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Abstract
Acute respiratory distress syndrome (ARDS) is the main cause for the COVID-19 infection-related morbidity and mortality. 
Recent clinical evidences suggest increased level of cytokines and chemokines targeting lung tissue as a prominent etiologi-
cal factor. The immunomodulatory effect of mesenchymal stem cells (MSCs) as the alternative therapy for the treatment of 
inflammatory and autoimmune diseases is well known. Several studies have also revealed that similar therapeutic impacts 
of parent MSCs are also exhibited by MSCs-derived extracellular vesicles (EVs) including exosomes. In this review, we 
explored the therapeutic potential of both MSCs and exosomes in mitigating the COVID-19 induced cytokine storm as well as 
promoting the regeneration of alveolar tissue, attributed to the intrinsic cytokines and growth factor present in the secretome. 
The preliminary studies have demonstrated the safety and efficacy of MSCs and exosomes in mitigating symptoms associated 
with COVID-19. Thus, they can be used on compassionate basis, owing to their ability to endogenously repair and decrease 
the inflammatory reactions involved in the morbidity and mortality of COVID-19. However, more preclinical and clinical 
studies are warranted to understand their mechanism of action and further establish their safety and efficacy.
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Introduction

The novel corona virus disease (COVID-19) has grown to 
be a global public-health emergency since the first case was 
detected in Wuhan, China, in December 2019. The novel 
corona virus or SARS-CoV-2 as named by the International 
Committee on Taxonomy of Viruses has over 14 million 

confirmed cases worldwide and has claimed over 600,000 
lives [1]. After 6 months from the first COVID19 diagnosis, 
we neither have an effective antiviral medication nor a vac-
cine available to deal with this emergency. Once infected, 
a patient mainly relies on their immunity to resist SARS-
CoV-2, with supportive treatment given if complications 
occur [2]. It has been confirmed that the first step in the 
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SARS-CoV-2 pathogenesis is specific recognition of the 
angiotensin I converting enzyme 2 receptor (ACE2) by the 
viral spike protein [3], leading to an immune system over-
reaction causing damage to the body. The immune system 
overreaction in COVID-19 patients is associated with pro-
duction of large amounts of inflammatory factors, causing a 
cytokine storm including an overproduction of immune cells 
like effector T cells and natural killer cells [4, 5].

Intensive Care Unit (ICU) admission rates are just over 
5% from confirmed COVID-19 diagnosis [6], and more than 
half of these ICU patients showed higher plasma levels of 
granulocyte colony-stimulating factor (GCSF) and tumor 
necrosis factor alpha (TNF-α). Increased GCSF and TNF-α 
have been found to produce a cytokine storm, leading to 
acute respiratory distress syndrome (ARDS) [3]. COVID-19 
infected patients showed high circulating levels of proinflam-
matory cytokines including GCSF, IP10, MCP1, MIP1A and 
TNF-α levels, and the levels were higher in patients admitted 
to the ICU. As cytokine storm is the cause behind exten-
sive lung damage that even leads to death, eliminating the 
cytokine storm and supressing superinflammatroy immu-
nological response coupled with repair and regeneration of 
the lung tissue can be an effective treatment modality for 
COVID-19 [7]. Current treatments and clinical interventions 
for COVID-19 associated acute lung injuries include respira-
tory support (non-invasive ventilation and mechanical venti-
lation), antipyretic and non-specific antiviral drugs, corticos-
teroids, and immunoregulation [3]. With very high fatality 
rate seen among the critically ill ICU patient population that 
are unresponsive to the aforementioned treatment modali-
ties, new approaches are required to mitigate the symptoms 
associated with COVID-19 infection [6, 8].

Cell-based therapies strive to treat or prevent injury and 
disease by naturally repairing, restoring, and/or regenerating 
damaged or diseased organs and tissues [9, 10]. This field 
has exploded in recent years to meet the needs of patients 
with both complex and common medical problems [7]. 
Some cell-based therapies aim to slow or stop degenerative 
or pathophysiologic processes that ultimately present them-
selves as symptomatic conditions [7]. Other regenerative 
therapies activate the body’s endogenous repair system by 
influencing the behaviour of somatic and progenitor cells to 
stop degenerating and start regenerating [7, 11]. In the case 
of pneumonia, acute lung injury (ALI) [12], acute respira-
tory distress syndrome (ARDS) [13, 14] and sepsis studies 
investigating therapy using mesenchymal stem cells (MSCs) 
have demonstrated safety and some positive effects on these 
conditions [11]. A recent study conducted in Beijing You’an 
Hospital, Capital Medical University, China used MSCs in 
patients with COVID-19 pneumonia. The results demon-
strated that symptoms such as fever, shortness of breath 
and low oxygen saturation disappeared and or improved 
2–4 days’ post treatment [3].

Several institutes worldwide are putting their best efforts 
to come up with a novel therapeutic option with good clini-
cal safety and efficacy to help patients affected by COVID-
19. An early first attempt in China utilizing mesenchymal 
stem cells demonstrated potential to improve symptoms 
associated with COVID-19 [3]. Other studies also showed 
efficacy of intravenous administration of MSCs in boost-
ing body’s immune response against COVID-19 associated 
infection [3]. The mechanism of action was ascribed to the 
accumulation of intravenously administered MSCs into the 
lungs and help build up regenerative cells locally, which can 
potentially protect the epithelial cells of the lungs, and pre-
vent lung damage [3]. The efficacy of MSCs can be attrib-
uted to their trans-differentiation; secretion of growth fac-
tors, cytokines and extracellular vesicles including exosomes 
and associated paracrine effect; and mitochondrial transfer 
[15, 16].

In addition to the stem cell therapy, a cell-free approach 
like the use of exosomes and associated bioactive mol-
ecules are leading the way to treat several pathologies. The 
exosomes produced by MSCs possess hypoimmunogenic 
properties are enclosed in a lipid bilayer making them 
extremely stable and are able to migrate to the target organ 
of damage instead of merely accumulating via blood flow. 
These extracellular vesicles are identified to be the primary 
factors responsible for paracrine effects detected in all types 
of stem cells and for the transfer of genetic material from 
stem cells to the tissue-specific cell that needs regeneration 
[17].

In search of a ultimate viable solution to the harrowing 
COVID-19, when scientists around the world are working 
on a number of vaccines and treatments for COVID-19, mes-
enchymal stem cells and their exosomes are emerging as 
a promising therapeutic option without any major adverse 
effects. The combinatorial strategy of antiviral drugs along 
with immunomodulatory, tissue protective and healing 
potential of stem cells and their exosomes may reduce the 
severity of the COVID-19. A call for an urgent develop-
ment on the MSCs and their exosome-based therapeutics 
specifically targeted towards ARDS to ensure the health and 
survival of human being is strongly recommended.

Mesenchymal stem cells and immunomodulation

The therapeutic potential of MSCs due to their regenera-
tive properties is well investigated in various degenerative 
and inflammatory disorders. MSCs are immunoprivileged 
cells, due to the low expression of class II Major Histo-
compatibilty Complex (MHC-II) and co-stimulatory mol-
ecules in their cell surface [18]. MSCs are known to hold an 
immunoregulatory capacity and elicit immunosuppressive 
effects by inhibiting T-cell proliferation to alloantigens and 
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mitogens and prevent the development of cytotoxic T-cells 
[19] by interfering with various immune response pathways 
by means of direct cell-to-cell interactions and soluble factor 
secretion [18].

Profound immunomodulatory effects of MSCs on T and B 
cells and natural killer (NK) cells are mediated by regulatory 
T cells. MSCs are able to suppress in vitro T-cell prolifera-
tion induced by cellular or non-specific mitogenic stimuli 
through the secretion of various soluble factors that include 
TGF-β, HCF, PCE-2, IDO, HLA-G5 and NO. The effect of 
these suppressive factors is upregulated by pre-sensitization 
of MSCs with TNF-α, and IFN-γ. MSCs polarizes T cells 
toward a regulatory phenotype that serve to decrease IL-6 
and TNF- α, which is an important mechanism by which 
MSCs dampen inflammation [20]. In addition, pretreatment 
of MSCs with IFN-γ has been shown to also suppress B cells 
[11]. MSCs with the help of dendritic cells (DC) or mono-
cytes are found to produce anti-inflammatory cytokines such 
as IL-10 that downregulates the human leucocyte antigen 
(HLA) class I [11] and exert protective effects including 
direct regeneration and secretion of multiple paracrine fac-
tors such as antibacterial peptides [20]. Interleukin-10 (IL-
10) plays an essential role in maintaining the immunomodu-
latory property of regulatory DC. While, regulatory DC play 
an important role in controlling immune homeostasis and 
can possess an immunosuppressive ability to induce spe-
cific immune tolerance and dampen Th2 type inflammation 
[3], MSCs have the ability to induce mature dendritic cells 
(DC) into novel Jagged-2 dependent regulatory dendritic 
cell population [3, 21]. All these interactions with different 
dendritic cells lead to a shift of the immune system from a 
Th1 response toward an anti-inflammatory Th2 response [3].

Mesenchymal stem cell therapy for COVID‑19

Cell-based therapy have gained a status as a promising 
therapeutic field, to cure incurable diseases like diabetes, 
cardiovascular diseases, neurodegenerative diseases, mus-
cular degenerative disorders, cancers [10], liver injuries [9], 
hematopoietic and immune system disorders, metabolic dis-
orders [7], graft-versus-host disease, sepsis and ARDS [20] 
due to their immunomodulation properties. Since the first 
observation of pluripotent undifferentiated cells resistance 
to murine polyomavirus infection [22], many researchers 
have explored the same against a variety of viral infections 
like Human Immunodeficiency Virus-1 (HIV1) and Human 
Immunodeficiency Virus-2 (HIV2) [23], hepatitis B virus-
related acute-on-chronic liver failure (HBV-ACLF) [7], 
Myxoma virus [24], Retrovirus [25], Cytomegalovirus [26], 
etc. with reference to the embryonic and adult stem cells. 
It was observed that the intrinsic expression of interferon 
stimulating genes (ISG) makes pluripotent and multipotent 

stem cells resistant to viral infections [27, 28]. It was further 
observed that ISG of stem cells gets this defence mecha-
nism from interferon-induced transmembrane (IFITM) fam-
ily of proteins [27, 28]. Although, stem cell therapy is not 
a method to eradicate or cure SARS-CoV-2, there are few 
evidence-based studies that support the concept that infected 
patients may be more likely to combat and survive the infec-
tion [2, 20]. This can be attributed to the rejuvenation and 
regeneration properties of stem cells such as their ability 
to reduce inflammation, secrete cell protective substances, 
transfer mitochondria, decrease cell death, anti-oxidative 
effects, and improve overall immune function [29]. In addi-
tion, there is direct evidence that stem cells protect against 
the influenza virus (A/H5N1) infection, by helping reverse 
lung injury [29]. Owing to their anti-inflammatory, immu-
nomodulatroy and homing properties as well as regenerative 
potential, MSCs have attracted the attention of many scien-
tists as a cell based therapy for the treatment for COVID-19 
[7].

Leng et  al. conducted a clinical trial pilot study 
(ChiCTR2000029990) using human umbilical cord-derived 
MSCs (hUCMSCs) in seven COVID-19 patients for 14 days. 
Post-treatment, population of CD14+ CD11c+ CD11bMid 
regDCs dramatically increased. The levels of TNF-α 
decreased significantly, while levels of IL-10 increased in 
the MSC treatment group compared to the placebo control 
group. The gene expression profile showed that MSCs were 
ACE2− and TMPRSS2− suggesting MSCs were free from 
COVID-19 infection. This study concluded that the intra-
venous transplantation of MSCs was safe and effective for 
treating patients with COVID-19 pneumonia, especially 
patients whose condition was critically severe. These results 
can be attributed to immunomodulatory role of MSCs in 
reversing the lymphocytes subsets [3].

In another single case study, intravenous allogenic 
hUCMSCs infused in a 65-year-old female critically ill of 
COVID-19 revealed that the pneumonia was greatly relieved 
and the patient recovered from ICU after 8 days. No hUC-
MSC-related side effects were observed. After first infusion, 
the serum bilirubin, C-reactive protein (CRP) and aspartate 
aminotransferase (AST)/ alanine aminotransferase (ALT) 
were gradually reduced. After 3 days, second administra-
tion was done and the white blood cells (WBCs) and neu-
trophil count decreased to the normal level, and the lympho-
cyte count increased to the normal level. Administration of 
hUCMSCs led to reduction in inflammation and recovery of 
antiviral immune cells and organs. In addition, it may have 
led to homing of hUCMSCs to repair the injured tissues and 
neutralize the inflammatory cytokines such as G-CSF and 
IL-6 by expression of their receptors [16]. It indicates that 
MSCs therapy might be an ideal choice to treat critically ill 
COVID-19 patients.
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Mesenchymal stem cells’ role in COVID‑19 
associated complications

COVID-19 is associated with a number of complications 
with ARDS being the leading cause of the deaths. ARDS is 
known to be associated with protein-rich pulmonary edema 
and acute respiratory failure, characterized by acute inflam-
mation and injury to the lungs and epithelia [13]. The pri-
mary treatment of COVID-19 remains supportive, involving 
lung protective ventilation and fluid conservation. ARDS is 
an important cause of morbidity and mortality with no defini-
tive therapy [30]. The pathophysiology of ARDS involves an 
imbalance between proinflammatory and anti-inflammatory 
mediators. Therefore, regulation of those mediators, specifi-
cally cytokines, has been targeted as a potential therapeutic 
approach [31]. There are several studies that have demon-
strated the therapeutic potential of MSCs for patients suffer-
ing with ARDS because of their specific immunomodulatory 
properties [31]. MSCs have been reported to treat impaired 
alveolar fluid clearance, decrease the lung permeability, com-
bat infection and regulate inflammation in patients suffer-
ing from ARDS [31]. MSCs also have the ability to secrete 
a variety of soluble paracrine factors, including key anti-
inflammatory cytokines such as interleukin-10 (IL-10) and 
IL-1 receptor antagonist (IL-1RA) [31].

A preclinical study showed that human bone marrow-
derived mesenchymal stem cells (BMMSCs) were activated 
with the serum obtained from patients suffering from ARDS. 
These activated MSCs were more efficient in reducing lung 
inflammation compared to untreated MSCs. It resulted 
in increased expression of IL-10 and IL-1RA, which was 
associated with enhancement of their protective capacity 
by reduction of the lung injury score, development of pul-
monary edema and accumulation of bronchoalveolar lavage 
inflammatory cells and cytokines [30]. In another study, 
BMMSCs were preconditioned with serum obtained from 
patients suffering with ARDS and activated. These activated 
MSCs secreted higher levels IL-1RA and IL-10, damp-
ened the secretion of proinflammatory cytokines, exhibited 
upregulation of toll-like receptor 4 (TLR-4) and vascular 
endothelial growth factor (VEGF) genes, and triggered a 
strong immunomodulatory response via higher secretion of 
prostaglandin E2 (PGE2). When these activated allogenic 
MSCs were administered in ARDS porcine models, it sup-
pressed proinflammatory cytokine levels and promoted 
secretion of anti-inflammatory mediators [31]. Thus, acti-
vation of allogenic MSCs through incubation in an envi-
ronment previously exposed to MSCs may induce stronger 
immunomodulatroy effects in patients compared with infu-
sion of nonactivated MSCs [31].

Additionally, clinical trials such as Stem cells for ARDS 
Treatment (START) trial, a multicentre, open label, dose 

escalation, phase I clinical trial (NCT01775774), utilized a 
single intravenous dose of bone marrow-derived mesenchy-
mal stem cells (BMMSCs) which was given to nine moder-
ate to severe ARDS patients. The results demonstrated no 
prespecified infusion-associated events or treatment-related 
adverse events. MSC infusion was well tolerated in all 
patients [14]. Furthermore, in a double blinded, multicentre 
randomized phase 2a trial (NCT02097641), one intrave-
nous dose of BMMSCs was studied. Among 1038 patients 
screened, 60 were eligible and received treatment. The MSC 
dose was safe in patients with moderate to severe ARDS. 
There was no infusion-related haemodynamic or respiratory 
adverse events. It was concluded that larger trials will be 
needed to test further efficacy of MSCs for ARDS [13].

ARDS, lung failure and fulminant pneumonia are major 
symptoms associated with H7N9 infection. In a single-cen-
tre and open-label clinical trial (NTC0209544; ChiCTR-
OCC-15006355), MSCs were transplanted into H7N9-
induced ARDS patients. In this clinical trial, 44 patients with 
H7N9-induced ARDS were included as control group with-
out MSCs transplantation. The treatment group included 17 
patients with H7N9-induced ARDS with allogenic menstrual 
blood-derived MSC transplantation. Results showed that the 
treatment group had a significantly lower mortality rate com-
pared to the control group. The study also reported that MSC 
transplantation did not result in harmful effects in human 
body within the 5-years follow-up period. MSC transplanta-
tion significantly improved survival rate of H7N9-induced 
ARDS patients in both preclinical and clinical studies [32]. 
Considering that H7N9 and coronavirus share similar com-
plications such as ARDS and corresponding multi-organ 
failure, MSC-based therapy could be a potential alternative 
for mitigating COVID-19 [32].

Another known and safe source of MSCs is Adipose tis-
sue. Adipose-derived stem cells (ASCs) expresses a large 
amount of anti-inflammatory properties and can be obtained 
from a minimally invasive aspiration procedure [33]. ASCs 
secret factors that induce proliferation of vascular endothe-
lial cells and angiogenesis that include VEGF and PDGF 
[34, 35]. Along with their immunosuppressive activity due 
to the secretion of TGF-1, HGF and INF-y, they can poten-
tially improve the pulmonary function of COVID-19 patients 
[36]. Recently, there was a phase I, single-centre, double-
blinded, placebo-controlled clinical trial (NCT01902082) 
that assessed the safety of ASCs in the treatment of ARDS 
[37]. The trial concluded that ASCs were safe with mini-
mally adverse events and had potential to improve oxygena-
tion in patients with moderate ARDS [37]. The results from 
this study are promising; however, more studies will be 
required to establish safety and efficacy of ASCs to treat 
patients infected with ARDS and COVID-19.



911Mesenchymal stem cells and exosome therapy for COVID‑19: current status and future perspective﻿	

1 3

Mesenchymal stem cells and acute liver injury 
or acute liver failure

Both SARS-COV-2 and the Middle East respiratory syn-
drome coronavirus have been known to induce acute liver 
injury (ALI). Studies have shown that patients with COVID-
19 ALI have an incidence rate as high as 11%. ALI induced 
by viruses can progress rapidly to acute liver failure (ALF) 
[38]. ALI involves the infiltration of immune cells such as 
T cells, B cells and natural killer cells (NK). Immunosup-
pressive treatments and decreased inflammation reportedly 
promote repair after ALI [38]. MSCs have shown a ray of 
hope in repairing and regenerating liver tissues and in treat-
ment of liver diseases [9].

A preclinical study demonstrated that ALI was signifi-
cantly alleviated and survival rate of mice was improved 
post-treatment with MSCs. The results indicated that the 
MSCs modulated the hepatic immune system in terms of 
the distribution of immune cell subsets and phenotype 
of single cells. During the injury phase, MSCs exhibited 
a systemic response by reducing the number of Ly6Clow 
CD8+ TRM cells, conventional NK cells*, and IgM+ IgD+ 
B cells and increasing the number of immunosuppressive 
monocyte-derived macrophages. During recovery phase, 
MSCs promoted the retention of Ly6Clow CD8+ TRM cells 
and maintained activity of immunosuppressive monocyte-
derived macrophages [38]. Another study demonstrated that 
the efficacy of MSC-based therapy is enhanced with lipid 
conjugated heparin coating; and the human adipose derived 
stem cells (hADSCs) delivered to the damaged liver resulted 
in significantly improved recovery from ALF in a mouse 
model. Results from this study showed that the intravenous 
administration of hADSCs lowered the elevated serum levels 
of aspartate transaminase (AST) and alanine transaminase 
(ALT). A significantly increased level of human hepatic 
growth factor (hHGF), a representative secretome from 
hADSCs, significantly reduced the levels of macrophage 
and CYP2E1 [39].

In another preclinical study, Bone marrow-derived mes-
enchymal stem cells (BMMSCs) were transfused in ALF 
rat models. The results demonstrated that BMMSCs inhib-
ited neutrophil infiltration, oxidative activity and hepatocyte 
apoptosis. The BMMSCs also ameliorated ALF by increas-
ing the expression of heme oxygenase (HO-1) [40]. HO-1 is 
known to possess the ability to reduce polymorphonuclear 
neutrophils (PMNs) infiltration and function, and thus, can 
play a vital anti-inflammatory and anti-apoptic role [40].

Another preclinical study utilizing transplantation of 
hUCMSCs in an ALI mice model, demonstrated the abil-
ity of these cells in decreasing the levels of hepatocellu-
lar necrosis and lobular neutrophilic infiltration, leading 

to significant hepatoprotective effects. No adverse effects, 
systemic toxicity or neoplastic finding related to hUCM-
SCs transplantation was observed [12]. In a similar study, 
intravenous administration of MSCs in an intoxicated and 
burn mice model resulted in less cellularity, limited apopto-
sis, and slight reduction in the proinflammatory cytokine—
interleukin-6 (IL-6) and the neutrophil chemokine—KC 
(CXCL1) levels in the lung tissue. MSC treatment had more 
dramatic anti-inflammatory effects on systemic and hepatic 
inflammation. In summary, the results of this study indicated 
that MSC treatment can diminish systemic inflammation, 
lessen hepatic damage, and decrease liver and lung apoptosis 
and inflammation [41].

Exosomes: The biological messengers of tissue 
repair

Exosomes are the tiny packets filled with cellular proteins 
and nucleic acid materials (e.g. mRNA & miRNA) released 
by stem cells [42]. Literature have demonstrated powerful 
regenerative potential of exosomes, ranging from immune-
modulatory properties, anti-inflammatory properties, etc.
[43]. Although exosomes have been discovered almost 
30 years ago, it is only recently that scientists have gener-
ated immense interest for being one of the most promising, 
acellular alternatives to cellular therapeutics, due to their 
demonstrated aptitude [43]. Exosomes were first identified 
to be secreted from nanovesicles of sheep reticulocytes, at 
the time of their maturation; the experiment was performed 
in the year 1980, soon after which, exosomes were studied 
rapidly, as the secretions of all the cells including immune 
cells, like B and T lymphocytes and are found to be neces-
sary for cellular communications [44]. Typically, exosomes 
are of the size of 40-150 nm and are found to be secreted 
through inward budding of the endosomes. Once released by 
the cells, they get entry into another cellular microenviron-
ment, by fusing to the plasma membrane [45].

Studies have further indicated that increased cellular 
interaction, through cell to cell communication, is one of 
the most unique functions of exosomes [45]. Other than that, 
disposal of unwanted proteins, transfer of genetic material, 
elicitation of the immune response, reduction in inflamma-
tion, etc. are also identified to be some of the functional 
attributes of exosomes, depending upon the cell of origin 
[44, 45].

Role of exosomes in COVID 19 infections

Majority of the studies focusing on MSC-derived exosomes 
have demonstrated regenerative potential, immune-modu-
latory functions, anti-inflammatory effects, similar to their 
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parents, i.e. Mesenchymal stem cells [44, 45]. In preclinical 
set up, MSC-derived exosomes have demonstrated aptitude 
as an acellular alternative to cell-based therapy, against 
Acute Respiratory Distress Syndrome (ARDS) [46]. These 
studies have further confirmed that post-exosomal infusion, 
the associated cytokine storm and pro-inflammatory sig-
nalling biomolecules were considerably reduced that were 
primarily responsible for ARDS pathogenesis [46]. Further 
analysis confirmed that the exosomes also increased the level 
of anti-inflammatory signalling mediators that can reduce 
the severity of the lung injury through increase permeability 
and functional aspects of alveolar epithelium [47, 48],

as a result of which, the exchange of oxygen-rich air is 
easily facilitated. Further deep diving into the same, the 
ability of exosomes to transfer mitochondria to alveolar 
cells further increased their survival rate, and thus, facili-
tated cellular regeneration. These effects have paved the 
way towards the therapeutic use of this novel acellular 
alternative [47]. Beyond their effects in preclinical model 
of acute lung disorders, MSC-derived exosomes were also 
found to be responsible for direct inhibition of viral mul-
tiplication [47, 49]. With several studies investigating the 
bio-distribution of this cellular cargo in preclinical setup, it 
has been quite evident that these exosomes have the poten-
tial to alter a variety of different pathways to facilitate 
active cellular communication. The intrinsic component 
of the exosomes, miRNAs, are reportedly found to be the 
key component that is responsible for many physiological 
processes, like development, epigenetic alterations, immune 
regulations, etc.[50]. By using near IR dyes, several studies 
have figured out different techniques to track in-vivo bio-
distribution of exosomes upon systemic delivery in different 
animal models [50, 51].

Several studies have confirmed their reachability to dif-
ferent organs, like in intra-cerebral haemorrhagic rat mod-
els, exosomes could reach to the brain upon the intravenous 
administration [52]. Intravenous administration of exosomes 
in a mouse model with acute kidney injury shows their 
accumulation in the kidneys, further confirming exosomes 
strong paracrine pathways for instant reachability to the site 
of injury [53].

Multiple studies have demonstrated that miRNAs secreted 
by exosomes are very crucial for accelerated lung recov-
ery, particularly in patients suffering from viral infections 
like influenza, hypoxia-induced pulmonary hypertension, 
ventricular induced lung injury, etc. Wang et al. observed 
and studied active regulation of miRNAs during early and 
late-stage repair of lung damage in the mouse model. This 
study further indicated that certain miRNAs like miR-290, 
miR-21, let-7 and miR-200 played a major role in lung 
regeneration, immune-regulation, and immune-modulation 

[47]. Alipoor et al. presented strong experimental evidence 
that stem cell-derived exosomes can deactivate the signal-
ling pathways associated with hypoxia that can also facilitate 
reduced hypertension and inflammation, specifically evident 
in the respiratory disorders [54]. Beyond their effects in a 
preclinical model of acute lung disorders, MSC-derived 
exosomes are also found to be responsible for direct inhi-
bition of viral multiplication. Studies have confirmed that 
MSC-derived exosomes secrete miRNA, which acts as a 
silencing complex and further alters the expression of the 
cellular receptors through epigenetic changes that help in 
blocking the entry of many RNA viruses like influenza, 
hepatitis C and also Coronavirus [47, 55]. In a pig model 
of influenza, intra-tracheal administration of MSC-derived 
exosomes, 12hrs post-infection, significantly reduced virus 
shredding [55].

On‑going clinical trials

Several pre-clinical and clinical studies have explored the 
potential of MSCs and exosomes for treating COVID-19 
including management of associated cytokine storm. Though 
the results are promising, the limited literature still warrants 
more studies to establish safety and efficacy of MSCs and 
exosomes to treat and manage symptoms associated with 
COVID-19 infection. Eventually, multi-center, controlled, 
randomized trials will be needed to adequately assess the 
future of MSCs as well as exosomes in the treatment of 
COVID-19. As of July 16, 2020, there are 55 on-going stud-
ies related to use of stem cells (Table 1) and 3 on-going 
studies related to use of exosomes (Table 2) registered on 
ClinicalTrials.gov.

Conclusion

COVID-19 is currently one of the biggest socio-economic 
and public health dangers that we have seen. With the hope 
of vaccine that will eradicate the viral infection still in the 
distant future, there is an urgent need for treatments that 
are not only efficacious but safe. Preliminary studies have 
demonstrated the safety and efficacy of MSCs and exosomes 
in mitigating symptoms associated with COVID-19. They 
can be used on compassionate basis, owing to their ability 
to endogenously repair and decrease the inflammatory reac-
tions involved in the morbidity and mortality of COVID-
19, but more preclinical and clinical studies are required to 
understand their mechanism of action and establish their 
safety and efficacy.
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