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Abstract

Non-line-of-sight (NLOS) imaging is a light-starving application that suffers from highly noisy 

measurement data. In order to recover the hidden scene with good contrast, it is crucial for the 

reconstruction algorithm to be robust against noises and artifacts. We propose here two weighting 

factors for the filtered backprojection (FBP) reconstruction algorithm in NLOS imaging. The 

apodization factor modifies the aperture (wall) function to reduce streaking artifacts, and the 

coherence factor evaluates the spatial coherence of measured signals for noise suppression. Both 

factors are simple to evaluate, and their synergistic effects lead to state-of-the-art reconstruction 

quality for FBP with noisy data. We demonstrate the effectiveness of the proposed weighting 

factors on publicly accessible experimental datasets.

Non-line-of-sight (NLOS) imaging retrieves the scene hidden from direct view by analyzing 

multiply scattered photons mediated by a diffusing wall [1–9]. Although a plethora of NLOS 

imaging methods has been proposed in the past decade, such as the periscope camera [4] and 

correlation photography [10,11], NLOS imaging based on transient measurements 

employing pulsed picosecond lasers [1,2,5,12,13] or modulated illumination [14] offers the 

unique advantage of robust 3D image retrieval with a superior spatial resolution. Still, NLOS 

imaging is well known to be light-starved: the drastic r4 decaying of photons poses a 

fundamental limit on the achievable signal level within a reasonable exposure time. As a 

result, the measurement data in NLOS is highly noisy for diffusive targets. Although 

significant efforts have been devoted to developing detectors with single photon sensitivity 

[15], obtaining a sufficient signal-to-noise ratio (SNR) for NLOS reconstruction inevitably 

involves long exposure time, which hinders real-time image acquisition.

For practical NLOS imaging, therefore, it is critical that the reconstruction algorithm can 

retrieve the hidden scene with decent contrast from highly noisy measurement data. 

Currently, the state-of-the art image reconstruction is obtained by frequency-domain 

algorithms, including the light cone transform (LCT) [1] and f -k migration [16], which offer 

superior robustness against noises and a much faster reconstruction speed. However, these 

frequency-domain methods are all restricted to the confocal data acquisition strategy and flat 

wall geometry. Even though f -k migration was extended to handle slightly curved wall and 
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non-confocal measurements, it remains challenging to adapt it to arbitrary NLOS imaging 

geometry. Recently, a novel frequency-domain method based on fast Rayleigh–Sommerfeld 

diffraction [17] was proposed, and it works well for non-confocal NLOS imaging. 

Nonetheless, it is still limited to a planar wall geometry, and the reconstructed image quality 

is slightly inferior to that of Laplacian-of-Gaussian filtered backprojection (LoG-FBP), 

which, on the contrary, can handle arbitrary imaging strategy [6]. Yet, FBP is known to 

suffer from inferior robustness against noises and streaking artifacts.

To address the limitations of FBP, various algorithmic improvements have been proposed in 

the literature. The error BP [18] casts the reconstruction as a linear inverse problem with an 

appropriate light transport model and then applies an iterative solver such as gradient 

descent for image recovery. However, the iterative process slows down the reconstruction by 

several folds compared to the plain FBP, and it is prone to errors in the light transport model. 

Another work in Ref. [16] modeled the measurement noises in NLOS imaging with 

Bayesian statistics and was able to improve the image quality with a small computational 

overhead. Unfortunately, it does not take into account streaking artifacts, and its 

effectiveness degrades quickly at high noise levels.

The phasor field [2] method is a new approach that preprocesses the temporal signals to 

generate virtual complex signals similar to those in coherent diffraction imaging modalities 

and then apply BP to retrieve the hidden scene. Owing to the bandpass filtering in 

preprocessing, it demonstrated improved robustness against noises with a doubled 

computational cost. Nevertheless, streaking artifacts persist in this method, and it does not 

cope that well with highly noisy measurement data. The analysis-by-synthesis approach in 

Ref. [19] and the Fermat flow method [20] are also more robust against noises than FBP. 

However, the former is more time consuming, while the latter recovers only the shape, not 

the reflectance, of the hidden scene.

Here, we propose two simple yet highly effective weighting factors that can substantially 

improve the image reconstruction quality with noisy measurement data in both confocal and 

non-confocal settings. The first is the apodization factor, which attenuates the signals from 

the detection points stretching to the hidden voxel at large angles from the wall’s normal. It 

is equivalent to the aperture apodization [21] method commonly employed in ultrasound or 

radar imaging to suppress the streaking artifact, which is one of the dominant “noise” 

sources that degrade contrast in the reconstructed images. The second is the coherence factor 

that computes the normalized correlation between the backprojected signals for each hidden 

voxel. This is motivated by the fact that shot noises of photon-counting in different detection 

points are spatially independent of each other, whereas the backscattered signals originated 

from the same voxel in the hidden scene are highly correlated among the detection points. 

As a result, the coherence factor remains close to one for signals but fluctuates around zero 

for noises. Weighing the backprojected signals with the coherence factor consequently 

suppresses noises.

We first list the notations in Table 1. Formally, the apodization factor modifies the classic BP 

[5] by assigning different weights a p,v to the backprojected signals. In the discrete domain, 

we have
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Il rv , t = ∑
i = 1

N
s rp, t − τ αp, v, (1)

where the summation is done over all the N detection points on the wall, and τ =
rp + rs − 2rv

c
is the travel time from the illumination point rs  to voxel rv and back to the detection point 

rp. The impact of the apodization factor on image reconstruction can be predicted by Fourier 

analysis for planar wall geometry: the point spread function (PSF) after BP is proportional to 

the intensity of the Fourier transform of the aperture function on the wall. Such a Fourier 

relationship between the aperture and PSF is established in ultrasound or radar imaging and 

can be rigorously proved under the phasor field framework [2,22] for NLOS imaging.

Here, we devise the apodization factor that is readily calculated in BP: ap,v = cos2 θp,v, 

where θp,v is the angle between the wall’s normal and the light path from detection point rp
towards the voxel rv. Other apodization schemes such as Blackman or Hann window 

functions can also be used. The suppression of streaking artifacts by apodization is 

illustrated in Fig. 1(a), where BP from a detection point creates a spherical wavefront in the 

imaging volume. Without apodization, the spherical wavefronts remain stable over a large 

area and induce streaking artifacts around the reconstruction voxel. However, by assigning 

smaller weights a p,v to signals propagating to the voxel at large angles, the spherical 

wavefront far away from the voxel is attenuated, which leads to reduced streaking artifacts. 

This behavior is quantitatively elaborated in Fig. 1(b) with Fourier analysis.

The PSF with apodization factors shows markedly weaker side lobes at the cost of degraded 

lateral resolution, a tradeoff of any apodization schemes. As streaking-artifact-induced 

“noise” is a major contributor to degraded image quality, the benefit of the apodization 

factor outweighs the slight reduction in lateral resolution (~1.4 times).

The apodization factor does not have any effects on the noises in measurement data. To 

abate noises, therefore, we calculate a coherence factor:

CF rv = 1
K ∑

j = 1

K
CFj rv = 1

K ∑
j = 1

K Il
2 rv , t = τ + jΔt

Iq rv , t = τ + jΔt
, (2)

Iq rv , t = ∑
i = 1

N
s rp, t − τ αp, v

2
, (3)

where Δt is the sampling period of the temporal signal. It is noted that to avoid extra 

computational complexity, the coherence factor does not measure directly the correlation 

between signals from different detection points. Instead, it is calculated between the 

backprojected signal Il rv, t  and a generated signal in Eq. (3) and then is averaged over a 

temporal kernel of length K. Empirically, a kernel size of one is efficient for noise 

suppression, and a larger K was found to be beneficial in reducing strong streaking artifacts 
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at the expense of increased computing time. We calculate in Fig. 1(c) the coherence factor as 

a function of the expected photon count because NLOS imaging is mostly shot-noise 

limited. The coherence factor decreases steadily with fewer photons (i.e., noisier data), and 

though not shown here, a similar trend was observed for other noise sources such as white 

noises.

The final FBP reconstruction with the proposed weighting factors is obtained by convolving 

the weighted BP results with a LoG filter h(x, y, z):

I′ rv ℎ x, y, z * CF rv Il rv , t = 0 . (4)

To demonstrate the effectiveness of the proposed weighting factors for improving the 

reconstruction quality of FBP, we used both the confocal NLOS data set [1,16,23] and the 

non-confocal dataset [17], and compared the reconstruction quality produced by the 

following algorithms: LoG-FBP, LoG-FBP with apodization (FBP-A), LoG-FBP with both 

weighting factors (FBP-AC), and the state-of-art f -k migration or phasor field method. The 

kernel size of the LoG filter was 7 × 7 × 7, and the FBP reconstruction resolution was fixed 

at the native resolution of all the datasets. All reconstructed volumetric images were 

normalized to the range of [0,1] and then thresholded for improved 3D rendering.

We first reconstructed the “resolution” scene using the confocal dataset acquired with 

exposure times of 10 and 60 min to illustrate the noise robustness and spatial resolution of 

all considered algorithms. The kernel size K was set to eight here for FBP-AC. Figures 2(a) 

and 2(b) show respectively the front and top views of the resolution scene obtained with 10 

min exposure time and a rendering threshold of 0.02. From FBP to FBP-AC, there is a clear 

trend of reduction in background noises. The streaking artifact is salient in the top view for 

the vanilla FBP but is substantially reduced by the apodization factor in FBP-A and FBP-

AC. With a longer exposure time of 60 min, the reconstructed images show converged 

quality for all the algorithms in Fig. 2(c) owing to an improved SNR in measurement data. 

Nevertheless, the vanilla FBP still shows more streaking artifacts when the results are not 

thresholded. The f -k migration yields the state-of-art results for noisy measurement (10 min 

exposure) but contains more noises surrounding the objects in Fig. 2(b). This is probably 

induced by the resampling operation in the Fourier domain that interpolates FFT data onto a 

rectilinear coordinate from a spherical one, which is known to cause artifacts in computed 

tomography. Changing the rendering threshold to 0.15 for reconstructed images with 60 min 

exposure removed those artifacts in Fig. 2(c). It is noted that the proposed FBP-AC obtained 

image quality (noise robustness and spatial resolution) similar to f -k migration in this case.

Next, we demonstrate that the proposed weighting factors can outperform f -k migration in 

retrieving the hidden scene with highly noisy measurement data. We used the “dragon” 

scene in the confocal dataset, which contains measurement data with an exposure time as 

short as 15 s. The reconstructed results for all the algorithms are compared in Fig. 3 with a 

threshold of 0.15.

Feng and Gao Page 4

Opt Lett. Author manuscript; available in PMC 2020 August 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



For the FBP and phasor field method, the reconstructed volume is highly noisy. FBP-A and f 
-k migration yield a noisy image of the hidden dragon, but the contrast is low. In contrast, 

FBP-AC with a kernel size of K = 1 shows markedly less noise and enables decent 

visualization of the hidden dragon. While previous work [17] needs to trade reconstruction 

resolution for noise robustness in order to visualize the hidden dragon well, the proposed 

method achieves the goal at the native resolution (512 × 512 × 512) of the dataset.

We then reconstruct a complex scene from the “teaser” dataset that contains highly reflective 

objects, which is problematic for FBP and the phasor field method due to their strong 

streaking artifacts. We used the minimal exposure time of 10 min to test the robustness 

against noises of all the considered algorithms in Figs. 4(a)–4(e), which were rendered with 

a threshold of 0.1. Notably, the proposed FBP-A and FBP-AC algorithms suppress 

substantially the streaking artifacts from the reflective disk ball that afflicts the FBP and 

phasor field method, as indicated by the arrows. F -k migration shows state-of-the-art 

robustness against noises and is immune to streaking artifacts from the reflective object. 

Still, it is afflicted by resampling-induced artifacts around the resolution target area. 

Compared with FBP-A, the coherence factor in FBP-AC with a kernel size of K = 8 abates 

the streaking artifacts even further, as contrasted in the insets. Overall, FBP-AC handles 

reflective objects equally well as f -k migration and is more robust against noises, 

visualizing the hidden scene [ground truth in (f)] decently.

Last, we applied the proposed method on the office scene dataset from Ref. [17] in a non-

confocal setting and compared it with the phasor field method, using the same parameters as 

in Ref. [17]. The results are shown in Fig. 5, where the corresponding maximum intensity 

projection images are given in the last row. A similar observation can be made here: the two 

weighting factors substantially abate the noises in the reconstruction volume and outperform 

the phasor field in suppressing noises. However, there are more aura parts in FBP and the 

proposed method, such as those indicated by the arrows, which may be attributed to 

multiple-scattered or ambient light. The phasor field method, owing to its bandpass filtering 

step, shows better performance in alleviating these artifacts, allowing more details to be 

rendered that are otherwise overshadowed by the aura parts. Although we implemented the 

weighting factors in FBP, the fact that they are evaluated during the BP step indicates that 

they can be easily extended to the phasor field framework with a few additional steps. This is 

left to future work.

The computation overhead for the weighting factors is small. For each reconstruction voxel, 

the apodization factor involves only one extra division and multiplication. The coherence 

factor needs K extra multiplication and division and K −1 summation operation. The 

dominant computation in FBP-AC is still the BP operation. Implemented on a Nvidia 

GTX2080TI graphical processing unit, the reconstruction times for FBP, FBP-A, and FBP-

AC on a 512 × 512 × 512 volumetric grid are 160, 250, and 270 (K = 1) s, respectively. The 

time increased to 480 s when using a larger kernel K = 8 to suppress strong streaking 

artifacts, indicating that the bottleneck was now evaluating the coherence factor. Such an 

increase in reconstruction time is acceptable, considering the benefits of markedly improved 

noise robustness. Though f -k migration currently takes about 80 s and LCT can run in real 

time, fast BP algorithms have also been achieved [17,24].

Feng and Gao Page 5

Opt Lett. Author manuscript; available in PMC 2020 August 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



In conclusion, we proposed two simple and highly effective weighting factors—apodization 

and coherence factors—to improve the reconstruction of FBP for NLOS imaging in arbitrary 

geometry, which is a light-starved application that yields highly noisy data. Compared with 

the state-of-the-art f -k migration or phasor field method, the proposed weighting factors 

enabled LoG-FBP to retrieve the hidden scene with an improved contrast using a very low 

photon count. They will be conducive to real-time NLOS imaging by reducing data 

acquisition time.
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Fig. 1. 
Weighting factors for FBP reconstruction. (a) Apodization effect on streaking artifacts. (b) 

Fourier analysis of apodization on streaking artifacts and lateral resolution. (c) Coherence 

factor as a function of photon count for noisy measurements. w. and w/o., with and without.
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Fig. 2. 
NLOS reconstruction with different algorithms for the “resolution” scene. Left to right: FBP, 

FBP with apodization, FBP with both weighting factors, f -k migration, and ground truth. 

(a), (b) Front and top view results with 10 min exposure. (c) Front view results with 60 min 

exposure.

Feng and Gao Page 9

Opt Lett. Author manuscript; available in PMC 2020 August 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 3. 
Reconstruction with noisy data. Top row: front view; second row: side view. From left to 

right: FBP, FBP with apodization, FBP with both weighting factors, f -k migration, phasor 

field, and ground truth.
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Fig. 4. 
Reconstruction of the “teaser” scene using different methods. (a)–(e): FBP, FBP-A, FBP-

AC, f -k, and phasor field. (f) Ground truth image.
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Fig. 5. 
Reconstruction of the office scene using all the considered algorithms with the shortest 1 ms 

exposure. (a)–(e): FBP, FBP-A, FBP-AC, phasor field, and ground truth. The bottom row 

shows the maximum intensity projection images. The 3D images are thresholded by 0.02.
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Table 1.

Notations

rp Detection point on the wall rv Reconstruction voxel

rs Laser illumination point on the wall s rp, t Temporal signal at rp

ap,v Apodization factor for point rp to voxel rv Il rv, t Backprojected signal at rv
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