

contributed< 4% each. Contribution by individual variables to the final model, their permuta-

tion importance and response curves are present in (S4 File).

Predicted future potential distribution of D. variabilis under RCP 4.5 (Fig 3A) and RCP 8.5

(Fig 3B) indicated potential for further changes in the spatial distribution in different areas in

N. America. Suitability for D. variabilis generally expanded northward from present-day
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distribution. Some loss in D. variabilis distribution relative to the present-day distribution

could be noted along the western range limit. Results were similar for the four GCMs under

RCP 8.5 scenario, but future suitability expanded much further into the Central Plains and

Northern Canada. The MOP analysis did not reveal any areas that would confront problems

with model extrapolation.

1 = One of the future scenario models predicted suitability for Dermacentor variabilis distri-

bution. 2, 3, 4 = two, three and four models, respectively, predicted suitability for Dermacentor
variabilis distribution. 5 = One of the models predicted loss of territory, 6, 7, 8 = two, three

and four models simulated predicted loss of territory for Dermacentor variabilis compared to

present-day distribution represented in grey).

Fig 2. A. Prediction of bio-climatically suitable areas for Dermacentor variabilis ticks in North America. B. Uncertainty (range = maximum–

minimum suitability value) associated with the prediction of suitable areas for Dermacentor variabilis distribution in North America.

https://doi.org/10.1371/journal.pone.0237191.g002

Fig 3. A. Predicted distribution of suitable regions under the Representative Concentration Pathway (RCP) 4.5, and agreement between

different Global Circulation Models. B. Predicted distribution of suitable regions under the Representative Concentration Pathway (RCP) 8.5,

and agreement between different Global Circulation Models.

https://doi.org/10.1371/journal.pone.0237191.g003
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4. Discussion

It has been known for quite some time that D. variabilis is one of the most medically signifi-

cant tick species that transmit disease-causing pathogens to humans and animals in North

America [e.g., 47,48]. Spatiotemporal patterns of county-level incidences for some of the dis-

eases transmitted by this tick species, tularemia [49], bovine anaplasmosis [10], and Rocky

Mountain spotted fever (RMSF) [9] have worsened steadily over the past decade, indicating a

steady increase in disease burden likely related to this tick species. Such increases in incidences

could be related to several factors: better disease surveillance programs at state and local levels,

expansion of non-Lyme tick-borne diseases on the Centers for Disease Control and Prevention

(CDC)’s reportable diseases list, improved diagnostic methods, and increased awareness of,

and interest in tick-borne diseases among physicians and patients, to name a few. An impor-

tant factor, however, is the likely increase in the abundance of D. variabilis ticks across its dis-

tribution, and the potential expansion and shifts in its distribution owing to non-stationary

forces such as climate change and exurbanization. Currently, however, only limited informa-

tion is available on this topic.

The present-day model developed in this study (Fig 2A), which used occurrence data from

WRBU alone, differs from currently available predictions for D. variabilis suitability areas

across N. America. In general, our model indicated more suitability westward in the Great

Plains than CDC (2018) [2], James et al., (2015) [27] and Minigan et al., (2017) [28]. Addition-

ally, these studies indicated vast areas within the D. variabilis range as low-suitable and unsuit-

able, where our model revealed a more continuous but diffused pattern of suitability. The most

striking difference in the predictions between the present study and Minigan et al., (2017) [28]

however, is that they determined most of Mexico as unsuitable for D. variabilis, except for nar-

row areas along the southeastern Texas border, despite including occurrence locations from

Mexico in that study. It is likely that their suitability predictions were disproportionately influ-

enced by the presence of large clusters of occurrence locations, particularly in southeast Texas,

Florida peninsula, and southern Saskatchewan/Manitoba.

The present-day distribution of D. variabilis in the current study is similar to, but broader

than the generally assumed distribution for this species by the CDC, particularly along the

coast of western US and the interiors of the states of Oregon and Washington. Like CDC’s dis-

tribution map, the present-day distribution in this study indicates suitable regions for this spe-

cies in two fronts, one covering the relatively densely populated eastern half of the US, and a

second relatively narrow front along the western coast and the interiors of northwestern states,

which overlaps the home range of the Rocky Mountain wood tick, D. andersoni in some areas.

The niche suitability for this species gradually decreases along the western edge of its eastern

front (Fig 2A); however, much of the areas covering the Central Plains appears suitable to vari-

ous degrees for the establishment of this species. The Central Plains states of Texas, Oklahoma,

Kansas as well as their northern neighbors are major beef cattle producers in the US, which are

likely to suffer losses as D. variabilis further establishes.

The spatial distribution of D. variabilis determined in this study is largely affected by three

climate parameters; annual mean temperature, precipitation of wettest quarter, and annual

precipitation, in that order. No other ecological variables such as host abundance, and host

density were included nor available at a desirable spatial resolution when building these mod-

els. Ticks are exposed to the environment during most of their life-cycle, and they are depen-

dent on a complex combination of climate conditions for their survival and other

physiological functions; and, it is widely known that different tick species have specific climate

preferences [13,50]. Niche models built using climate variables alone, as in this study, and the

climate variable associations found with tick spatial distributions however, must be interpreted
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with caution [13] as they are more likely to represent areas that are climatically restrictive (cli-

matological niche) and do not include other ecological factors that shape the potential spatial

distributions. It is likely that annual mean temperature and precipitation may act as limiting

factors for D. variabilis, and there is potentially an upper and lower limit for these two parame-

ters beyond which physiological processes and life-cycle attributes of these ticks may be

affected. Additionally, precipitation during wettest quarter is likely to indirectly affect tick life-

cycle by vegetation changes, host availability and abundance and microclimate effects that

depend on precipitation, which could affect egg and larval development.

The present-day model in this study when projected into the future (year 2050) indicated

marked expansion of suitable areas for D. variabilis in North America. All eight future-climate

scenarios showed a slight eastward retraction of suitability along the western edge of present

distribution, however, the model anticipated striking expansion of suitable areas for this spe-

cies northwards into Canada (Fig 3A and 3B). The potential for northward expansion of D.

variabilis is consistent with the expected distributional shifts of other tick species in North

America [e.g., 19] and Europe [e.g., 18], an effect largely attributed to shifting climate patterns.

Climate-change influences tick biology and spatiotemporal distribution, and interactions with

intermediate hosts and pathogens therefore must be taken into consideration in anticipating

tick-borne disease dynamics [50–53] for proper longer-term public health decisions. Studies of

such climate change influences relevant to tick-borne disease ecology in North America are

severely lacking at present time. It is important to note that we used environmental data for

future climate conditions in CCAFS that were potentially downscaled from WorldClim ver-

sion 1.4, while the niche models for present-day conditions were built using version 2.0 of the

same data. Therefore, there is a possibility for some error in our future predictions. However,

both datasets are based on a broadly overlapping set of weather station data, such that the dif-

ferences overall between them are likely to be minor.

Present-day suitability for D. variabilis ticks as well as changes in suitability resulting from

climate change indicate conditions of concern for public health and potential further losses in

bovine production. Climate is well-known as a major structuring force in species’ distribu-

tional ecology [53]; although other factors certainly also enter the picture (e.g., land use, intro-

ductions, host distributions), a reasonable assumption is that climate is an important

structuring force. Precise estimates of potential economic losses due to bovine anaplasmosis in

the U.S are not readily available. However, older estimates of the cost of a clinical case due to

this disease is estimated to be around $400/animal [54,55], and the total economic impact is

roughly estimated to be around $300 million/year [56]. The cases of diseases transmitted by D.

variabilis, particularly RMSF has steadily increased over the years (e.g., Raghavan et al., 2016a;

CDC) [9,11]. The monetary losses associated with RMSF is likely to be in the millions of dol-

lars and not readily available. Deaths due to RMSF in the U.S are around 2% even with appro-

priate and timely treatment [11].

The future suitability maps presented here indicate potential areas in which D. variabilis
will be able to establish population if they are able to disperse there. More importantly, the

present-day and future predictions here are not indications of the abundance and/or density

of ticks present in these areas, but rather only the likelihood of conditions being suitable. Fur-

ther, tick distribution and infection prevalence with different pathogens are highly spatially

heterogeneous [57–59]. Therefore, further studies are needed that address local variation in

densities, contact rates with humans and bovine, infection prevalence and host associations of

D. variabilis in areas that are highly suitable and central for this species, as well as the leading

edge of its distribution where it may occur at low densities or it may be recently established.

Finally, it is important to consider that choice of model algorithm, in addition to data quality
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and parameter value selection, is an important source of uncertainty in species distribution

modeling outcomes.
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