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Abstract
Currently, a novel coronavirus (SARS-CoV-2, also called 2019-nCoV) has triggered pandemic Coronavirus Disease 2019 
(COVID-19), an acute infectious respiratory disease that first became epidemic in Wuhan (China) and is now spreading 
worldwide. Although 2019-nCoV and SARS-CoV are very similar viruses genomically and structurally, the huge number 
of severe cases and deaths now being caused by 2019-nCoV infections has understandably prompted intense research on the 
receptor used by it to enter human cells. Angiotensin converting enzyme 2 (ACE2), a functional receptor for SARS-CoV, 
now appears likely to mediate 2019-nCoV entry into human cells. In this review, we describe the roles performed by ACE2 
as an enzymatic catalyst and as a receptor for this novel coronavirus. We also summarize the latest research pertaining to the 
changes noted in ACE2 expression after viral binding, and the relationships relating to virus transmission and population 
susceptibility to it. Lastly, we speculate on the pathogenesis of COVID-19 and provide a useful reference for drug develop-
ment against this aggressive virus.

Keywords  Angiotensin converting enzyme 2 · 2019-nCoV · Virus receptor · Coronavirus · Renin angiotensin system · 
Immune function

Introduction

The new SARS-like acute infectious respiratory disease has 
now reached pandemic levels. First emerging in Wuhan in 
December 2019 in the Hubei Province of China, it was tem-
porarily called “novel coronavirus pneumonia (NCP)” by 
China’s National Health Commission. Studies have shown 
that the disease is caused by a novel coronavirus (CoV), 

officially named 2019-nCoV, and now referred to as SARS-
CoV-2 by scientists [1]. The US Food and Drug Adminis-
tration named this new epidemic infectious disease corona-
virus disease 2019 (COVID-19). Epidemiological studies 
have shown that 2019-nCoV can spread rapidly through 
person-to-person transmission routes, which include coughs, 
sneezes, droplet inhalation, and other contact transmis-
sion. The disease, which is now rapidly spreading around 
the globe, has become an international public health emer-
gency. The clinical symptoms of COVID-19 include fever, 
dry cough, fatigue, dyspnea, respiratory failure, and even 
death in severe cases. Although preliminary experiments by 
researchers or research institutions have reported that some 
agents may be effective against 2019-nCoV, there are cur-
rently no effective drugs targeting 2019-nCoV/SARS-CoV-2 
[2].

Mammalian angiotensin-converting enzyme 2 (ACE2) 
was first discovered in the human lymphoma cDNA library 
by the Tipnis team [3] and a human heart failure ventricle 
cDNA library by Donoghue team [4] in 2000. During the 
SARS outbreak in 2003, ACE2 was identified by Li et al. [5] 
as a functional receptor for SARS-CoV in that it mediated 
the viral invasion of host cells, a finding later confirmed in 
animal experiments [6]. Some recent studies have suggested 
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that 2019-nCoV may infect host cells through the ACE2 
receptor, as has already been established for SARS-CoV 
[7–10]. Accordingly, ACE2, as a 2019-nCoV receptor, may 
be a potential target for the treatment of COVID-19. In this 
review, the latest advances in our understanding of the roles 
played by ACE2 in enzyme catalysis, CoV invasion, cel-
lular expression changes after viral–host cell binding, and 
its relationships with viral transmission and population sus-
ceptibility are described in the context of the pathogenesis 
of COVID-19. This review aims to provide a reference for 
the development of ACE2-targeted drugs for 2019-nCoV.

Physiological role of ACE2

Discovery and characterization of ACE2

In 1995, a protein highly homologous to mammalian somatic 
angiotensin-converting enzyme (ACE), was isolated and 
purified from Drosophila melanogaster embryos and named 
AnCE [11]. In 1996, researchers identified another Dros-
ophila gene whose predicted translation product shared 
homology with mammalian testicular ACE and with AnCE 
and called it Ace-related (Acer), after which it was renamed 
ACE-like protein [12]. Insect AnCE and ACE-like protein 
then became classified as “ACE-like enzymes” [3].

In 2000, scientists also discovered ACE-like enzymes in 
mammals. Tipnis et al. [3] were the first researchers to clone 
a human metalloproteinase with high homology to ACE, 
calling it “ACE homolog (ACEH)” or “ACE related car-
boxypeptidase”, latterly known as “angiotensin-converting 
enzyme 2 (ACE2)” by Donoghue team [4]. The sequence 
identity between ACE2 and ACE is about 40%, with a 
similarity score of 61% [3], while the sequence similarity 
between mouse and human ACE2 is about 83% [13]. The 
human ACE2 gene is located on the short arm of the X chro-
mosome and contains 18 exons. The complete human ACE2 
cDNA encodes an 805 amino acid protein with a molecular 
weight of 120kD [3]. Membrane-associated ACE2 is a type 
I transmembrane protein consisting of a signal peptide at 
the amino terminal, a single metalloproteinase active site 
containing a zinc ion binding motif (i.e., HEMGH), a trans-
membrane domain, and a small cytoplasmic domain at the 
carboxyl terminus. A variety of transmembrane proteins 
can be cleaved by proteolytic enzymes to release the cata-
lytically functional and free-standing extracellular domain, 
thereby regulating their activities [3, 14]. ACE2, like ACE, 
is a cleavable, extracellular enzyme located on the cell sur-
face membrane [15]. ADAM17, a metalloproteinase family 
member, can cleave membrane-bound ACE2 and release its 
extracellular portion into the circulation as soluble ACE2 
(sACE2), which lacks the transmembrane and cytoplasmic 
domains but retains its activity [14]. It has been shown that 

the activity of sACE2 is suppressed by the presence of an 
endogenous inhibitor in the form of a currently unknown 
positively charged small molecule [16].

ACE2 catalysis and the renin–angiotensin system 
(RAS)

RAS, one of the most important hormonal mechanisms 
for maintaining homeostasis in the human body, regulates 
blood pressure, fluid volume, and sodium–potassium bal-
ance. RAS, which is located in the circulation and in local 
tissues, is linked with many diseases such as cardio and cer-
ebral vascular diseases, and diabetes mellitus, among oth-
ers [17]. The classical RAS encompasses ACE, Ang II, the 
AT1 receptor, and other molecules, collectively forming the 
ACE–Ang II–AT1 axis. As a dicarboxypeptidase, ACE can 
catalyze the conversion of Ang I to Ang II, after which Ang 
II binds to the AT1 receptor to play roles in promoting vaso-
constriction, inflammation and proliferation. The discovery 
of ACE2 suggests that there is another ACE2–Ang–(1–7)-
Mas receptor pathway in the RAS, which is contrary to the 
classical pathway [18]. ACE2, a monocarboxyl peptidase, 
contains an N-terminal peptidase domain (PD) and a C-ter-
minal collectrin-like domain (CLD) [4]. The N-terminal PD 
directly hydrolyzes Ang II into Ang-(1–7), or firstly Ang I 
into Ang-(1–9), which can later be hydrolyzed to Ang-(1–7) 
by ACE or other enzymatic molecules. Ang-(1–7) exerts 
the opposite effect of Ang II (i.e., vasodilation, anti-inflam-
mation and anti-proliferation) by activating Mas receptor 
[18]. In fact, RAS metabolic pathways are not only limited 
to the two above-mentioned pathways, but some alternative 
pathways as well, such as Ang II formation via the chymase 
pathway and Ang-(1–7) formation directly from Ang I by 
prolyl endopeptidase or neutral endopeptidase [18] (Fig. 1).

CoV structure and characteristics 
of 2019‑nCoV

CoVs are a large group of spherical, 120–160 nm in diam-
eter, positive-sense viruses with single-stranded RNA 
genomes. CoV genomes, ranging from 26 to 32 kb in size, 
are the largest among the known RNA viruses. The RNA 
genomes of CoVs can serve as messenger RNAs and can be 
translated directly into proteins in the ribosomes of host cells 
[19]. To date, seven CoV types are known to infect humans, 
among which HCoV-229E, HCoV-NL63, HCoV-OC43 and 
HCoV-HKU1 only cause common cold symptoms, whereas 
the other three types, SARS-CoV, MERS-CoV and 2019-
nCoV, are highly transmissible with high fatality rates [20].

The CoV genome comprises a 5′‐cap structure and 3′‐
poly‐A tail. The 5′-terminal-located two‐thirds of CoV 
genes mostly encode the non-structural proteins that form 



533Advances in research on ACE2 as a receptor for 2019‑nCoV﻿	

1 3

polymers and perform replication and translation functions. 
One‐third of the genome near the 3′‐terminus encodes at 
least four main structural proteins; namely, spike (S), enve-
lope (E), membrane (M) and nucleocapsid (N) [21]. The S 
protein forms radially protruding trimers on the viral enve-
lope, which mediate virus–receptor binding and membrane 
fusion. So, the S protein is a key protein for determining 
the host range and transmission ability of CoVs [19]. The S 
protein is structurally divided into two functionally distinct 
subunits called the S1 and S2 subunits. While the S1 subunit 
is responsible for receptor binding and includes the N-termi-
nal domain and C-terminal receptor binding region (RBD), 
the S2 subunit facilitates membrane fusion and anchors S 
into the viral membrane [22].

Annotation of the 2019-nCoV genome shows that it pos-
sesses 14 open reading frames (ORFs) encoding 27 proteins 
[23]. Although HCoV-NL63, 2019-nCoV and SARS-CoV 
all invade host cells via ACE2 receptors, only the latter 
two viruses share homology and similarity in their genome 
sequences [23, 24]. 2019-nCoV and SARS-CoV are both 
β CoVs, sharing the highest nucleotide sequence identity 
(79.7%) across their whole genomes [25]. The main differ-
ence between them lies in ORF1a and the gene sequence 
encoding the S protein. Homology modeling shows that the 
receptor domain of 2019-nCoV has a similar receptor-bind-
ing domain as SARS-CoV [8, 10].

Structural analyses have revealed that the E and N pro-
teins in 2019-nCoV show evolutionary conservation, with 
sequence identities of 96% and 89.6%, respectively, as com-
pared with SARS-CoV [25]. In contrast, multiple mutations 

in 2019-nCoV are present in its S and M structural proteins 
when compared with bat-CoV, revealing that different selec-
tion pressures have been exerted on 2019-nCoV during its 
evolutionary history [26]. Previous studies have indicated 
that positions 442, 472, 479, 487, and 491 are important 
amino acid residues interacting with ACE2 in the SARS-
CoV S protein and are considered to be crucial for the 
cross-species and person-to-person transmission of SARS-
CoV [27]. Although the RBD domain of the S protein from 
2019-nCoV is highly conserved in its sequence, as compared 
with SARS-CoV, amino acids at four important positions in 
five key residues are replacements with only Tyr491 being 
retained [10]. The 2019-nCoV and SARS-CoV S proteins, 
nevertheless, still share an almost identical 3D structure in 
the RBD domain. Thus, similar van der Waals forces and 
electrostatic properties are still predicted to occur at the 
interaction interfaces of both viruses, although the binding 
affinity of 2019-nCoV for ACE2 is significantly higher than 
that of SARS-CoV [10].

ACE2 as a receptor for CoVs

Identification of ACE2 as a viral receptor 
in the human host

During the SARS outbreak in 2003, Li et al. [5] were the first 
research group to identify ACE2 as a functional receptor for 
SARS-CoV. They first found that 293T cells transfected with 
ACE2 formed multinucleated syncytia in cells expressing 
the S protein. They also found that SARS-CoV could rep-
licate effectively in non-susceptible cells transfected with 
ACE2, while an anti-ACE2 antibody was found to block 
viral replication in E6 Vero cells. The above in vitro experi-
ments led them to conclude that ACE2 is a functional recep-
tor for SARS-CoV, and mediates viral entry into host cells.

Three in  vivo experiments using humanized ACE2 
transgenic (hACE2) mice infected with SARS-CoV were 
reported in 2007. Under the regulation of CAG-complex 
promoters, including cytomegalovirus immediate-early 
(CMV-IE) enhancers and chicken β-actin promoters, the 
hACE2 gene was expressed in the lungs, small intestines, 
and livers (at the mRNA level) of AC70 transgenic mice. 
The mice showed clinical manifestations such as weight loss 
after being attacked by virus, and all died within 8 days [28]. 
Under the control of the cytokeratin 18 promoter, the hACE2 
gene was expressed in alveolar epithelial cells and the liver, 
kidneys and gastrointestinal epithelial cells of another 
transgenic mouse, and rapid death also occurred after viral 
infection [29]. The transgenic mouse with the endogenous 
mACE2 promoter was found to have hACE2 expression in 
its lungs, heart, kidneys and intestines at both the mRNA 
and protein levels. Dissimilar to the above two mice showing 

Fig. 1   The metabolic pathway of the rennin–angiotensin system. The 
RAS system mainly encompasses two axes: the classical RAS ACE–
Ang II–AT1 regulatory axis and the ACE2–Ang–(1–7)–Mas coun-
ter-regulatory axis. (P) RR, (pro) renin receptor; Ang, angiotensin; 
ACE, angiotensin-converting enzyme; ACE2, angiotensin-converting 
enzyme 2; NEP, neutral endopeptidase; PEP, prolyl endopeptidase; 
PCP, prolyl carboxypeptidase
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lethal SARS-CoV infections, none of the hACE2 transgenic 
mice challenged with SARS-CoV died; however, the viral 
titers in their lung tissues had significantly increased above 
normal and serious pathological changes in their lung tissues 
and multiple organ damage was apparent, thereby establish-
ing a susceptible animal model for SARS-CoV [30].

Recently, some researchers have shown that ACE2 can 
be used as a 2019-nCoV receptor using molecular models 
and in vitro experiments. Zhou et al. [7] first performed viral 
transfection experiments using HeLa cells expressing or not 
expressing ACE2. The results showed that 2019-nCoV could 
only enter HeLa cells expressing human ACE2, thus con-
firming that 2019-nCoV is likely the cell receptor for 2019-
nCoV [7]. Another study demonstrated that expression of 
human or bat ACE2 in non-susceptible BHK-21 cells can 
enable 2019-nCoV and SARS-CoV to enter cells, and that 
anti-serum raised against human ACE2 can block SARS-S 
and 2019-nCoV S-driven cell entry [31]. A genomic char-
acterization and homology modeling study on the origins of 
2019-nCoV revealed the existence of structural similarities 
in the receptor binding domains of SARS-CoV and 2019-
nCoV [8]. In other research on the potential receptor for 
2019-nCoV, the sequence of 2019-nCoV RBD, including 
its receptor-binding motif that directly contacts ACE2, was 
found to be similar to that of SARS-CoV [9].

ACE2-binding affinity has been shown to be one of the 
most important factors determining the infectivity of SARS-
CoV [9]. Recently, Yan et al. [32] analyzed the interface 
between ACE2 and 2019-nCoV-RBD and SARS-RBD com-
plexes to reveal variations that may determine the differ-
ent affinities of the RBDs in the two related viruses. Some 
researchers have used molecular models to show that the 
2019-nCoV RBD domain penetrates the deep hydrophobic 
pocket of ACE2, resulting in a stronger interaction with 
ACE2 than SARS-CoV [33]. Wrapp et al. [34] analyzed 
the structure of the 2019-nCoV S protein trimer by cryo-
electron microscopy and found that the binding capacity of 
the S protein from 2019-nCoV to the ACE2 receptor was 
10- to 20-fold higher than that of SARS-CoV. Interestingly, 
Coutard et al. [35] identified a peculiar furin-like cleavage 
site in the S protein from 2019-nCoV, possibly explaining 
why 2019-nCoV seems to be readily transmitted between 
humans.

Recently, humanized transgenic animal modeling has fur-
ther demonstrated that ACE2 can mediate host cell invasion 
by 2019-nCoV. In an experiment where hACE2 transgenic 
mice were infected with 2019-nCoV, viral antigens were 
observed in bronchial epithelial cells, alveolar epithelial 
cells and macrophages in the transgenic mice, while no viral 
antigens were found in their infected wild-type counterparts 
[36]. Therefore, it is speculated that like SARS-CoV, 2019-
nCoV infects host cells via the mediating effects of its S 
protein and ACE2 receptors on the surfaces of human cells.

As a point of reference, HCoV-NL63, which was discov-
ered in the Netherlands in 2004, shares no structural homol-
ogy with SARS-CoV, but also utilizes the ACE2 receptor 
when invading host cells. However, the crystal structure has 
showed that the HCoV-NL63 RBD domain binds to a nar-
rower region of ACE2, involving fewer amino acids, which 
would lead to a weaker interaction. However, NL63-CoV 
does not have as aggressive transmission as SARS-CoV or 
the newer-discovered 2019-nCoV, so its pathogenicity is 
weak and any relevant research on it is scarce [24].

The ACE2 receptor mediates viral entry into cells

ACE2 as a receptor may mediate the entry of CoV into host 
cells in two independent ways (Fig. 2).

The first way involves ACE2-receptor-mediated clathrin-
dependent endocytosis. The RBD of the virus is recognized 
by the extracellular PD of ACE2 mainly through polar resi-
dues. When CoV is connected to ACE2, the ACE2 extracel-
lular domain controlling the catalytic effect is cleaved off by 
specific proteases, such as metalloproteinase ADAM17, and 
the transmembrane domain is internalized. Next, with the 
assistance of clathrin [37], viral particles and host cells fuse, 
and the intracellular structure of ACE2 aids viral transport 
from the cell membrane to the cytoplasm. In vitro studies 
have shown that ADAM17 inhibitors can attenuate virus rep-
lication [38]. Although the physiological function of ACE2 
extracellular shedding has not been fully elucidated, it has 
been shown to be associated with virus invasion and replica-
tion [38, 39]. sACE2 retains catalytic activity and can par-
tially block SARS-CoV binding to receptors on target cells, 
and one in vitro study has shown that sACE2 could block the 
association between the S1 domain of SARS-CoV and E6 
Vero cells and reduce viral replication [5]. Cells expressing 
ACE2 non-catalytic mutants can still be infected by SARS-
CoV, and the enzymatic activity of ACE2 did not contribute 
to S-protein-mediated infection by this virus [40], indicat-
ing that the peptidase action of ACE2 is not necessary for 
viral entry into host cells. Elsewhere, structural analysis has 
shown that the metallopeptidase domain of ACE2 can be 
divided into two subdomains (I and II), with the CoV S pro-
tein contacting the top of subdomain I of the ACE2 catalytic 
domain, but the S protein does not contact subdomain II or 
seal the peptidase activity sites in ACE2 [41].

The second way involves ACE2-receptor-mediated 
transmembrane serine protease 2 (TMPRSS2)-dependent 
membrane fusion. One study found that ACE2-mediated 
viral invasion involves TMPRSS2, which is employed for 
S protein priming and activation of membrane fusion pro-
cesses [42], and TMPRSS2s priming role has recently been 
confirmed for 2019-nCoV [31]. When the SARS-S protein 
binds to ACE2, processing by TMPRSS2 is thought to allow 
fusion at the cell surface or upon uptake into cellular vesicles 
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but before virion transport into cell endosomes. TMPRSS2 
has also been found to compete with the ADAM17 met-
alloprotease for ACE2 processing, but only cleavage by 
TMPRSS2 was found to enhance SARS-S protein-driven 
entry [42]. The molecular mechanism underlying protease-
enhanced cell entry and the potential role of ACE2 cleavage 
upon SARS-S protein activation are unclear [42]. Research 
using the 2019-nCoV S protein pseudovirus system and 
different inhibitors has shown that 2019-nCoV enters 293/
hACE2 cells mainly by endocytosis, and that phosphati-
dylinositol 3-phosphate 5-kinase, two pore channel subtype 
2, and cathepsin L are critical for viral entry. Another study 
revealed that 2019-nCoV S protein can trigger syncytia in 
293/hACE2 cells independent of an exogenous protease 
[43].

Recent resolution of the full-length structure of human 
ACE2 using cryo-electron microscopy by Yan et al. [32] 
indicated that ACE2 exists as a dimer with both “open” and 
“closed” conformations. Conversion of the two conforma-
tions is achieved by rotation of the PD domains in ACE2, 
and both conformations contain the mutual recognition 
interface with CoVs. Further studies have shown that ACE2 
dimers can accommodate two S protein trimers through each 
ACE2 monomer [44]. ACE2 is also a chaperone protein 
for membrane transportation of the amino acid transporter 
B0AT1 (also called SLC6A19) [45], which mediates the 
uptake of neutral amino acid-like substances into intestinal 
cells in a sodium-dependent manner. These findings suggest 

that B0AT1 may play a regulatory role in intestinal infec-
tion with some CoVs [44]. Further research indicates that 
the presence of B0AT1 may block TMPRSS2s access to 
the cutting site on ACE2; therefore, the role played by the 
ACE2/B0AT1 dimer structure in conformational binding of 
the 2019-nCoV S protein appears to affect the viral invasion 
of host cells. Whether B0AT1 can inhibit 2019-nCoV infec-
tion by blocking ACE2 cleavage remains an unanswered 
question [44].

Changes in ACE2 expression after binding 
to CoV

ACE2 gene expression is regulated at both the transcrip-
tional and post-transcriptional levels by a variety of mecha-
nisms. Ang II/AT1 can upregulate ACE2 mRNA and protein 
expression in human cardiac fibroblasts via the ATT​TGG​
A promoter sequences in the − 516 to − 481 regions of the 
gene [46]. While Ang II/AT1 promotes extracellular ACE2 
internalization followed by lysosomal degradation [47], 
ADAM17 cleaves membranes bearing ACE2, thereby releas-
ing sACE2 into the circulation [14]. Furthermore, microR-
NAs such as miR-421 can mediate ACE2 gene silencing in 
cardiac fibroblasts and a variety of human tissue cell lines 
[48]. Thus, these mechanisms of expression and activity 
regulation of ACE2 play an important role in cardiovascular 
and other diseases.

Fig. 2   The viral invasion process of host cells via the ACE2 receptor. 
ACE2 as a receptor may mediate the entry of CoV into host cells via 
two distinct routes. The first involves clathrin-dependent endocytosis; 

the second involves ACE2 receptor-mediated TMPRSS2-dependent 
membrane fusion. ADAM17, a disintegrin and metallopeptidase 
domain 17; TMPRSS2, transmembrane serine protease 2
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Interestingly, one study has suggested that ACE2 expres-
sion is downregulated after viral infection. In their 2005 
study, Kuba et al. [6] showed that SARS-CoV infection and 
SARS-CoV S proteins reduce the expression of ACE2 in 
lungs (but not ACE), lead to increased Ang II levels, signal-
ing through the AT1 receptor, increased pulmonary vascu-
lar permeability, and acute lung injury induction. Notably, 
ACE2 is not only a receptor for viral invasion of host cells 
during SARS-CoV infection, but viral binding to it deregu-
lates its protective effect on the lungs. This may explain why 
SARS-CoV is more lethal in humans than other CoVs [49]. 
Oudit et al. [50] demonstrated that SARS-CoV was also 
strongly equipped to infect the heart and modulate ACE2 
expression in this organ. Pulmonary infections with SARS-
CoV in wild-type mice subsequently led to downregulation 
of myocardial ACE2 mRNA and loss of ACE2 protein in 
an ACE2-dependent manner. Furthermore, the presence of 
SARS-CoV in the heart in patients who died from SARS 
was associated with macrophage infiltration and myocar-
dial damage in association with decreased myocardial ACE2 
protein expression. Collectively, these findings suggest that 
myocardial ACE2 downregulation may be an underlying 
pathophysiological mechanism for SARS-associated heart 
disease.

Recently, some researchers have speculated that 2019-
nCoV causes ACE2 downregulation by binding to the ACE2 
receptor, and they have proposed strategies to treat COVID-
19 infections with ACE2 as the target, which involves using 
the TMPRSS2 inhibitor to prevent CoV S protein-ACE2 

binding [31, 51], blocking the ACE2 receptor using anti-
ACE2 antibodies or peptides, or using sACE2 to attenuate 
viral invasion through competitively binding with 2019-
nCoV, thereby protecting against lung injury through its 
unique enzymatic properties [51]. Supporting such strategies 
is the finding from Wang et al. [52], who showed that, indi-
vidually, SARS-CoV or 2019-nCoV S proteins can interact 
with ACE2 on the surface of host cells and become sepa-
rately internalized together with ACE2 through endocyto-
sis, resulting in reduced surface ACE2 expression [53]. This 
endocytic event also upregulates ADAM17 activity, which 
in turn cleaves ACE2 on cell membrane surfaces, perpetu-
ating the loss of the ACE2 protective effect in tissue RAS. 
Loss of ACE2 leads to imbalance of RAS homeostasis and 
increased Ang II levels, causing damage to the organism 
through AT1 receptors, while also upregulating ADAM17 
activity in a well characterized positive feedback loop lead-
ing to further cleavage of cell surface attached ACE2 [52]. 
One study reported that the level of Ang II in the plasma 
of 2019-nCoV-infected patients is significantly higher than 
in uninfected individuals, a finding linearly correlated with 
viral load and the degree of lung injury [54]. ADAM17 also 
mediates the liberation of the membrane bound precursors of 
tumor necrosis factor α (TNFα), interferon (IFN)-γ, and IL-4 
(interleukin-4) proinflammatory cytokines into the circula-
tion [39], which also downregulates ACE2 expression on 
the cell surface and decreases ACE2 mRNA levels. Soluble 
recombinant human ACE2 (rhACE2) inhibits viral invasion 
of host cells by competitive binding with 2019-nCoV, limits 

Fig. 3   The proposed mechanism underlying 2019-nCoV-induced 
downregulation of cell surface ACE2 expression. CoV interacting 
with ACE2 becomes internalized together with ACE2 through endo-
cytosis, which upregulates ADAM17-mediated proteolytic cleav-
age of ACE2. Loss of ACE2 leads to accumulation of angiotensin 

II, which also increases ADAM17 activity through AT1 receptors. 
rhACE2 inhibits viral invasion of host cells by competitive binding 
to CoV with membrane ACE2, limits the activities of Ang II, and 
increases protective Ang-(1–7) levels
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the activities of Ang II, and increases protective Ang-(1–7) 
levels [52, 55] (Fig. 3). Elsewhere, Monteil et al. [56] found 
that rhACE2 can prevent 2019-nCoV from infecting human 
blood vessel organoids and human kidney organoids engi-
neered via the induction of pluripotent stem cells and addi-
tion of rhACE2 also showed no cellular toxicity. However, 
because it has only been shown that rhACE2 can block the 
early stages of 2019-nCoV infections, this finding requires 
confirmatory clinical evidence.

However, some researchers have the opposite viewpoint, 
suggesting that ACE2 expression is upregulated by viral 
infection. A team at Shandong University (China) searched 
databases for cells and tissues known to be stimulated by 
viral infections or inflammatory cytokines, and they clearly 
showed that ACE2 can be significantly upregulated by 
virus infection and inflammatory cytokine stimulation [57]. 
The ACE2 gene is responsive to viral infections, and its 
expression can be stimulated by a variety of viruses. When 
upregulated, ACE2 is more receptive to viral invasion and 
transmission, while its induction by inflammatory cytokines 
also implies that the “cytokine storm” caused by 2019-nCoV 
not only damage host tissues, but may also accelerate viral 
spread [57]. Their analysis also showed that there are multi-
ple transcription factor binding sites related to immune and 
cytokine responses in the promoter region of ACE2. It is 
speculated that the activated immune system induces the 

expression of a variety of cytokines, including IFN, after 
viral infection, which promotes the transcription and expres-
sion of ACE2 by activating downstream signaling pathways 
such as the JNK (c-Jun N-terminal kinase) pathway. Ziegler 
et al. [58] showed that IFNs increase ACE2 in human nasal 
epithelia and lung tissue, and ACE2 belongs to a large fam-
ily of interferon-stimulated genes (ISGs), and suggested that 
2019-nCoV may exploit the ACE2-mediated tissue-protec-
tive response to provide further cellular targets for entry.

In conclusion, the changes occurring in the expression 
level of ACE2 and its regulatory mechanism after the S pro-
tein of CoV binds to the ACE2 receptor remain unclear. 
If viral invasion downregulates ACE2 via adaptive protec-
tive mechanisms in the host this will inevitably cause RAS 
homeostasis impairment, thereby weakening the protective 
effect of ACE2 and leading to acute lung injury. If, on the 
other hand, ACE2 is upregulated, that will provide more 
receptors for viral entry and cause more viruses to invade 
host cells. Therefore, either upregulation or downregula-
tion of ACE2 may have adverse consequences for the body. 
Perhaps during the period when cells are fighting the virus, 
ACE2 expression may be continuously changing (i.e., either 
up- or downregulated), and while human immune function-
ing is particularly important at this time, only those with 
robust immune functioning can defeat the virus (Fig. 4).

Fig. 4   Changes of ACE2 expression and key role of immune func-
tion after 2019-CoV infection. Invasion of 2019-nCoV to host cells 
induces nonspecific reactions of local tissue, releasing cytokines 
such as TNF-α, IFNs, and so on. The expression of ACE2 may be 
downregulated by endocytosis and TNF-α. At this point, although 
the viral invasion decreases, the local RAS is imbalance, reduc-
ing its anti-inflammatory effect. The expression of ACE2 may be 

upregulated by IFNs, enhancing the anti-inflammatory effect of local 
RAS, but also providing more entry for virus. Therefore, when cells 
and viruses fight, the human cellular and humoral immune func-
tion is particularly important. The insufficient or excessive immune 
responses will destroy their own tissue cells as a result of virus repli-
cation or cytokine storm. Only moderate immunity can clear viruses 
and restore cells
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ACE2 expression in different organs and viral 
transmission pathways

ACE2 is expressed in many different tissues at different lev-
els, with an organ-specific distribution. It is highly expressed 
in the heart (coronary vascular endothelial cells, vascular 
smooth muscle, and cardiomyocytes, among other cells), 
kidneys (renal vessels and renal tubular epithelial cells) 
and testes. It is also found in the gastrointestinal tract and 
lungs [3, 59]. ACE2 expression levels and expression pat-
terns in different tissues may be critical to the susceptibil-
ity, symptom manifestations, and outcome of infection with 
COVID-19. Therefore, it is hugely important to explore the 
expression characteristics of ACE2 in human tissues and its 
relationship with virus transmission, as well as determining 
the possible infection pathways for understanding the patho-
genesis and treatment options for COVID-19.

The distributional expression of ACE2 in human tis-
sues was reported as early as the SARS outbreak in 2003. 
It has been shown that the epithelial expression of ACE2 
in lung and small intestine provided possible routes for 
SARS-CoV entry, and ACE2 is also expressed in vascular 
endothelium [60]. During their recent analysis of COVID-
19, based on 43,134 cells derived from normal lung tis-
sue of eight adult donors by single-cell RNA sequencing 
(RNA-Seq), the team at Tongji University Medical College 
(China) determined that more than 80% of ACE2 in the 
lungs was distributed on the surface of type II alveolar 
epithelial cells [61]. Other researchers found that ACE2 
mRNA is mainly distributed in the small intestine, colon, 
duodenum, kidneys, testes and gallbladder by searching 
The Human Protein Atlas Database, but its expression 
level was low in the lungs, suggesting that some cells may 
upregulate ACE2 expression under certain conditions [33].

That ACE2 is expressed in different tissue types sug-
gests that CoV infections may also involve the intestines, 
liver, kidneys, testes and other organs [62]. Previous stud-
ies have found that the proportion of patients infected 
SARS-CoV with diarrhea was as high as 70% [63]. A 
recent case report showed the presence of 2019-nCoV 
in the feces from a patient who initially presented with 
diarrhea symptoms [64], and ACE2 has been found to be 
highly expressed in the upper esophagus, stratified epi-
thelial cells, and absorptive enterocytes from the ileum 
and colon, findings consistent with the possibility of a 
fecal–oral transmission route [33, 65]. Liver dysfunc-
tion or injury in patients with NCP may be caused by the 
inappropriate use of antiviral drugs or systemic inflam-
matory reactions [66]. Recently, Zhao et al. [66] showed 
that 2019-nCoV could infect cholangiocytes expressing 
human-specific ACE2 using the human liver ductal orga-
noids model, with resultant barrier and bile acid transport 
function impairment. Thus, liver damage in COVID-19 

patients might partly result from direct cholangiocyte 
injury and consequent bile acid accumulation during 2019-
nCoV infection.

Acute kidney injury has also been seen in patients with 2019-
nCoV infections [67]. RNA-Seq has shown that ACE2 is abun-
dantly expressed in various kidney proximal tubule cell subtypes. 
In addition to renal injury from host immune responses, renal 
injury may be caused by the virus directly attacking target cells 
where ACE2 is expressed [68]. Some researchers have indi-
cated that 2019-nCoV may enter renal tubular cells by binding 
to ACE2, thereby inducing cytotoxicity and renal dysfunction 
[69]. One place where ACE2 is highly expressed is the testes, 
mainly in the spermatogonia, Sertoli cells and interstitial cells. 
Although there are no studies to establish whether 2019-nCoV 
infection causes testicular damage, some experts have high-
lighted the importance of evaluating reproductive function in 
recovered male patients, especially young ones [69].

It has been reported that 2019-nCoV was present in blood 
from patients with COVID-19, suggesting that infection some-
times may be systemic [70]. Guo et al. [71] analyzed the single 
cell RNA-Seq data for normal whole lung tissue samples and 
fibrotic lung tissue samples and found that ACE2 was mainly 
expressed in the arterial vascular cells of fibrotic lungs. The 
first destination of pulmonary circulation outflow is the heart, 
and the failing human heart has a higher percentage of ACE2-
expressing cardiomyocytes. Therefore, it is assumed that 2019-
nCoV may attack the heart through the blood flow, which may 
explain the high incidence of cardiac injury in critically ill 
patients [71, 72]. The 31% incidence of thrombotic complica-
tions in ICU patients with COVID-19 infections is remarkably 
high [73]. In short, the flow of virus into the blood stream is a 
key step for its spread to other organs, body fluids and excreta, 
and provides the blood transmission pathways for 2019-nCoV.

In conclusion, in addition to the respiratory, digestive and 
genitourinary systems, the blood system may also be a poten-
tial route of infection for 2019-nCoV. More recent researches 
[74, 75] revealed that ACE2 and TMPRSS2 were co-expressed 
in ocular surface cells and nasal epithelium which could 
therefore serve as a portal of initial infection and transmis-
sion. Thus, it is important to clarify the mechanism of virus 
transmission for public health administration departments to 
formulate the best health policies regarding the prevention of 
2019-nCoV infections.

ACE2 in different species and populations 
and susceptibility to 2019‑nCoV infection

ACE2 gene variation in different species and virus 
susceptibility

The world is currently in a severe emergency state regard-
ing 2019-nCoV, and the analysis of ACE2 in different 
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species can help with providing a warning system for the 
cross-species transmission of 2019-nCoV.

Variation in the ACE2 gene sequence in different spe-
cies is closely linked with viral susceptibility. During the 
SARS outbreak, Li et al. [76] used pseudovirus to infect 
293T cells transfected by human, mouse or rat ACE2. 
Their results showed that mouse and rat ACE2-transfected 
cells were both less efficiently infected by pseudovirus 
than human ACE2-transfected cells, and the infection effi-
cacy was significantly enhanced by incubation with human 
ACE2-transfected mouse 3T3 cells. In human ACE2, 
amino acid sites 30–41, 82–84 and 353–357 were shown 
to be involved in the interaction with the SARS-CoV S 
protein, with residues 31, 35, 38, 82 and 353 being the key 
positions [27]. Based on the latter residue positions, some 
researchers explored the effect of ACE2 variation in dif-
ferent species on their susceptibility to the virus. Holmes 
et al. [77] identified variation at the M82N position in rat 
ACE2 compared with that in the human ortholog, which 
contains a large N-linked glycan at this position. The same 
study found that a K353H mutation resulted in the lack of 
a hydrophobic pocket. In mouse ACE2, there are M82S 
and K353H mutations. Therefore, ACE2 mutations in rat 
and mouse ultimately lead them to lack susceptibility to 
SARS-CoV. Moreover, research on rhesus monkeys exper-
imentally infected with a pathogenic SARS-CoV strain 
showed that there are natural non-synonymous changes 
in the rhesus ACE2 gene, and further mutagenesis analy-
sis showed that Y217N, a natural mutation, caused ACE2 
expression to be dramatically downregulated and reduced 
the viral entry [78]. Another study found an enhanced 
interaction between civets and SARS-CoV caused by an 
additional region covering residues 90–93 in ACE2 [79].

A recent study on hACE2 transgenic mice and wild-
type mice infected with 2019-nCoV reported that viral 
antigens were found in the trachea, alveolar epithelial 
cells and macrophages of the hACE2 mice, but not in the 
wild-type mice, suggesting that mice are insusceptible to 
2019-nCoV [36]. Zhou et al. [7] used HeLa cells express-
ing human, civet, pig, Chinese chrysanthemum bat or 
mouse ACE2 to conduct in vitro viral infection experi-
ments, observing that all ACE2-expressing cells except 
those from mouse were infected by the virus. It is worth 
mentioning here that some researchers have compared 
the amino acid sequences of ACE2 from different spe-
cies and found that human and non-human primates share 
identical sequences in some regional residues. The above 
critical residues 31, 35, 38, 82 and 353 of companion ani-
mals, domestic animals and wildlife animals are relatively 
conserved among them, while certain ones are variable. 
Changes in amino acid residues may lead to lower affinity 
viral binding, and certainly the presence of other vari-
able regions cannot be excluded to compensate for such 

changes [80]. Thus, generic variation in the ACE2 gene 
can influence the susceptibility of different species to CoV, 
which should alert us to the potential interspecies trans-
mission of 2019-nCoV.

ACE2 expression in different populations and viral 
susceptibility

Exploring whether different populations are potentially 
susceptible to 2019-nCoV by analyzing ACE2 expression 
in different people could provide a valuable reference for 
effective and timely epidemic prevention. A recent RNA-
Seq analysis of the ACE2 expression patterns in eight nor-
mal human lung transplant donors showed no association 
between the number of cells expressing ACE2 and donor age 
or smoking status. However, men had a higher proportion 
of ACE2-expressing cells than women [61], a finding highly 
consistent with an epidemiological investigation showing 
that most patients diagnosed with 2019-nCoV infection were 
male [81]. Asian males were also found to have a higher 
percentage of ACE2-expressing cells than white and African 
Americans in one study [61]. But in the current situation, 
the original epidemic has become a global outbreak, not 
only in Asia, but in Europe and America also. One study 
that analyzed large-scale transcriptomic datasets of normal 
lung tissue found no significant differences in ACE2 gene 
expression between race, age, or sex, whereas in smokers, 
ACE2 gene expression was upregulated [82, 83]. Elsewhere, 
ACE2 genes were found to be expressed in specific cell types 
related to smoking history and location. ACE2 was reported 
to be actively expressed in the goblet cells of smokers and 
club cells of non-smokers in the bronchial epithelium [83]. 
In the lungs, ACE2 expression is abundant in the remodeled 
type II alveolar epithelial cells of smokers. But the reasons 
for such differences in ACE2 expression related to tobacco 
smoking are obscure [83]. Some researchers have reported 
that ACE2 expression decreases with increasing age, and 
because ACE2 is on the X chromosome its level is higher in 
women than in men. The ACE2 level is low in men and the 
elderly, but this pattern does not match the characteristic of 
severely ill COVID‐19 patients being mostly elderly males. 
Therefore, whether or not ACE2 expression is high or low is 
not a crucial factor affecting the prognosis of patients with 
COVID‐19 [84].

Some researchers have investigated the genetic back-
grounds of different populations through coding-region vari-
ants in ACE2 in terms of its diversity and variability, which 
may affect its function. Quantitative trait locus variations 
that may affect ACE2 expression were analyzed using the 
GTEx database (https​://www.gtexp​ortal​.org/home/datas​ets), 
which enabled the genomic characteristics of ACE2 in dif-
ferent populations to be compared, and the results indicated 
that ACE2 expression may also show potential differences 

https://www.gtexportal.org/home/datasets
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among different groups and races in Asia. However, there 
is no genomic evidence to support the existence of ACE2 
mutants in different populations that can resist its binding to 
the CoV S protein [85]. Recently, Othman et al. [86] found 
that none of the eight ACE2 mutants they investigated had 
disrupted interactions with the 2019-nCoV RBD; hence, 
they proposed that the genetic polymorphism they inves-
tigated for ACE2 had a marginal effect on the affinity with 
2019-nCoV RBD. Nevertheless, this research area would 
benefit from further in-depth investigations.

Recent studies on the epidemiological characteristics of 
COVID-19 have revealed that people with chronic diseases 
such as hypertension, diabetes, chronic obstructive lung 
disease and coronary heart disease are more likely to have 
serious infections [1, 87, 88]. Applying statistical methods 
to collect clinical cases, we previously found that the serum 
concentration levels of ACE2 were significantly elevated in 
patients with essential hypertension [89]. Recently, Chen 
et al. [90] showed that the level of myocardial ACE2 mRNA 
and protein in patients with heart failure had increased sig-
nificantly above normal levels by RNA-Seq. Another study 
analyzed lung transcriptome samples from more than 700 
COVID-19 patients with comorbidities, and found that 
ACE2 was highly expressed in these patients, as compared 
with the control group, and that ACE2 may be regulated by 
histone modifying enzymes, including KDM5B (lysine-spe-
cific demethylase). This finding suggests that patients with 
such comorbidities may have higher chances than normal of 
developing severe COVID-19 [91]. In conclusion, whether 
ACE2 is up- or downregulated, patients with underlying dis-
eases may have more imbalanced RAS homeostasis, lower 
immunity and greater susceptibility to 2019-nCoV. Hence, 
more attention should be paid to this population to reduce 
their infection risk and disease severity.

Summary and perspectives

It has been suggested that 2019-nCoV, like SARS-CoV, 
invades host cells through ACE2 receptors, but there are 
also CD209L co-receptors for SARS-CoV [92]. Some 
scholars noted that ACE2 is widely expressed across a 
variety of organs and is expressed moderately but not 
highly in lung, which, however, is the major infected organ 
[93]. In addition to the factors that connect the respiratory 
system with the external environment, is there any receptor 
other than ACE2 that mediates the invasion of 2019-nCoV 
into the host? One study using molecular model fitting 
may have an answer to this in showing that Ang II receptor 
type 2 (AT2), a G-protein-coupled receptor, is abundantly 
expressed in lung tissues and may be another receptor for 
2019-nCoV [93]. AT2 plays an antagonistic role with AT1 
in the RAS system. Invasion of host cells by 2019-nCoV 

affects the expression of ACE2, and if ACE2 is re-incor-
porated into cells with AT2 as a possible co-receptor, it 
would accelerate the imblance of the RAS system, worsen-
ing the situation for patients. It remains unclear whether 
the AT2 co-receptor leads to a more serious imbalance 
between the classical ACE–AngII–AT1 receptor axis and 
the new ACE2–Ang-(1–7)–Mas homeostasis in the RAS 
system.

Clinical studies have shown that "cytokine storms", or 
the massive release of inflammatory factors, occur in criti-
cally ill patients, causing bodily tissue damage and mul-
tiple organ failure in critical patients [87]. CoV invades 
host cells through ACE2, which changes ACE2 expres-
sion and leads to increased levels of Ang II, a proinflam-
matory factor. Ang II contributes to "cytokine storms". 
Recently, studies have shown that 2019-nCoV directly 
affects the human spleen and lymph nodes by infecting 
tissue-resident CD169+ macrophages. 2019-nCoV also 
triggers macrophages to produce IL-6, a proinflamma-
tory cytokine [94]. 2019-nCoV may directly infect lym-
phocytes, especially T cells, leading to lymphopenia and 
impaired antiviral responses. But the lymphocytes lack 
ACE2 expression, and whether alveolar macrophages can 
phagocytose the viral particles, transfering to lymphocytes 
remains unknown [95]. The internal mechanism by which 
the immune system and RAS system interact and regulate 
each other when 2019-nCoV infects host cells is unclear, 
and this lack of clarity needs to be solved urgently.

In effect, ACE2 plays a dual role in COVID-19 infec-
tions by first acting as a receptor for 2019-nCoV, and then 
as a protective molecule in the RAS system. It is currently 
unclear whether ACE2 acts as a human friend or foe dur-
ing infection with 2019-nCoV. This review has attempted to 
summarize the up-to-date research on ACE2 in CoV disease, 
mainly focusing on CoV invasion, changes in the expres-
sion of ACE2 after viral binding, the effects of 2019-nCoV 
distribution on viral transmission, and genetic susceptibility 
to 2019-nCoV in humans. It is hoped that the information in 
this review will provide a clearer picture of the pathogenic 
mechanism of 2019-nCoV, and act as a useful reference on 
ACE2 as a potential therapeutic target for COVID-19.
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