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Abstract

We report a method called ContamLD for estimating autosomal ancient DNA (aDNA)
contamination by measuring the breakdown of linkage disequilibrium in a
sequenced individual due to the introduction of contaminant DNA. ContamLD
leverages the idea that contaminants should have haplotypes uncorrelated to those
of the studied individual. Using simulated data, we confirm that ContamLD
accurately infers contamination rates with low standard errors: for example, less than
1.5% standard error in cases with less than 10% contamination and 500,000
sequences covering SNPs. This method is optimized for application to aDNA, taking
advantage of characteristic aDNA damage patterns to provide calibrated
contamination estimates, and is available at https://github.com/nathan-nakatsuka/
ContamLD.

Keywords: Ancient DNA, Linkage disequilibrium, Contamination, Autosomal DNA,
Nuclear DNA

Background
Ancient DNA (aDNA) data has emerged as a powerful tool for learning about ancient

population history, allowing the direct study of the genomes of individuals who lived

thousands of years in the past [1–3]. Unfortunately, these inferences can be distorted

by contamination during the excavation and storage of skeletal material, as well as the

intensive processing required to extract the DNA and convert it into a form that can

be sequenced.

Accurate measurement of the proportion of contamination in ancient DNA data is

important, because it can provide guidance about whether the analysis should be

restricted to sequences that show the characteristic pattern of C-to-T mismatch to the

reference genome of authentic aDNA (if contamination is high) [4], or carried out at

all. When the analysis is restricted to focus only on sequences showing evidence of

characteristic ancient DNA damage, the substantial majority of authentic sequences
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are usually removed from the analysis dataset, as only a fraction of genuinely ancient

sequences carry characteristic damage. Another limitation of restricting to damaged

sequences is that if a sample is contaminated by another individual with damaged

DNA—which can arise for example as a result of cross-contamination from other spec-

imens handled in the same ancient DNA laboratory—it is impossible to distinguish

authentic sequences from contaminating ones based on the presence or absence of

characteristic ancient DNA damage.

Current methods for estimating contamination have significant limitations. Methods

based on testing for heterogeneity in mitochondrial DNA sequences (which are almost

always homogeneous in an uncontaminated individual) can be biased, because there are

several orders of magnitude of variation in the ratio of the mitochondrial to nuclear

DNA copy number across samples. Thus, samples that have evidence of mitochondrial

contamination can be nearly uncontaminated in their nuclear DNA, while samples that

have no evidence of mitochondrial contamination can have high nuclear contamination

[5]. A more consistently reliable set of methods for estimating rates of contamination

in ancient DNA measures the rate of polymorphism on the X chromosome in males

assuming there should be none; the most commonly used implementation of this idea

is the ANGSD software, although there are also other software packages [6–10].

However, these methods do not work in females.

Several methods for estimating contamination rates in nuclear DNA from modern ge-

nomes have been published, including ContEst [11] and ContaminationDetection [12].

However, these methods generally rely on access to uncontaminated genotype data from

the individual of interest or access to all possible contaminating individuals, neither of

which is typically available for aDNA. Another method estimated modern human auto-

somal contamination in aDNA from archaic Denisovans [13] and Neanderthals [14] by

producing maximum likelihood co-estimation of sequence error, contamination, and

parameters correlated with divergence and heterozygosity. However, this method heavily

relies on the high level of genetic divergence between archaic and modern humans. A

similar method, DICE, expanded on this approach and jointly estimates contamination

rate and error rate along with demographic history based on allele frequency correlation

patterns [15]. However, this method requires both explicit demographic modeling and

high genome coverage. While this may be effective for estimation of contamination in ar-

chaic genomes like Neanderthals and Denisovans that are highly genetically diverged from

likely contaminant individuals, it is not optimized for the study of contamination among

closely related present-day human groups or contamination from individuals of the same

population. In Racimo et al. [15], DICE required over 3× genome sequence coverage and

solved the distinctive problem of measuring contamination of present-day humans in a

Neanderthal genome.

We report a method for estimating autosomal aDNA contamination using patterns

of linkage disequilibrium (LD) within a sample. This approach, implemented in our

software ContamLD, is based on the idea that when sequences from one or more

contaminating individuals are present in a sample, LD among sequences derived from

that sample is expected to be diminished, because the contaminant DNA derives from

different haplotypes and therefore should have no LD with the authentic DNA of the

ancient individual of interest. Thus, the goal of the algorithm is to determine the LD

pattern the ancient individual would have had without contamination and compare it
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to the LD pattern found in the sample. The LD patterns of ancient individuals are

determined using reference panels from 1000 Genomes Project populations to compute

approximate background haplotype frequencies, where haplotypes are defined as pairs

of SNPs with high correlation to each other. Contamination is then estimated by fitting

a maximum likelihood model of a mixture of haplotypes from an uncontaminated indi-

vidual and a proportion of contamination (to be estimated from the data) from an un-

related individual. ContamLD corrects for mismatch of the ancestry of the ancient

individual with the reference panels using two different user-specified options. In the

first option, the mismatch is corrected using estimates from damaged sequences

(which we assume lack present-day contaminants). In the second option, ContamLD

performs an “external” correction by subtracting the sample’s contamination estimate

from estimates for individuals of the same population believed to have negligible con-

tamination (the user could obtain this value from a ContamLD calculation on a male

individual with a very low estimate of contamination based on ANGSD). The second

option has more power than the first option and allows detection of cross-

contamination by other ancient samples, but it could be biased if a reliable estimate

from an uncontaminated individual from the same population is not available for the

external correction.

We show that ContamLD accurately infers contamination in both ancient and

present-day individuals of widely divergent ancestries with simulated contamination

coming from individuals of different ancestries. The contamination estimates are highly

correlated with estimates based on X chromosome analysis in ancient samples that are

male, as assessed using ANGSD [16]. ContamLD run with the first option has standard

errors less than 1.5% in samples with at least 500,000 sequences covering SNPs (~ 0.5×

coverage for data produced by in-solution enrichment for ~ 1.2 million SNPs [2, 17] or

~ 0.1× coverage for data produced using whole-genome shotgun sequences). With the

second option, ContamLD has standard errors less than 0.5% in these situations, allow-

ing users to detect samples with 5% or more contamination with high confidence so

they can be removed from subsequent analyses.

Results
Simulations of contamination in present-day individuals

To test the performance of ContamLD, we simulated sequence level genetic data. For

our first simulations, each uncontaminated individual was simulated based on genotype

calls from a present-day individual from the 1000 Genomes Project dataset. To deter-

mine the sequence coverage at each site, we used data from an ancient individual for

which we had data at 1.02× coverage and in each case generated the same number of

simulated sequences at each site, with the allele drawn from the present-day individual

(e.g., if the present-day individual is homozygous for the reference allele at a site, all

simulated alleles are of the reference type, while if the present-day individual is hetero-

zygous, simulated alleles are either of the reference or alternative variant, with 50%

probability of each). The damage status (i.e., whether it carries the characteristic C-to-

T damage often observed in ancient DNA sequences) of each sequence was also deter-

mined based on the status of the ancient reference individual. Contaminating sequences

were then “spiked-in” at varying proportions (0 to 40%), using an additional present-
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day individual from the 1000 Genomes Project to determine the contaminating allele

type (see the “Materials and methods” section). All contaminating sequences were

defined to be undamaged, as would be expected if the contamination came from a non-

ancient source.

For most of the analyses reported in this study, we simulate data for SNP sites

targeted in the 1.24 million SNP capture reagents [2, 17] that intersect with 1000

Genomes sites, after removing sites on the X and Y chromosomes (this leaves ~ 1.1

million SNPs). The ContamLD software also allows users to make panels based on their

own SNP sets, and in a later section, we report the results from a larger panel (~ 5.6

million SNPs) provided with the software that we recommend for shotgun-sequenced

samples, which provides more power to measure contamination.

We first analyzed data generated using a reference individual from the 1000 Genomes

CEU population (Utah Residents (CEPH) with Northern and Western European Ances-

try) and the SNP coverage profile of a 1.02× coverage ancient individual of West Eurasian

ancestry (Iberian Bronze individual I3756 who lived 2014–1781 calBCE; see the “Materials

and methods” section). Additional file 1: Fig. S1 illustrates the distribution of logarithm of

the odds (LOD) scores generated when ContamLD is run on samples with 0%, 7%, and

15% simulated contamination. Additional file 1: Fig. S2 shows the contamination rate esti-

mates generated for data with simulated contamination rates between 0 and 40%. At very

high contamination (above 15%), ContamLD often overestimates contamination, but in

practice, samples with above 10% contamination are generally removed from population

genetic analyses, so inaccuracies in the estimates at these levels are not a concern in our

view (the importance of a contamination estimate in many cases is to flag problematic

samples, not to accurately estimate the contamination proportion). ContamLD assumes

that the individual making up the majority of the sequences is the base individual, so we

do not explore contamination rates greater than 50% in these simulation studies.

We observe a linear shift in the contamination estimates such that most estimates

are biased to be slightly higher than the actual value, with even greater overestimates

occurring at higher contamination rates (Additional file 1: Fig. S2). This is likely due to

the difference between the haplotype distribution of the test individual and that of the

haplotype panel, since the magnitude of this shift increases as the test individual in-

creases in genetic distance from the haplotype panel. Even in cases where the test indi-

vidual is of the same ancestry as the haplotype panel (as in Additional file 1: Fig. S2),

there is expected to be a shift, because the test individual’s haplotypes are a particular

sampling of the population’s haplotypes, and the difference between having only

frequencies of the haplotype panel and a particular instantiation of those frequencies in

the test individual will lead to the artificial need for an external source (“contaminant”)

to fit the model properly.

In contrast to the upward bias in contamination estimates due to mismatch of

the individual’s haplotypes with the reference panel haplotype frequencies, we ob-

serve negative shifts for children of two closely related parents, as expected because

ContamLD assumes the paternal and maternal copies of a chromosome are unre-

lated. In contrast, if the two chromosomes are related, extra LD will be induced

and more contamination will be necessary to produce the expected LD pattern. In

principle, this inbreeding effect could be corrected explicitly by estimating the total

amount of ROH in each individual and applying this as a correction, although we
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do not provide such functionality as part of our software. A reliable methodology

for quantifying the proportion of the genome that is affected by inbreeding in

ancient individuals has now become available (hapRHO), [18] and ContamLD could

be further improved by using an estimate of ROH from software like this as an

input parameter.

A final type of bias could be expected to arise if the contamination comes from an

individual related to the target individual. In this case, the true contamination rate is

expected to be underestimated, because ContamLD only detects contamination where

the contaminant sequence differs from the target individual’s sequence. If the contam-

inant carries the same haplotypes as the target individual, in the most extreme case as

expected for an identical twin, then the existence of contamination will be missed

altogether. In general, contamination from closely related individuals is unlikely to be a

concern for many population genetic analyses, as close relatives usually (but with

important exceptions) have very similar ancestry.

In our implementation, we correct for these systematic biases in two ways, imple-

mented as different options in ContamLD.

The first option leverages information from sequences that contain evidence of the

C-to-T damage that is characteristic of ancient sequences. This option assumes these

sequences are authentically ancient and not derived from a contaminating source

(assumed to be from present-day individuals), so the ContamLD estimate based on

undamaged sequences is corrected by estimates based on the damaged sequences (see

the “Materials and methods” section for more details). In the second option, we allow

the user to subtract the contamination estimate from the estimate of an individual of

the same ancestry assumed to be uncontaminated. An advantage of the second option

compared to the first is that it has smaller standard errors (Fig. 1), reflecting the fact

that it does not rely on estimates from damaged sequences (reliance on damaged

sequences reduces power since it often reflects a very small subset of the data). Another

A B

Fig. 1 ContamLD estimates when the target individual, contaminant, and haplotype panel are from the
CEU population. Contamination estimates when the simulated contamination rate is between 0.00 and 0.15.
a Estimates with damage-restricted correction (option 1). b Estimates with an external correction from an
uncontaminated sample (option 2). The black dotted line is y = x, which would correspond to a perfect
estimate of contamination. Error bars are 1.96*standard error (95% confidence interval determined via
jackknife resampling across chromosomes)
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advantage of the second option is that it allows estimation of contamination in cases

where the source of contamination is also ancient in origin, as would be expected if the

contamination occurred thousands of years ago or due to cross-contamination with

other ancient samples (the first option would be expected to produce an underestimate

of contamination in such cases, since it assumes that sequences that contain C-to-T

damage are not contaminated). On the other hand, a drawback of the second option is

that it requires users to identify a relatively high coverage, uncontaminated, ancestry-

matched samples for benchmarking purposes; the method is also only expected to work

if there is minimal inbreeding in either the sample of interest or the matched sample.

Identifying such benchmarking samples may be impossible when analyzing samples

from previously unsampled contexts (e.g., early modern humans), and indeed verifying

that a benchmarking sample is uncontaminated is very difficult if it is female (if it is

male, a method like ANGSD can be used).

In what follows, we report the results of analyses based on the first option, but Con-

tamLD includes both methods as options. The uncorrected score also forms the basis

for warning output by the software, namely high contamination or possible contamin-

ation with another ancient sample leading to an inaccurate damage correction estimate.

Simulated contamination of ancient samples with present-day samples

ContamLD is designed to work on ancient individuals, so we simulated contamination

of real ancient individuals (Additional file 2: Table S1) with present-day individuals

from the 1000 Genomes Project, a scenario that would occur when skeletal material

from ancient individuals is contaminated by present-day individuals during excavation

or at some point during the processing of the material. We used data from male indi-

viduals selected due to very low X chromosome contamination estimates (less than 1%)

based on ANGSD [16] (developed first in Rasmussen et al. [9]; we used method 1 of

that software). (We subtracted the ANGSD estimates from the ContamLD estimates to

correct for any residual contamination.) Figure 2a shows the results from the Iberian

Bronze Age sample [19] (I3756) with 1.02× coverage at the targeted ~ 1.24 million SNP

positions, demonstrating that ContamLD produces highly accurate contamination

estimates for this simulation.

Effect of different haplotype panels

There are many potential cases in which ancient individuals can come from popula-

tions with very different genetic profiles compared to present-day 1000 Genomes popu-

lations, leading to an ancestry mismatch to the haplotype reference panels. ContamLD

provides panels from all 1000 Genomes populations as well as tools to identify the

panel most closely matching to the ancestry of their ancient individual (based on out-

group-f3 statistics [20] to determine the most shared genetic drift), which they can then

select for the analysis. However, due to the potential for ancestry mismatch to still

occur, we tested the effect of choosing haplotype panels that are genetically diverged

from the individual of interest (Fig. 2a). For the ancient Iberian sample, the CEU and

Toscani in Italia (TSI) panels—representing northern and southern European ancestry,

respectively—yielded contamination estimates that are close to the true contamination

rate, especially for rates below 5%. However, ContamLD underestimates contamination
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by ~ 2% when the CHB (Han Chinese in Beijing, China) and YRI (Yoruba in Ibadan,

Nigeria) panels were used instead (though we view these as very pessimistic cases,

because the user should usually be able to choose a panel more closely related to their

ancient individual than these scenarios). We thus recommend that users take care to

choose an appropriate panel that is within the same continental ancestry as their

ancient individual. Nevertheless, we note that we were able to obtain reasonably accur-

ate estimates for Upper Paleolithic European hunter-gatherers, such as the Kostenki14

individual [21], who is ~ 37,470 years old, even when using present-day European

panels that have significantly different ancestry from the hunter-gatherers (Additional file 1:

Fig. S3).

Effect of mismatch between the ancestry of the true sample and contaminating

individual

Contamination can come from a wide variety of sources, including, but not limited to,

members of the archeological excavation team, the aDNA laboratory, or residual

human DNA on the plastic and glassware or in laboratory reagents. Thus, we sought to

understand the effect of mismatch in the ancestry of the true sample and the contamin-

ating individual in our contamination estimates. We found that as the ancestry of the

two diverged, ContamLD overestimated contamination (Fig. 2b and Additional file 1:

Fig. S4). This occurred when we tested an ancient European with different contaminant

ancestries and when we tested ancient East Asian [22] and ancient South African [23]

samples contaminated with European DNA. Nevertheless, the overestimation was not

severe at contamination levels below 5%, and samples above this proportion would

likely be correctly flagged as problematic. We also explored scenarios where the ances-

try of the panel matches the contaminant rather than the true sample (Additional file 1:

A B

Fig. 2 Genetic divergence between uncontaminated individual and contamination sources or haplotype
panels impacts ContamLD estimates. a Ancient Iberian (I3756, 1.02× coverage) contaminated with CEU with
haplotype panels generated from CEU, TSI, CHB, and YRI populations. b Contamination estimates from the
same ancient Iberian contaminated with TSI, CHB, or YRI and analyzed with a CEU panel; from an ancient
East Asian (DA362.SG, 1.10× coverage) contaminated with CEU and analyzed with a CHB panel; and from an
ancient South African (I9028.SG, 1.21× coverage) contaminated with CEU and analyzed with a YRI panel.
The black dotted line is y = x, corresponding to a perfect estimate of contamination. All estimates use the
damage-restricted correction (option 1)
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Fig. S4) and found a ~ 2% underestimate at low levels of contamination and an over-

estimate at high levels of contamination; these are modest effects and are unlikely to

change our qualitative assessment. When we tested the effect of having multiple

contaminant individuals (Additional file 1: Fig. S5), we found only a slight overestimate

at higher levels of contamination, as expected given ContamLD normally assumes

contamination from a single individual where the haplotypes are re-formed if they are

created from two contaminant reads (which will happen at lower rates with more

contaminant individuals).

Estimating contamination in admixed individuals

ContamLD relies on measuring the difference between the LD pattern of the sample

and that expected from an uncontaminated individual. However, individuals from

groups recently admixed between two highly divergent ancestral groups have LD patterns

that are similar in some ways to that of an unadmixed individual with contamination from

a group with ancestry diverged from that of the individual of interest. To understand how

this would impact ContamLD, we ran the software on an ASW (Americans of African An-

cestry in Southwest USA) individual with different levels of added CEU contamination.

When we ran ContamLD with a YRI panel and no correction on an individual with no

contamination, the individual was inferred to have a contamination of ~ 20% (likely

because the individual had ~ 15% European ancestry, and this was interpreted by the soft-

ware as contamination). Using an ASW panel did not perform any better. However, the

concerns were mostly addressed by the damage-restricted correction (option 1) at low

contamination levels (Additional file 1: Fig. S6). The simulation with African-Americans

represents an extreme of difficulty, because the individual is from a group with very recent

admixture (~ 6 generations [24]) of ancestries highly divergent from each other with one

of the ancestries very genetically similar to the reference panel. It highlights how the

damage-restricted correction is still able to produce accurate estimates in these difficult

cases.

Effect of coverage

We tested the power of our procedure at different coverages with simulations of

ancient West Eurasian ancestry individuals contaminated with CEU on the 1240K SNP

set (Fig. 3). We found that while our estimates were not biased to produce estimates

consistently above or below the true value, the standard errors increased significantly at

lower coverages, as expected for the decreased power for accurate estimation in these

scenarios. We provide a much larger panel with ~ 5.6 million SNPs (vs. ~ 1.1 million

for the 1240K panel) that usually decreases standard errors for samples that are

shotgun sequenced (Additional file 1: Fig. S7). This panel increases ContamLD’s

compute time and memory requirements, so we recommend that it only be used for

individuals with lower than 0.5× coverage. As an additional feature, we provide users

tools to create their own panels to meet their specific needs.

Effect of damage rate

We tested the power of ContamLD at different damage rates with simulations of an

ancient West Eurasian ancestry individual (DA57.SG) down-sampled to 0.5x coverage
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contaminated with another ancient West Eurasian ancestry individual (I10895) as above

with damage rates simulated to be between 0.005 to 0.075. We found that standard

errors decreased as damage rate increased (Additional file 1: Fig. S8). The standard

errors were below 3% at all damage rates above 0.01, which is lower than the damage

rate of most ancient DNA samples even after partial UDG treatment.

Simulations to compare ContamLD to ANGSD X chromosome estimates

We performed simulations where we randomly added contaminating sequences at

increasing levels from 0 to 15% from an ancient West Eurasian individual (I10895) into

the BAM files of 65 ancient male individuals of variable ancestries and ages (we set the

damaged sequences to be only from the non-contaminant individual; see the “Materials

and methods” section). We chose ancient male individuals that had average coverage

over 0.5× and X chromosome contamination estimates under 2% (using method 1 of

ANGSD) when no artificial contamination was added (and also corrected even for this

baseline contamination by setting damaged reads to be a 5% down-sampling of the files

that had no artificial contamination; see the “Materials and methods” section). We then

analyzed the individuals with ContamLD and ANGSD and found that compared to

ANGSD, ContamLD consistently had similar errors relative to the true contamination

level (Fig. 4, Additional file 3: Table S2).

Comparing ContamLD, ANGSD, and mitochondrial estimates (ContamMix) in ancient

individuals without added contamination

We tested 439 ancient males with ContamLD, ANGSD (X chromosome contamination

estimates), and ContamMix (mitochondrial contamination estimates) without adding

Fig. 3 ContamLD estimates for ancient European samples of different coverages after damage-restricted
correction (option 1). An ancient Iberian of 0.46× coverage, an ancient Hungarian of 0.27× coverage, and an
ancient Ukrainian of 0.015× coverage (~ 16,000 SNPs) were contaminated with CEU and analyzed using a
CEU panel with ContamLD option 1 (damage-restricted correction). The black dotted line is y = x. Error
shading is 1.96*standard error (95% confidence interval)
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additional contamination. For this analysis, we included published data generated with

the ~ 1.24 million SNP enrichment reagent, as well as data from libraries that failed

quality control due to evidence of contamination (Additional file 4: Table S3). Similar

to prior studies [5], the mitochondrial estimates often differed from the nuclear (ANGS

D and ContamLD) estimates, showing high contamination in some libraries with low

Fig. 4 Contamination estimates with ContamLD and ANGSD for ancient individuals with different levels of
contamination added. Sixty-five ancient individuals with average coverage over 0.5× had increasing levels
of artificial contamination added in (from I10895, an ~ 1200BP ancient West Eurasian individual) and were
then analyzed with ContamLD (with panels most genetically similar to the ancient individual and using
damage-restricted correction, option 1) and ANGSD. Details of all estimates (including standard errors) are
provided in Additional file 3: Table S2. The black dotted line is y = x, which would correspond to a perfect
estimate of the contamination

A B

Fig. 5 Contamination estimates from ContamLD, ANGSD, and ContamMix in 439 ancient individuals of
variable ancestry. ANGSD estimates (method 1) are plotted on the x-axis, and on the y-axis are either a ContamMix
or b ContamLD estimates. In red are samples that were flagged in ContamLD as “Very_High_Contamination”
based on having uncorrected estimates over 15%. All ContamLD estimates below 0 were set to 0
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nuclear contamination, and low mitochondrial contamination in some libraries with

high nuclear contamination, likely reflecting the known biological phenomenon of or-

ders of magnitude of variation in the mitochondrial to nuclear DNA ratio (Fig. 5a). In

contrast, ANGSD and ContamLD had better concordance. However, we observed that

some of the samples with high contamination estimates based on ANGSD had much

lower ContamLD estimates, reflecting over-correction from analyzing the damaged

sequences, perhaps because the contamination was actually cross-contamination from

other ancient individuals, violating the assumptions of our damage correction (Fig. 5b).

This problem was mitigated in part, however, because ContamLD produces a warning

of “Very_High_Contamination” if the uncorrected estimate is above 15% (even in cases

where the corrected estimate is very low), and all samples with X chromosome esti-

mates over 5% were flagged with this warning and/or had estimates of over 5% contam-

ination with ContamLD (all samples with less than 5% contamination in ANGSD had

lower than 5% contamination with ContamLD). It is unfortunately not possible to know

the true contamination of the samples we tested in Fig. 5, but the fact that our software

produced results with good correlation to X chromosome estimates shows that it works

well in real ancient data.

It is possible for there to be samples with moderately high contamination from an-

other ancient individual but both a low damage-restricted correction estimate and no

warning generated, because these would have high uncorrected estimates, yet not high

enough to reach the threshold required for the warning. These samples would have to

be identified with an external correction. Lowering the threshold for the “Very_High_

Contamination” warning would produce too many false positives, because there are

many cases with high uncorrected estimates that have low corrected estimates that are

likely not contaminated (e.g., due to ancestry mismatches of the panel and the test indi-

vidual). To understand these issues better, we performed a simulation in which an an-

cient Iberian (I3756) was contaminated with another ancient West Eurasian individual

(I10895), and the damaged sequences were set to be a 5% down-sampling of the set of

contaminated sequences (thus simulating a case in which all of the contamination is

from another ancient individual who has the same damage proportion as the ancient

individual of interest). We found that, as expected, the contamination from the ancient

individual was not detected (the contamination estimates were always near 0%) by the

damage-restricted correction version of ContamLD until the contamination reached

15% at which point the “Very_High_Contamination” flag came up (Additional file 1:

Fig. S9). The contamination would have been detected with the external correction

version of ContamLD (since the damage-restricted correction continued to go up with

increasing contamination; see Additional file 5: Table S4), but without an uncontamin-

ated ancient individual of the same group as the target individual, this would be diffi-

cult to do without bias in the contamination estimate.

Discussion and conclusion
We have presented a tool, ContamLD, for estimating rates of autosomal DNA contamin-

ation in aDNA samples. ContamLD is able to measure contamination accurately in both

male and female individuals, with standard errors less than 1.5% for individuals with

coverage above 0.5× on the 1240K SNP set (for contamination levels less than 10%) for

the damage-restricted correction method (option 1). On the shotgun panel we provide,
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standard errors are less than 1.5% for coverages above 0.1×. ContamLD is best suited to

scenarios in which the contaminant and the ancient individual of interest are similar an-

cestries, which is useful, because DICE [15] and many population genetic tools (e.g., PCA

or ADMIXTURE [25]) are better suited for detecting cases where the contaminant is of

very different ancestry from the ancient individual of interest. ContamLD works even for

recently admixed individuals. Lastly, ContamLD can detect cases of contamination from

other ancient individuals, though this works best if it is large amounts of contamination

that can reach the threshold required for the “Very_High_Contamination” flag.

We tested ContamLD in multiple simulation scenarios to determine when bias or less

reliable results could be expected. When applied to the situation with a test individual

(ancient or present-day), contaminant, and haplotype reference panel all from the same

continental ancestry, ContamLD provides an accurate, unbiased estimate of contamin-

ation. When the contaminant comes from a population that is of a different continental

ancestry from the population used for the base and haplotype panel, the contamination

appears to be slightly overestimated, particularly for higher contamination. This should

not be a large problem in analyses of real (i.e., non-simulated) data, because the effect

is small at the contamination levels of interest (< 5%). When we varied haplotype

panels, we found that the estimator is robust when applied to simulated datasets using

haplotype panels that are moderately divergent from the base sample (within-continent

levels of variation). We provide users tools for automatically determining the panel that

shared the most genetic drift with the sample so that the user can select the panel most

closely related to the sample. In other simulations, we found that the performance of

the algorithm declines as the coverage of the sample decreases. The estimates are not

biased, but the standard errors substantially increase when fewer than 300,000

sequences are available. In these cases, if the individual was shotgun sequenced, we

recommend that users choose the shotgun panel, which will substantially increase the

power for the analyses.

We applied the algorithm to estimate contamination levels in dozens of ancient sam-

ples and compared them to X chromosome-based contamination estimates. There was

generally good correlation with the X chromosome estimates, except that when the true

contamination was very high, the LD based estimates were sometimes estimated incor-

rectly, likely because the contamination was due to cross-contamination from another

ancient individual and there was over-correction from the damage estimates. This

problem is mitigated, however, because the software indicates if the uncorrected esti-

mate is very high so users can identify highly contaminated samples and remove them

from further analyses. A difficult case for the software is if there is contamination in

part from another ancient sample. This can cause an over-correction and lead to an

underestimate of the contamination. The “Very_High_Contamination” warning catches

very high contamination from other ancient samples, but it will miss cases of moderate

levels of contamination from other ancient samples, because it will not reach the

threshold required for the warning. In theory, the user can determine the true contam-

ination in these cases using the external correction, but the external correction can be

difficult if the user does not have an adequate sample to correct the estimate of the

sample of interest. The damage correction of the software also does not work if the

samples have undergone full UDG treatment (which results in very few damaged

sequences), and for this case, the external correction is the only option.
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The software run time is dependent on SNP coverage. If ~ 1,000,000 SNPs are

covered (the depth of the coverage on each SNP does not affect run time), the analysis

takes approximately 2 h if 3 cores are available on CentOS 7.2.15 Linux machines (~

25 GB of memory). The software is designed for samples to be run in parallel, so the

total time for analysis even for large numbers of samples is often not much greater than

the time for a single sample.

In summary, ContamLD is able to estimate accurately autosomal nuclear contamin-

ation in ancient DNA with standard errors that depend on the coverage of the sample.

This will be particularly useful for female samples where X chromosome estimates are

not possible. As a general recommendation for users, we believe in most cases all sam-

ples with a contamination estimate that is greater than 0.05 (5%) should be removed

from further analyses, or the contamination should be explicitly modeled in population

genetic analyses.

Materials and methods
Datasets

Present-day samples

Genome-wide datasets from individuals that were part of the 1000 Genomes Project

[26] were used as present-day reference data. We restricted to autosomal sites included

in the ~ 1.24 million SNP capture reagent [2, 17] and to SNPs at greater than 10%

minor allele frequency in the pooled 1000 Genomes Project dataset [26]. However, the

software allows users to make custom SNP panels. In the analyses presented here, we

filtered for SNPs that were present in the 1000 Genomes dataset and also removed all

sex chromosome SNPs leading to 1,085,678 SNPs in the final 1240K dataset and 5,633,

773 SNPs in the final shotgun dataset.

Ancient data set

We analyzed mitochondrial and X chromosome contamination estimates [16, 27]

from ancient individuals from previous studies generated by shotgun sequencing or

targeted enrichment for 1.24 million SNPs, including many samples that failed

quality control due to contamination but were from the same archeological sites

[2, 23, 28–34]. Information about the ancient individual data is detailed in

Additional file 2: Table S1 and below.

Obtaining sequence information

For each ancient individual, we generated the sequence depth data from the sample

bam file, counting the number of reference and alternative alleles at each SNP site in

the analysis dataset. Damage-restricted data were generated by restricting to sequences

with PMD scores greater than or equal to 3 [4]. Our software can accommodate both

genotype call data as well as sequence data (the sequence data adds additional power to

the analyses), but all analyses were performed using the sequence-based method. We

provide users with tools to pull down read count data from BAM files in the format

required for ContamLD.
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Haplotype calculation

To create haplotype panels, we obtained all SNP pairs in high LD for each 1000

Genomes population using PLINK version 1.9 [35] with r2 cutoff of 0.2. (Users can

increase power slightly at the expense of increased computational time by creating their

own haplotype panel with a lower r2 cutoff.) We then calculated the frequencies of each

SNP in all of these pairs as well as the haplotype frequencies at each of these pairs

while holding out the present-day individuals used for contamination simulation.

Algorithm to estimate contamination

Overview

Our goal is to estimate α, the level of contamination, by examining the frequencies of

allele pairs that should be in LD (we term this two-allele pair a haplotype) and deter-

mining how much their frequencies differ from what would be expected under no con-

tamination. To estimate this, we need both the distribution underlying the haplotypes

(q) that an uncontaminated test sample should have as well as the distribution of “unre-

lated haplotypes” (~h ) that would form by chance from background allele frequencies.

Here and below, “distribution” refers to the set of frequencies of the different possible

haplotypes (all possible combinations of ancestral and derived alleles at the SNP pair)

across all haplotypes in the genome. Additional file 1: Fig. S10 is a schematic of the

algorithm.

Determining haplotype distributions based on reference panels

To determine q, we must account for the fact that the test individual’s genotypes do

not have diploid calls and are not phased. Due to the low sequence depths at each SNP

in many ancient DNA datasets, it is difficult to make confident heterozygous calls, so

instead, we create pseudo-haploid calls by randomly choosing a sequence to represent

the genotype at that position (this holds when we are using genotype calls or the se-

quence information directly, and when multiple sequences cover the same SNP, we use

all of them and treat them as independent). Thus, for this analysis, when examining a

pair of SNPs, it is equally likely for the SNP pair to have been formed from the true

haplotype (if the same parental chromosome is sampled from in both SNPs of the

haplotype) or the background distribution (if the opposite parental chromosome is

sampled). We therefore can estimate q as:

q ¼ h=2þ ~h=2

where h is the distribution of true haplotypes and ~h is the distribution of unrelated

haplotypes that would form by chance from background allele frequencies. For inbred

samples, the weight on h is more than 1/2, because the two parental chromosomes are

more related, but this can generally be corrected (see below).
~h can be determined by multiplying the SNP frequencies to obtain the haplotype fre-

quencies that would form after randomly pairing SNPs of unrelated individuals. h can

be estimated from an external reference panel using a maximum likelihood estimator

(MLE) to obtain haplotype frequencies in the population from the counts (necessary

because the panels are not phased). The MLE setup is:
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log L hjcð Þð Þ ¼
Xn

j¼1

X4

i¼1
cijlog P i; jjhð Þð Þ

with

P i; j hjð Þ ¼
X

a1;a;b1;b2¼0;1;a;b→ i; jð Þ h a1;b1ð Þ�h a2;b2ð Þ

where P(i, j|h) is the (unknown) diploid count distribution of the haplotypes of the

population the test individual is from (approximated by the external panel), n is the

number of SNP pairs, c is the vector of observed haplotypes in the diploid count panel

(from 1000 Genomes), i sums over all 4 haplotype possibilities, h(a,b) are the (also un-

known) haplotype distributions of the parents of the test individual (the haploid chro-

mosomes they pass on to their child), and a, b→(i, j) implies that a1 + a2 = i and b1 +

b2 = j, meaning that one adds up all cases where the haplotype combination would lead

to a particular diploid count (e.g., in the notation, for example, 01,11 means the first

parent contributes a haplotype that has 0 alternative alleles at the first SNP and 1 alter-

native allele at the second SNP, and the second parent contributes a haplotype where

both SNPs have the alternative allele. The test individual with these parents would then

have a 12 diploid count, which means at the first SNP the individual has 1 alternative

allele and at the second, SNP the individual has 2 alternative alleles. Since our observed

data are not phased, both 01,11 and 11,01 would lead to a 12 diploid count. This as-

sumes independence of SNP pairs, which is not true, but because our standard errors

are based on jackknife resampling across chromosomes, correlation among SNP pairs

is corrected for in our error estimates.

The MLE would be computationally intractable to solve due to our lack of knowledge

of which parent contributed to each count, so we instead used an EM algorithm to ob-

tain h, where knowledge of the parents’ contribution is the unobserved latent variable.

The algorithm involves an expectation step of:

n1 ¼
C i; jð Þ�Pa;b→ i; jð Þh a;bð Þ�h a2;b2ð Þ

P i; jjhð Þ

where n1 is the expected number of times that the (a, b) configuration of the father’s

chromosome contributed to a particular diploid count (this is the same value for the

mother, n2, because they are assumed to be from the same haplotype distribution). In

other words, given the observed haplotype counts in the reference panel, how many

times would it be expected that a particular haplotype configuration (e.g., ancestral at

SNP1, derived at SNP2) in one of the parents contributed to those counts?

Once the counts (n1 and n2) of the haploid parents are obtained, they are added to-

gether to produce the diploid individual (i.e., the expected number of all possible haplo-

type configurations). Then, the expected value of the haplotype distribution can be

maximized by averaging over the possible haplotype distributions. Thus, the

maximization step is:

D a;bð Þ ¼
X

i; jð ÞC i; jð Þ� n1 þ n2½ �
h â;bð Þ ¼

D a;bð ÞP
a;bD a;bð Þ
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where D(a,b) is the sum of the probabilities of a particular haplotype configuration over

all diploid count configurations.

We initially set all h(a,b) to be 0.25 and then iterated through the algorithm until

convergence (using a squared distance summed over all SNPs and a threshold of

0.001). We then used this estimate of h to get an estimate of q (based on the first

equation above).

Estimating contamination based on haplotype distributions and test individual’s haplotypes

To estimate α, we used the equation:

T ¼ 1 − 2α0 þ 2α02
� �

q þ 2α0 1 − α0ð Þ~h

Here, T is the expected distribution underlying the observed haplotypes of the

sample, which is a mix of the test individual and contaminant. This means that

assuming the test individual comes from a population with a haplotype distribution

(frequency of the different haplotype possibilities at each SNP pair throughout the

genome) that can be approximated by the chosen reference panel (and estimated

as above), T is the haplotype distribution expected for the sample given a particu-

lar amount of contamination (α′, where ′ is used to indicate that this is an esti-

mate of the real α). q is the haplotype distribution for an uncontaminated sample.

A fraction (1 − α′)2 + α′2 of the distribution should look like this, where (1 − α′)2 is

the probability that two uncontaminated sequences form the SNP pair and α′2 is

the probability that two contaminated sequences form the SNP pair, assuming the

contaminating sequences are from a single individual, which would “re-form” a

SNP pair with LD (note: this also makes the simplifying assumption that the

contaminant and the test individual have the same background haplotype and SNP

distribution). ~h is the distribution of unrelated “haplotypes” that would form by

chance from background allele frequencies in the population. Contamination would

form these unrelated haplotypes by breaking up LD, so a fraction 2α′(1 − α′) of the

distribution should look like this (the probability that the SNP pair is formed from

a contaminated sequence and an uncontaminated sequence).

This expression can be used to solve for α′ by maximizing the log of the odds (LOD)

scores under the null hypothesis that α′ = 0 and the alternative hypotheses of different

α′. A LOD score is assigned to each estimate of the contamination rate (α) between −

0.1 and 0.5 (negative scores are included to allow correction for inbreeding). The grid

of α′ is scaled by intervals of 0.0001. The α′ with the highest LOD score is the best

estimate of α and is returned. When we have multiple sequences on the same SNP, we

assume independence of the sequences, which provides additional power. The assump-

tion of independence does not bias the error estimation for the same reason as

explained above for the independence of SNP pairs.

Correcting for bias in contamination estimates

In practice, the α′ we obtain is not equal to the true α, because the reference panel

does not perfectly capture the SNP and haplotype frequencies of the test sample. We

found that this difference causes a linear shift in contamination estimate where the

mismatch between the sample individual and the reference panel leads to a positive

Nakatsuka et al. Genome Biology          (2020) 21:199 Page 16 of 22



shift while inbreeding leads to a negative shift. These biases can be addressed in either

of two ways.

First, for the “damage correction” approach, we performed an α′ estimate only

on alleles from sequences with evidence of damage characteristic of ancient sam-

ples. Under the assumption that these sequences are not affected by present-day

contamination, the inferred α′ would be an estimate of the bias, which can be sub-

tracted out from the estimate based on all sites. We separately analyzed the follow-

ing pairs of SNPs: UU (both SNPs at undamaged sequences), DU (one site

damaged and the other undamaged), and DD (both SNPs at damaged sequences).

For the UU pairs, the value we calculate would be α + k, where k is the linear shift.

For DU pairs, the value calculated would be α/2 + k, and for DD pairs, the value

calculated would be k. We added the likelihoods for these pairs and maximized the

likelihood to solve for α and k. After solving for α, we multiply by (1 damage rate)

to obtain the contamination level across all sequences, because α is the contamin-

ation rate at undamaged sequences.

Second, for the “external correction” approach, we took individuals from the test in-

dividual’s population that were high coverage and samples we believed had very low

contamination (based on X chromosome estimates with ANGSD using method 1 as de-

veloped first by Rasmussen et al. [9]) and measured α′. We assumed a true contamin-

ation of 0 for these samples and thus subtracted this α′ from all other contamination

estimates. We caution that this method does not correct for uncertainty in the contam-

ination estimate in the external sample used for benchmarking.

Comparison to a similar method

The approach of ContamLD is similar to that of Vohr et al. [36] except the two have

opposite goals. Vohr et al. searches for LD in reads from two different samples in an at-

tempt to determine whether the two samples are from the same individual (or closely

related individuals), using a reference panel to determine LD patterns. In contrast, Con-

tamLD searches for breaks in LD in the sequences of a single sample to determine if

sequences from other individuals are present in the sample.

Data simulation

To test the accuracy of the algorithm, we applied it to a variety of scenarios with both

present-day DNA as well as real aDNA samples that had simulated present-day DNA

contamination. In all our simulations with 1000 Genomes individuals, we removed the

individual being used from our haplotype panel before performing the analyses.

Simulating contamination of present-day individuals

We first simulated contamination of present-day individuals with other present-day

individuals as contaminants (this allowed us to be sure that there was no baseline con-

tamination). In order to best approximate the distribution of both the damaged and un-

damaged sequences that is characteristic of aDNA data, we used sequence depth

information from an ancient individual as a reference. At each SNP, the total number

of simulated “damaged” and “undamaged” sequences was determined based on the

number of damaged and undamaged sequences at the SNP in the reference ancient
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individual. The identity of each allele for the present-day “base” sample was randomly

chosen based on the genotype of the “base” present-day 1000 Genomes individual at

each SNP, as described above for the contamination. The addition of contaminant se-

quences to the dataset was performed using the method described above. In order to

reduce bias caused by the damage correction procedure, the damage-restricted dataset

was generated only once for each simulation type (which included multiple simulations

across varying contamination rates) and combined with the undamaged dataset to pro-

duce the overall dataset. This method was used to generate a simulated individual using

present-day CEU (NA06985) or ASW (NA19625) from the 1000 Genomes dataset as

the “base” sample from the sequence distributions of a 1.02× coverage ancient Iberian

individual (I3756) (the “reference”) [19]. The CEU (NA06984) individual was used as a

“contaminant” in each case.

We generated simulated data with contamination from multiple sources by adjusting

the present-day contamination simulation method to randomly sample from two or

more present-day source contaminant genomes with equal probability. In each case, a

1000 Genomes Project CEU individual (NA06985) was used as a “base” genome with

the sequence distribution of I3756 (the “reference”). In the case of 2 sources of contam-

ination (Additional file 1: Fig. S5), two CEU individuals from the 1000 Genomes Project

dataset (NA06984 and NA06986) were used as contamination sources, and in the case

of three contamination sources, an additional CEU individual was used (NA06989).

Data was generated for all combinations of undamaged contamination rates, α, from 0

to 15%.

Simulated contamination of ancient individuals

We performed two sets of simulations contaminating different ancient individuals. In

both cases, we selected ancient male individuals with minimal contamination (as

assessed by X chromosome contamination levels from ANGSD [16]) to act as the “base”

uncontaminated genome. In the first simulation set, we tested ContamLD’s perform-

ance with different ancient individuals and different present-day contaminant individ-

uals from the 1000 Genomes dataset [26] to assess the impact of contaminant ancestry

and coverage of the ancient individual. In this case, we were only using ContamLD, and

thus, we performed the simulated contamination on the genotype level. In the second

simulation set, we compared ContamLD to ANGSD and used a ~ 1200BP ancient West

Eurasian individual (I10895) to contaminate the BAM files directly.

In the first simulation set, we assumed that sequences with C-to-T damage are highly

unlikely to be the product of contamination (this assumption would be falsified in the

context of cross-contamination by another ancient DNA sample). Thus, we exclusively

added contamination to the “undamaged” fraction of sequences. At each SNP site, we

classified sequences present in the damage-restricted dataset as “damaged” and added

to the simulated data. We classified all other sequences as “undamaged” and also added

them to the simulated data, but for each “undamaged sequence,” we added a contamin-

ant sequence to the simulated SNP data with probability α/(1 − α), where α is equal to

the contamination rate (since the added sequences contribute to the total number of

sequences, we needed to add a higher proportion than the contamination rate to obtain

our desired contamination rate). The identity of the added contaminant allele was
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randomly chosen based on the genotype of the chosen “contaminant” present-day gen-

ome at the site (i.e., if the contaminant individual was homozygous at the site, the allele

it possesses would be added to the simulated individual, while if it were heterozygous

at the site, either the reference or alternative allele would be selected randomly and

added to the simulated individual). This method maintains the underlying distribution

of “uncontaminated” reference and alternative alleles at each SNP site, while adding

additional “contaminant” alleles to each site, producing an overall contamination rate

of α in the undamaged sequences.

For each simulation, we generated two output files: (1) a file reporting the total

number of sequences carrying reference and alternative alleles at each SNP and (2)

a damage-restricted file reporting the total number of damaged sequences carrying

reference and alternative alleles at each SNP. We used a 1.02× coverage ancient

Iberian individual (I3756) (Additional file 2: Table S1) with contamination from

either the 1000 Genomes CEU individual NA06984, the TSI individual NA20502,

the CHB individual NA18525, or the YRI individual NA18486. We also used 5

other ancient individuals: I1845 (an ancient Iberian sample of 0.46× coverage) [19],

I2743 (an ancient Hungarian of 0.27× coverage) [31], I5891 (a Neolithic Ukrainian

individual of 0.016x×coverage) [37], DA362.SG (a Russian early Neolithic Shamanka

East Asian individual of 1.10× coverage) [22], and I9028.SG (a South African indi-

vidual of 1.21× coverage) [23]. In each case, we simulated individuals with 0–15%

contamination.

For the second simulation set, we analyzed 65 ancient individuals of average coverage

over 0.5× and baseline ANGSD estimates under 2% (Additional file 3: Table S2). In

these cases, we added artificial contamination with sequences from a ~ 1200BP ancient

West Eurasian individual (I10895) into the BAM files at the following proportions:

0.000, 0.005, 0.010, 0.020, 0.025, 0.030, 0.040, 0.050, 0.060, 0.070, 0.080, 0.090, 0.100,

and 0.150. We removed two base pairs from the end of each sequence of partial UDG-

treated samples and ten nucleotides for non-UDG-treated samples and pulled down

the genotypes by randomly selecting a single sequence at each site covered by at least

one sequence in each individual to represent the individual’s genotype at that position

(“pseudo-haploid” genotyping). To ensure that the damage sequences were only from

the non-contaminant individual (so that we could use the damage-restricted correction

mode, option 1, of ContamLD without bias), we created the “damaged” sequence set as

a randomly chosen 5% of the sequences from the non-contaminant individual. We then

analyzed the data with ContamLD (damage-restricted correction version, option 1) and

ANGSD using default settings (method 1). We also performed simulations with a 1.0×

coverage ancient West Eurasian ancestry individual (DA57.SG, an ancient Krgyzstanian

individual) [38] down-sampled to 0.5× coverage and contaminated with I10895. To

simulate different damage rates, we varied the damage rate to the proportions 0.005,

0.01, 0.02, 0.03, 0.04, 0.05, and 0.075 by setting the amount of “damaged” sequences to

be those proportions.

As the last simulation, we examined the case of an ancient individual contaminating

another ancient individual where some of the damaged sequences would also come

from the contaminating individual. In this simulation, we analyzed a 1.02× coverage

ancient Iberian individual (I3756) and contaminated the BAM with sequences from a

~ 1200BP ancient West Eurasian individual (I10895) in the proportions 0.000, 0.005,
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0.010, 0.020, 0.025, 0.030, 0.040, 0.050, 0.060, 0.070, 0.080, 0.090, 0.100, 0.150, 0.200,

and 0.300. We then down-sampled the BAM, taking a random 5% of the sequences of

these contaminated BAM files to act as the “damaged” sequences, because this would

correct for any baseline contamination in the I3756 individual yet would simulate

additional contamination of I3756 by an ancient individual with the same damage rate

as I3756 (i.e., if there is 5% contamination, then also 5% of the damaged sequences

would be from the contaminant individual in this simulation). We then performed the

standard processing of both the full contaminated BAMs and the 5% down-sampled

BAMs (simulated to be “damaged” sequences), removing two base pairs from the end

of each sequence and carrying out a “pseudo-haploid” genotype pulldown. We ran

ContamLD on the resulting data with damage-restricted correction, option 1.

Direct analyses of contamination levels in ancient individuals

As our last set of analyses, we directly measured the contamination levels in ancient indi-

viduals without simulated contamination. We used ContamLD to examine the shotgun-

sequenced individuals analyzed at the1240K SNP set and the large 5.6 million SNP shot-

gun panel. The ancient shotgun sequenced individuals were of 0.1–0.5× coverage from

Allentoft et al. [32]; Damgaard et al., Nature [38]; and de Barros Damgaard et al., Science

[22]. In addition, we analyzed 439 individuals from a variety of ancestries with ContamLD

(damage-corrected version), ANGSD [16, 39] using default settings (we report the results

from Method 1), and ContamMix [40] with the settings: down-sampling to 50× for

samples above that coverage, --trimBases X (2 bases for UDG-half samples and 10 bases

for UDG-minus samples), 8 threads, 4 chains, and 2 copies, taking the first one that

finishes. Additional file 2: Table S1 includes all information from these individuals.
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