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Abstract

Enteric viscerofugal neurons provide a pathway by which the enteric nervous system (ENS), otherwise con-
fined to the gut wall, can activate sympathetic neurons in prevertebral ganglia. Firing transmitted through
these pathways is currently considered fundamentally mechanosensory. The mouse colon generates a cyclical
pattern of neurogenic contractile activity, called the colonic motor complex (CMC). Motor complexes involve a
highly coordinated firing pattern in myenteric neurons with a frequency of ;2 Hz. However, it remains un-
known how viscerofugal neurons are activated and communicate with the sympathetic nervous system during
this naturally-occurring motor pattern. Here, viscerofugal neurons were recorded extracellularly from rectal
nerve trunks in isolated tube and flat-sheet preparations of mouse colon held at fixed circumferential length. In
freshly dissected preparations, motor complexes were associated with bursts of viscerofugal firing at 2Hz that
aligned with 2-Hz smooth muscle voltage oscillations. This behavior persisted during muscle paralysis with ni-
cardipine. Identical recordings were made after a 4- to 5-d organotypic culture during which extrinsic nerves
degenerated, confirming that recordings were from viscerofugal neurons. Single unit analysis revealed the
burst firing pattern emerging from assemblies of viscerofugal neurons differed from individual neurons, which
typically made partial contributions, highlighting the importance and extent of ENS-mediated synchronization.
Finally, sympathetic neuron firing was recorded from the central nerve trunks emerging from the inferior mes-
enteric ganglion. Increased sympathetic neuron firing accompanied all motor complexes with a 2-Hz burst pat-
tern similar to viscerofugal neurons. These data provide evidence for a novel mechanism of sympathetic reflex
activation derived from synchronized firing output generated by the ENS.
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Significance Statement

Significant interest exists in how the gut can control other body systems. Enteric viscerofugal neurons
uniquely project axons out the gut wall, forming circuits with prevertebral sympathetic neurons. Long con-
sidered principally transmitting mechanosensory information, a new mechanism is demonstrated here
whereby a synchronized enteric nervous system (ENS)-generated firing pattern underlying natural gut motor
behavior is also relayed through populations of viscerofugal neurons. Remarkably, this caused parallel firing
in sympathetic neurons in the pattern generated by the ENS. This did not require dynamic mechanical activ-
ity. The identification of this mechanism revises the current concept of sympathetic reflexes being simply
distension reflexes.
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Introduction
The nature of direct communications between the en-

teric nervous system (ENS; located within the gut wall)
and the sympathetic nervous system (that lie outside the
gut wall) which control gastrointestinal motility and other
homeostatic processes remains enigmatic. Anatomical
and functional evidence of entirely peripheral reflex path-
ways involving enteric viscerofugal neurons and sympa-
thetic prevertebral neurons abounds (Szurszewski and
King, 1989; Szurszewski and Miller, 1994; Szurszewski et
al., 2002; Szurszewski and Linden, 2012). These circuits
are formed by enteric viscerofugal neurons whose nerve
cell bodies are located in the gut wall and axons project
out through extrinsic nerve trunks (Szurszewski and
Miller, 1994). Viscerofugal synaptic inputs are received
by postganglionic sympathetic neurons (Crowcroft et al.,
1971). The axons of sympathetic neurons in turn project
back into the gut wall (Costa and Furness, 1984;
Messenger et al., 1994; Olsson et al., 2006).
Intracellular recordings from sympathetic neurons

demonstrated that viscerofugal neurons are activated by
gut distension (Crowcroft et al., 1971; Szurszewski and
Weems, 1976), with preferential activation by increased
gut volume (circumferential length) rather than pressure
(gut wall tension; (Anthony and Kreulen, 1990; Miller and
Szurszewski, 2002). Some of this volume sensitivity
arises from direct mechanotransduction by viscerofugal
neurons (Parkman et al., 1993; Bywater, 1994; Stebbing
and Bornstein, 1994; Miller and Szurszewski, 1997) and
has been described in detail (Hibberd et al., 2012b;
Palmer et al., 2016). However, most activation of viscer-
ofugal neurons is indirect via synaptic inputs from other
enteric neurons (Miller and Szurszewski, 1997, 2002).
Previous studies have demonstrated that viscerofugal
neurons receive synaptic inputs from both ascending
and descending pathways in the myenteric plexus but
how these relate to motor activity is not clear.
The isolated whole mouse colon provides a unique

model for studies of one particular pattern of gut motility.
It displays a cyclical pattern of contractile activity that
propagates along the colon and is highly dependent on
activity in the ENS (Spencer et al., 2018). This pattern of
activity is called the colonic motor complex (CMC), which
comprises a period of organized and widespread enteric
neuron activation, whereby many tens of thousands of en-
teric neurons are synaptically activated at the same time
in a rhythmic firing pattern at ;2 Hz. This behavior

emerges from an ongoing periodic excitation of enteric
neural circuits, which can be initiated by maintained dis-
tension (Barnes et al., 2014). The observation that the
neural firing pattern underlying the CMC involved the par-
ticipation of most myenteric neurons (Spencer et al.,
2018) raises the possibility that viscerofugal neurons are
also activated during this pattern.
The aims of this study were to determine the firing proper-

ties of viscerofugal neurons during naturally occurring CMCs
and whether dynamic changes in gut wall circumference or
muscle contraction were required for their activation. We also
tested whether postganglionic sympathetic neurons are acti-
vated during the CMCs. This study suggests that assemblies
of viscerofugal neurons relay with high fidelity the patterned
neural activity from the ENS to the sympathetic nervous sys-
tem. We present evidence that firing of multiple viscerofugal
neurons are synchronized by an underlying 2-Hz discharge
pattern of the ENS during CMCs, leading to a similar pattern
of discharge in sympathetic neurons. Furthermore, this acti-
vation occurs independent of dynamic changes in intraco-
lonic volume (filling), muscle contraction, or the expulsion of
fluid along the colon, suggesting that it is driven by active en-
teric motor circuits.

Materials and Methods
Mice of either sex (C57BL/6; 6–12weeks old) were

killed by isoflurane overdose followed by exsanguination
(ethics no. 467/17). Following a midline laparotomy, the
entire large intestine from caecum to terminal rectum was
removed along with the pelvic plexuses and in some prep-
arations, the inferior mesenteric ganglion. Tissue was im-
mediately placed in a Sylgard-lined glass Petri dish filled
with warmed (32–36°) Krebs solution (118 mM NaCl, 4.7
mM KCl, 1.0 mM NaH2PO4, 25 mM NaHCO3, 1.2 mM

MgCl2, 11 mM D-glucose, and mM 2.5 CaCl2; gassed with
95% O2-5% CO2). The caecum was removed, and the
colon was cleared of content by a combination of sponta-
neous emptying and flushing with Krebs solution.
Preparations were further dissected depending on the
experiment.

Electrophysiological recordings of viscerofugal
neuron axons during themotor complex
The firing behavior of viscerofugal neurons was re-

corded during CMCs in three types of preparation: (1)
organ cultured flat-sheet preparations of colon; (2) fresh
flat-sheet preparations of colon; and (3) fresh intact tubu-
lar preparations of colon. In both organ-cultured and fresh
flat-sheet preparations, the full-length colon was cut
along the anti-mesenteric border to create a flat-sheet.
No longitudinal cuts were made in intact tube prepara-
tions. In all preparations, several (2–6) rectal nerve trunks
on either side of the gut were isolated from surrounding
connective tissue. Preparations were transferred to an
organ bath for electrophysiological recordings. Fresh
preparations were transferred immediately, while organ
cultured preparations were maintained in culture media
for 4 d (see “organotypic culture”, below) before transfer.
Flat-sheet preparations were placed in a 20-ml organ
bath, and uniformly stretched to a circumferential length
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of ;5–7 mm with serosa uppermost by entomological
pins. Tube preparations were placed in a 40-ml organ
bath with an incompressible stainless-steel rod of 2.2 mm
in diameter (; 6.9-mm circumference) inside the lumen.
For comparison, six- to eight-week-old C57BL/6 mice
had natural pellet diameters ranging 1.46–3.02 mm (mean
2.016 0.21 mm; Hibberd et al., 2018b).
In all preparations, rectal nerve trunks were pinned to the

base of the organ bath by small tungsten pins (25–50mm in
diameter) and isolated in paraffin oil. Organ baths were lo-
cated on a heated base and maintained at a temperature of
35–36°C inside a Faraday cage. Preparations were con-
stantly superfused with oxygenated Krebs solution at a rate
of; 3.5 ml/min. Action potentials were recorded from up to
three rectal nerve trunks simultaneously by separate plati-
num electrodes. Neurogenic spike bursts were recorded
from smooth muscle by an extracellular suction electrode
(Hibberd et al., 2017) applied to the serosal layer 20–25 mm
from the terminal rectum. These events comprise the elec-
trical activity in smooth muscle underlying CMCs (Hibberd
et al., 2017, 2018a; Spencer et al., 2018) and for simplicity
are referred to here as CMCs. Silver chloride pellets located
in the Krebs solution were used for reference electrodes to
both nerve and muscle electrophysiological recordings.
Nerve recording signals were amplified (ISO80; WPI)
and digitized at 20 kHz (PowerLab 16/35, LabChart 8,
ADInstruments). Muscle recording signals were ampli-
fied (DAM-50; WPI) and digitized at 1 kHz.

Electrophysiological recordings of sympathetic
efferent axons during themotor complex
The firing behavior of postganglionic sympathetic efferent

neurons was recorded in fresh intact tube preparations that
contained both the pelvic plexuses connected to the inferior
mesenteric ganglion. These preparations were set up as de-
scribed for tube preparation above. However, nerve record-
ings were made from the central cut endings of lumbar
colonic nerve trunks close to the ganglion and thus reflect fir-
ing in sympathetic postganglionic axons (Fig. 1).

Organotypic culture
Organ cultured preparations were maintained in sterile cul-

ture medium [DMEM/Ham’s F12, Sigma (1:1 ratio mix, sup-
plemented with L-glutamine and 15mmol l�1 HEPES);
including 10% fetal bovine serum, 1.8mmol l�1 CaCl2, 100 IU
ml�1 penicillin, 100mg ml�1 streptomycin D, 2.5mg ml�1 am-
photericin B, and 20mg ml�1 gentamycin; Cytosystems] and
slowly agitated for 4–5d in a humidified incubator (36°C, 5%
CO2 in air). To prevent strong contractions from tearing the
tissue during incubation, culture medium contained 1 mM hy-
oscine (hydrobromide; S0929, Sigma) and 1 mM nicardipine
(hydrochloride; N7510, Sigma). Culturemediumwas replaced
every 24 h. This procedure allowed degeneration of both spi-
nal afferent neuron axon and autonomic efferent neuron
axons in the guinea pig colon, while viscerofugal neurons per-
sisted (Hibberd et al., 2012a).

Biotinamide tracing
A bubble of biotinamide solution (5% biotinamide (N-[2-

aminoethyl] biotinamide hydrobromide), dissolved in

artificial intracellular solution (150mmol/l monopotassi-
um L-glutamic acid, 7mmol/l MgCl2, 5mmol/l glucose,
1mmol/l ethylene glycolbis(b-aminoethyl ether)-N,N,N=,
N=-tetraacetic acid, 20mmol/l HEPES buffer, 5mmol/l
disodium adenosine triphosphate, 0.02% saponin, 1%
dimethyl sulfoxide, 100 IU/ml penicillin, 100 mg/ml strep-
tomycin, and 20 mg/ml gentamycin sulfate) was placed
on a dissected nerve trunk and normal Krebs solution in
the main chamber was replaced with sterile culture me-
dium (described above). Preparations were incubated
overnight (36°C, 5% CO2 in air). The preparations were
fixed overnight in paraformaldehyde (4% in 0.1 M phos-
phate buffer, pH 7.0). Preparations were cleared using
0.5% Triton X-100 in 0.1 M PBS [0.15 M NaCl, pH 7.2; 3
� 10-min washes, and then washed in PBS (3 � 10-min
washes) followed by incubation for 3 h in 3–1-O-(2-cya-
noethyl)-(N,Ndiisopropyl) indo-carbocyanine (CY3)-con-
jugated streptavidin]. Preparations were then washed
with PBS (3 � 10min) and equilibrated in a series of car-
bonate-buffered glycerol solutions (50%, 70%, and
100% solutions; 3� 10min) before mounting on glass
slides in buffered glycerol (pH 8.6). Confocal images
were captured using a Zeiss LSM880 confocal micro-
scope with a 20� objective lens. Z-stacks were scanned
at 1.25-mm steps through the full thickness of prepara-
tions. The z-stacks were processed to obtain maximum
intensity projections using ImageJ (v1.52a; National
Institutes of Health).

Immunohistochemistry
Following biotinamide tracing, a subset of control and

organ-cultured preparations were additionally assessed for
immunoreactivity for calcitonin gene-related peptide (CGRP),
expressed in the majority of colorectal spinal afferent neu-
rons (Robinson et al., 2004; Christianson et al., 2006), and ty-
rosine hydroxylase (TH), a marker of sympathetic neurons
(Jobling and Gibbins, 1999; Kaestner et al., 2019).
Preparations were incubated with primary antisera for CGRP
(rabbit; Peninsula; IHC 6006; RRID: AB_2314156; 1:2000 di-
lution) and TH (chicken; Abcam; AB76442; RRID: AB_
1524535; 1:200 dilution) for 48 h at room temperature, fol-
lowed by PBS washing (3� 10min) and 4-h incubation in
secondary antisera (Alexa Fluor 488; donkey anti-rabbit;
Thermo Fisher Scientific; A21206; RRID: AB_2535792;
1:1000 dilution; and Alexa Fluor 647 donkey anti-chicken;
Jackson ImmunoResearch; 703-605-155; RRID: AB_
2340379; 1:1000 dilution). Preparations were then washed in
PBS and equilibrated in carbonate/bicarbonate-buffered
glycerol solutions for mounting on glass slides, as described
above. Confocal images were captured using a Zeiss
LSM880 confocal microscope with a 20� objective lens
using identical settings for both control and cultured prepara-
tions. Z-stacks were scanned at 1-mm steps through the full
thickness of preparations. The z-stacks were processed to
obtain maximum intensity projections using ImageJ.

Experimental design and statistical analysis
Simultaneous smooth muscle and nerve recordings

were allowed at least 60min for control recordings before
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addition of drugs. All instances of CMCs were included
for analysis of smooth muscle and nerve firing rates (ana-
lyzed using LabChart 8; ADInstruments). For analysis of
nerve firing, single units were discriminated by spike am-
plitude, duration and interspike interval using LabChart 8
Spike Histogram software (ADInstruments). The entire du-
ration of CMCs and 120-s pre-CMC and post-CMC were
sampled to determine firing rates. To analyze single unit
contributions to burst firing sequences, all detectable
bursts of firing within all instances of CMCs were individu-
ally selected and included for analysis. Action potentials
and electrical oscillations in smooth muscle recordings
were discriminated to determine average firing rates using
manually set thresholds and median filtering using
LabChart 8 (ADInstruments). To analyze the relationship
between sequences of burst firing in rectal nerves and
CMCs, the time point of each burst firing sequence was

recorded while blinded to CMC recordings. Their latency to
the nearest CMC was compared with those of 100 ran-
domly generated times within the recording period for each
preparation. Statistical analysis was performed on prepara-
tion averages by ANOVA (one-way with repeated meas-
ures), or Student’s two-tailed t test for paired or unpaired
data using Prism 8 (GraphPad Software, Inc). Degree of
statistical significance was given as p values. However,
where comparisons are made, we have provided Gardner–
Altman estimation plots to focus on effect sizes and confi-
dence intervals (Fig. 5; Gardner and Altman, 1986; Ho et
al., 2019). The estimation plots employ a secondary axis
showing the size differences between groups as a mean
and 95% confidence interval. For paired comparisons, this
is the within-group difference. All data are presented as
mean 6 SEM unless otherwise stated. Lower case n al-
ways indicates the number of animals.

Figure 1. Nerve pathways between colon and the inferior mesenteric ganglion. A, Simplified schematic diagram showing the nerve
connections between the colon, inferior mesenteric ganglion, and pelvic ganglia. While pelvic ganglia are always paired, the inferior
mesenteric ganglion was either an unpaired single ganglion, or more commonly, two separate ganglia, each of which associated
with one of the hypogastric nerves. B, Schematic diagram showing a colonic tube preparation with connections to the pelvic ganglia
and inferior mesenteric ganglion as typically arranged in an organ bath for recording. Note the diagram shows the most common ar-
rangement featuring a paired IMG with a single connecting hypogastric nerve trunk. For simplicity, the other IMG is not shown. The
centrifugal processes of cut lumbar colonic nerves, which could be seen emerging from the IMG, were isolated in paraffin oil for
sympathetic nerve recordings, as shown. Conversely, rectal nerve recordings (of viscerofugal neuron activity) were made from the
peripheral sides of cut nerves. Smooth muscle electrical activity was recorded by suction electrode within ;5 mm of recorded rectal
nerve entry to the gut wall (15–20 mm from the terminal rectum). IMG, inferior mesenteric ganglion; LCN, lumbar colonic nerves;
PG, pelvic ganglia; HGN, hypogastric nerve; RN, rectal nerve; IMN, intermesenteric nerve; IMA, inferior mesenteric artery.
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Drugs
Stock solutions of drugs were made as follows: 10�1

M

hexamethonium chloride in water (H2138; Sigma),
10�2

M nicardipine hydrochloride in water (Sigma; N7510),
10�2

M N-Vanillylnonanamide (synthetic capsaicin) in etha-
nol (V9130, Sigma), and 10�1

M 1,1-dimethyl-4-phenylpi-
perazinium iodide (DMPP) in water (D5891, Sigma). Drugs
were kept refrigerated and diluted to working concentra-
tions in Krebs solution, shortly before use.

Results
Viscerofugal neurons recorded in fresh preparations
Evidence suggests that viscerofugal neurons relay me-

chanosensory afferent information from the gut to sympa-
thetic neurons such as gut distension (Crowcroft et al.,
1971; Bywater, 1994; Stebbing and Bornstein, 1994). In
this series of experiments, simultaneous rectal nerve and
smooth muscle recordings were performed in eight fresh
colon preparations under isometric conditions. Fresh flat-
sheet (n=4) and intact tube (n=4) preparations behaved
similarly and are therefore presented here together.
Ongoing CMCs were detected in all preparations from
EMG recordings (Fig. 2A) under control conditions. They
also persisted during smooth muscle paralysis using the
L-type calcium channel antagonist, nicardipine (3 mM; 6/6
preparations tested). CMCs had an average frequency of
0.356 0.06 cpm (n=8). Within CMCs, smooth muscle
electrical activity was characterized by rhythmic voltage
oscillations with or without action potentials at a mean fre-
quency of 1.86 0.1Hz, for a duration of 33.86 4.9 s
(n=8; Fig. 2B,C).
All preparations had detectable ongoing action poten-

tial firing in rectal nerves, which was recorded during 266
individual CMCs (n=8; Fig. 2A). Sequences of burst firing
in the rectal nerves were readily observed during 134 of
the 266 CMCs (54614% per preparation, on average;
Fig. 2B). Burst firing had an average frequency of
1.960.03Hz (interburst interval 5186 18ms) and typi-
cally aligned with muscle voltage oscillations during the
CMC (Fig. 2C). Burst firing was significantly associated
with CMCs; bursts occurred 136 6 s (n=8) from a CMC,
compared with 1226 13 s for randomly generated times
in the same period (p=0.013, paired samples t test, n=8).
The proportions of CMCs associated with burst firing was
not significantly different between control conditions
(53614%) or nicardipine (3 mM; 636 17%, p=0.584, in-
dependent samples t test, n=8). The persistence of burst
firing in nicardipine suggests the burst firing activity ac-
companies CMCs and this relationship does not require
muscle contractility. A bolus of capsaicin (1 mM) always
evoked a barrage of action potentials in rectal nerves last-
ing several minutes but did not abolish CMCs or the asso-
ciated burst firing in rectal nerves (n=8; Fig. 3). At the end
of experiments, burst firing and CMCs were always abol-
ished by hexamethonium (400 mM bath concentration, 7/7
preparations tested; Fig. 3). In a single preparation, hexa-
methonium was washed out, allowing CMCs and burst fir-
ing to return. These data suggest the burst firing activity in
rectal nerves is either dependent on nicotinic input,
CMCs, or both.

Viscerofugal neurons recorded after organ culture
We sought to test whether axon firing recorded in rectal

nerves originated from enteric viscerofugal neurons or ex-
trinsic afferents whose cell bodies are located outside the
gut wall (primarily in dorsal root ganglia). To test this, we
cultured isolated whole mouse colons for 4 d, which
causes degeneration of extrinsic axons and preserves en-
teric neurons and their axons (Hibberd et al., 2012a;
n=6). CMCs occurred in all organ cultured preparations
(n=6). In two preparations, CMCs occurred “spontane-
ously,” and in all preparations, they could be evoked by
focal application of DMPP (5 ml of 10�4

M) onto the color-
ectum by hand pipette. CMCs consisted of voltage oscil-
lations with an average frequency of 2.16 0.2Hz and a
mean duration of 22.56 3.4 s (n=6; Fig. 4). These values
were similar to CMCs in fresh preparations (p=0.200 and
0.069, respectively, independent samples t test; Fig. 5C,
D, respectively).
All preparations had ongoing action potential firing in

rectal nerves (n=6). Similar to fresh preparations, CMCs
were accompanied by coordinated bursts of firing in rec-
tal nerve trunks. Bursts of firing had a similar frequency as
muscle voltage oscillations (2.46 0.3Hz, n=6; Fig. 4).
Individual bursts had an average duration of 1606 16ms
(1676 individual bursts, 31 CMCs, n=6; Fig. 5). Single
units were more readily discriminated in rectal nerve re-
cordings of organ cultured preparations, possibly be-
cause of a decreased interference from spinal afferent
action potentials. In total, 41 single units were discrimi-
nated (11 nerves, n=6). Of these, 29 units showed bursts
of firing accompanying CMCs. Their average firing rate
was significantly increased during CMCs (2.66 0.5Hz, 33
CMCs, 29 units, n=6), compared with their firing rates be-
fore and after CMCs (0.36 0.1 and 0.46 0.2Hz, respec-
tively, p=0.003 and 0.003, compared with firing rates
during CMCs, one-way repeated measures ANOVA,
Tukey’s post hoc test, n=6; Fig. 5E). Single units varied
widely in their contributions to burst firing. Some single
units contributed a single action potential to a minority of
individual bursts. Other units contributed multiple action
potentials to the majority of bursts. Overall, the average
contribution from a single unit was 1.16 0.2 action poten-
tials per burst of firing (range: 0–12 action potentials per
burst; 29 units, 1676 bursts, n=6). The distribution of
these data is shown in Figure 5. The remaining 12/41 units
did not contribute to the burst firing associated with
CMCs. Their firing rate during CMCs (0.76 0.2Hz) was
similar to their firing rates before or after CMCs (0.86 0.3
and 0.660.2Hz, respectively, p=0.285, one-way re-
peated measures ANOVA, n=6; Fig. 5F).
Burst firing never occurred in the presence of hexame-

thonium (400 mM; n=6). However, it should be noted that
hexamethonium also blocked CMCs. Hexamethonium
caused a non-significant reduction in average firing rate
across all units (0.460.1 vs 0.26 0.1Hz in control and
hexamethonium, respectively, p=0.088, paired t test, 41
units, n=6). The effect of hexamethonium on single unit
firing rate was significant among those which contributed
to burst firing (0.36 0.1 vs 0.036 0.01, control vs hexa-
methonium, respectively, p=0.012, paired t test, 29 units,
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Figure 2. Coordinated burst firing in rectal nerves during motor complexes. A, Colonic EMG and rectal nerve recording traces show-
ing ;15min of ongoing motor complexes and firing activity. Four motor complexes can be seen in the EMG trace. B, A single motor
complex corresponding to the event marked by an asterisk below nerve 3 voltage trace in A. At this timescale, oscillations in the
EMG trace and bursts of firing in the nerve recording traces are evident. There are also several larger amplitude spikes in nerve re-
cording traces 1 and 2 that do not participate in the burst firing activity. C, A further expanded view of the motor complex shown in
B. Here, the bursts of firing are clearly seen. Furthermore, burst firing appears coordinated between each of the three rectal nerves
and EMG oscillations.
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n=6), but not in those which did not contribute to burst firing
(0.46 0.1 vs 0.56 0.1Hz, control vs hexamethonium, re-
spectively, p=0.347, paired t test, 12 units, n=6; Fig. 5G).
Consistent with the degeneration of functional spinal afferent
axons, firing rates were not significantly affected by capsaicin
(1 mM; 0.260.1 vs 0.16 0.1Hz, control vs capsaicin,

respectively, p=0.193, paired t test, 41 units, n=6), and there
was no differential effect of capsaicin based on contribution
to burst firing behavior. Taken together, these data are com-
patible with enteric viscerofugal neurons being responsible
for the burst firing behavior associated with CMCs that was
detected in rectal nerve trunks.

Figure 3. Drug responses in fresh preparations. A, Example of the prompt abolition of motor complexes and large reduction in rectal
nerve firing by nicotinic receptor antagonist, hexamethonium. Neither burst firing, nor motor complexes occurred in hexamethonium
(n=7). B, Example of capsaicin-evoked firing in a fresh preparation, consistent with the presence of spinal afferent neurons.
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Figure 4. Coordinated burst firing in rectal nerves during motor complexes after organ culture. A, Colonic EMG and rectal nerve re-
cording showing ;15min of ongoing activity in an organ cultured preparation, including two motor complexes. The firing rates and
spike shapes of four single units discriminated from the rectal nerve recording are shown. Most single units showed an increase in
firing rate during motor complexes. B, A single motor complex, revealing burst firing behavior in the rectal nerve. Several units con-
tributed to the burst firing behavior; their individual spike events are indicated below the nerve recording trace. C, The same event
shown in B with an expanded timescale, showing in more detail the individual contributions to burst firing made by four single units.
D, An individual burst corresponding to the event marked by an asterisk in C.
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Figure 5. Viscerofugal neuron burst firing characteristics. A, The duration of 1676 individual bursts of firing in rectal nerves during
31 motor complexes in six organ cultured preparations shown as a frequency distribution. B, Distribution of the average numbers of
action potentials each unit contributed to each burst in rectal nerves. Single units did not contribute to every instance of burst firing
in rectal nerves, as may be seen in Figure 4. This highlights the importance of synchronization among multiple neurons, since single
units alone were unlikely to encode the entire burst firing pattern. Single units contributed between 0 and 12 action potentials to a
burst of firing. C, D, Comparisons of CMC smooth muscle firing rate and duration in control and cultured preparations, showing no
significant differences between the two groups (p=0.200 and 0.069, respectively, independent samples t test). Estimated mean dif-
ferences between the groups are shown in a separate graph to the right. E, F, Average single unit firing rates before, during and
after CMCs among units that contributed to burst firing behavior (E) and those that did not (F). All data are paired, and mean differ-
ences are shown graphically below mean firing rates. Firing in single units increased by 1–3Hz among those that contributed to
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Rapid neuroanatomical tracing with biotinamide was
performed in both organ cultured (n=5) and fresh prepara-
tions (n=4). Biotinamide-labeled nerve cell bodies of vis-
cerofugal neurons were identified in all preparations (Fig. 6,
n=9). However, cultured preparations showed a large re-
duction in labeled axons compared with fresh prepara-
tions, particularly fine varicose fibers characteristic of
spinal afferent and sympathetic efferent neurons. Further
confirmation was provided by immunohistochemical label-
ing of CGRP and TH in control (n=3) and organ cultured
(n=3) preparations (Fig. 7). Compared with control prepa-
rations, CGRP and TH immunoreactivity was markedly re-
duced. As shown previously (Sharrad et al., 2015),

relatively weak CGRP labeling of varicosities persisted
after organ culture, consistent with a population of CGRP-
immunoreactive intrinsic enteric neurons (Furness et al.,
2004; Smolilo et al., 2020). Intensely CGRP-immunofluo-
rescent axons that are characteristic of the population of
TRPV1-immunoreactive extrinsic afferents (Sharrad et al.,
2015) were absent after organ culture. Virtually no TH im-
munoreactivity persisted after organ culture, consistent
with ablation of sympathetic efferent axons. In addition,
neither CGRP nor TH co-labeled with biotinamide labeled
axons of the recorded nerve trunks after organ culture (n=3).
These data indicate spinal afferent and sympathetic efferent
neurons whose axons lacked nerve cell bodies degenerated

continued
burst firing during the CMC compared with before or after CMCs, but not among those that did not contribute to burst firing (F). See
text for details. G, The effect of hexamethonium on ongoing firing rate was significant among contributing but not non-contributing
burst firing units.

Figure 6. Persistence of viscerofugal nerve cell bodies in organ cultured preparations. A, Confocal micrograph showing biotinamide
neuronal tracing from a rectal nerve trunk in a fresh preparation. The labeled nerve trunk is indicated by an asterisk. Numerous large
axons and smaller varicose fibers can be seen coursing throughout the myenteric plexus in all directions. Viscerofugal nerve cell
bodies were also labeled. B, Biotinamide neuronal tracing from rectal nerves after organ culture also revealed viscerofugal nerve
cell bodies but a substantially reduced density of fine varicose fibers. Calibration, 100mm.
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in organ cultured preparations while viscerofugal neu-
rons whose axons remained attached to nerve cell
bodies survived (Hibberd et al., 2012a). This is consistent
with the lack of capsaicin-evoked firing in organ cultured
preparations, and the origin of firing recorded from rectal
nerves in organ cultured preparations being viscerofugal
neurons.

Sympathetic efferent firing during the motor complex
Viscerofugal neurons provide fast nicotinic synaptic in-

puts to prevertebral sympathetic neurons (Szurszewski
and King, 1989). To study whether viscerofugal inputs can
independently drive postganglionic sympathetic neuron

firing in the absence of preganglionic input, ex vivo prepa-
rations of whole colon were setup with intact connections
to the decentralized inferior mesenteric ganglion (Fig. 1B).
Nerve firing was recorded from the central (efferent) side of
cut lumbar colonic nerve trunks, close to the mesenteric
ganglion, presumed to represent activity of the postgan-
glionic sympathetic neurons to the colon, with a simultane-
ous extracellular smooth muscle recording to detect CMCs
(18 single units, six nerve trunks, n=4; Fig. 1B). Ongoing
spontaneous CMCs were detected in all preparations with
an average frequency of 0.226 0.07 cpm, featuring voltage
oscillations and action potentials (2.186 0.13Hz, 23.76
3.6 s in duration). A large discharge of sympathetic firing in

Figure 7. Loss of CGRP and TH after organ culture. A, B, An example of CGRP (A; green) and TH (B; cyan) immunofluorescence in
the same biotinamide labeled (red) control preparation. Numerous varicosities containing TH or CGRP can be seen within the myen-
teric plexus, with some co-labeling of biotinamide-labeled axons and varicosities apparent with CGRP (yellow; A), but not TH (n=3).
This is consistent with the presence of spinal afferent axons in control preparations. In organ cultured preparations, immunohisto-
chemically detectable CGRP (C; green) and TH (D; cyan) were dramatically reduced, showing degeneration of extrinsic nerve fibers,
while viscerofugal nerve cell bodies persisted (biotinamide; red). Additionally, no co-labeling of these markers occurred with biotina-
mide-labeled axons. Expectedly, faintly CGRP-immunoreactive varicosities and nerve fibers persisted in organ cultured prepara-
tions. This is consistent with a population of intrinsic enteric neurons. Together, these data support a viscerofugal origin of the
activity recorded from rectal nerve trunks in organ cultured preparations.
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lumbar colonic nerves occurred during each CMC and was
typically followed by a modest reduction of firing after
CMCs (Fig. 8). The average single unit firing rate before
CMCs was 0.760.4Hz, 1.66 0.8Hz during the CMC, and
0.560.3Hz immediately after CMCs (p=0.023, one-way
repeated measures ANOVA, n=4). Sympathetic neuron
firing during the CMC was organized into sequences of
synchronized bursts with a mean frequency of 2.226 0.08
Hz, similar to activity shown by viscerofugal neurons.
Indeed, simultaneous recording of colonic viscerofugal af-
ferent and sympathetic efferent firing was performed in two
of four preparations (Fig. 1B), revealing both viscerofugal
burst firing in rectal nerves and sympathetic burst firing in
lumbar colonic nerves (Fig. 9). Increases in sympathetic
neuron firing during the CMC persisted even after smooth
muscle paralysis by 3 mM nicardipine in 3/3 preparations
tested. Firing was abolished by crushing the hypogastric
nerves (2/2 preparations tested; Fig. 9), confirming the
pathway as a source of peripheral input to the inferior mes-
enteric ganglion (Job and Lundberg, 1952; Crowcroft and
Szurszewski, 1971).

Discussion
This study reveals a novel ENS-derived mechanism by

which sympathetic gut reflexes are activated. In this
mechanism, the rhythmic ENS-generated firing pattern
that underlies CMCs and drives characteristic rhythmic
electrical activity in smooth muscle (Spencer et al., 2018)
is also transmitted to prevertebral ganglia by viscerofugal
neurons. Thus, sympathetic reflexes accompany CMC
generation. Reflex activation did not require muscle con-
traction or dynamic changes in gut wall circumference.
Importantly, the ;2-Hz burst firing pattern underlying
CMCs coordinated firing of multiple viscerofugal neurons,
causing activation of sympathetic neurons with a similar
2-Hz firing pattern, even without central preganglionic
input. Viscerofugal neurons predominantly supply sub-
threshold synaptic inputs to sympathetic neurons. Thus,
the synchronizing mechanism provided by the ENS that
enables assemblies of viscerofugal neurons to fire con-
currently may be critical for their ability to evoke parallel
firing in sympathetic neurons. The present results suggest
a major revision of our conceptual understanding of sym-
pathetic reflexes to the gut is required, which are currently
considered fundamentally sensory in nature, but are here
shown to be driven by highly organized output from the
ENS.
Early studies revealed spinal intestino-intestinal reflex

pathways (Youmans, 1944; Furness and Costa, 1974;
Szurszewski and Miller, 1994). Such pathways were acti-
vated by intense intestinal distension and chemical stimuli
and were regarded as a defense response to intestinal in-
sults (Bayliss and Starling, 1899; Cannon and Murphy,
1906; King, 1924; Pearcy and Liere, 1926; Markowitz and
Campbell, 1927; Douglas and Mann, 1941; Chang and
Hsu, 1942). The later discovery of enteric viscerofugal in-
puts to prevertebral sympathetic ganglia was shown func-
tionally (Garry, 1933; Lawson, 1934; Lawson and Holt,
1937; Kuntz, 1940; Kuntz and Van Buskirk, 1941; Lium
and Portsmouth, 1941; Kuntz and Saccomanno, 1944;

Crowcroft et al., 1971; Weems and Szurszewski, 1977;
Kreulen and Szurszewski, 1979) and anatomically (Ross,
1958; Schofield, 1960; Ungvary and Leranth, 1970;
Dalsgaard and Elfvin, 1982; Feher, 1982; Kuramoto and
Furness, 1989; Messenger and Furness, 1991, 1992).
These findings suggested a parallel mechanism of sym-
pathetic intestinal inhibition that bypassed the CNS
(Furness and Costa, 1974).
Mechanical and electrophysiological investigations of

sympathetic prevertebral reflexes in colon report sympa-
thetic neurons are activated during distension (Crowcroft
et al., 1971; Szurszewski and Weems, 1976; Weems and
Szurszewski, 1977; Kreulen and Szurszewski, 1979;
Kreulen and Peters, 1986; Peters and Kreulen, 1986;
Anthony and Kreulen, 1990; Parkman et al., 1993;
Bywater, 1994; Stebbing and Bornstein, 1994; Miller and
Szurszewski, 1997, 2002, 2003; Ermilov et al., 2004).
Where nicotinic or synaptic blockade in the gut has been
applied, evidence suggests viscerofugal neurons are di-
rectly mechanosensitive (Parkman et al., 1993; Bywater,
1994; Stebbing and Bornstein, 1994), and firing correlates
more closely with gut length (volume) than tension
(Hibberd et al., 2012b; Palmer et al., 2016). However,
where ENS cholinergic transmission is permitted, the
higher-order role of viscerofugal neurons, and their rela-
tionship to gut mechanical activity is unclear. Most
viscerofugal neuron input to sympathetic neurons is
synaptically driven by other enteric neurons (Crowcroft
et al., 1971; Miller and Szurszewski, 1997) and is there-
fore important for sympathetic reflex activation. Indeed,
direct intracellular recordings from guinea pig colonic
viscerofugal neurons show they receive nicotinic inputs
from multiple myenteric neural pathways (Sharkey et al.,
1998; Hibberd et al., 2014), and immunohistochemical
analyses suggest myenteric descending interneurons
contribute most cholinergic terminals to viscerofugal
nerve cell bodies (Lomax et al., 2000). Thus, viscerofu-
gal neurons are situated to receive outputs of enteric
neural pathways. Nevertheless, the idea that firing trans-
mitted from viscerofugal neurons encodes sensory in-
formation about the gut wall (particularly gut volume)
during sympathetic reflexes remains dominant.
Here, periodic firing transmitted by viscerofugal neu-

rons to sympathetic neurons during CMCs persisted with
constant gut wall length and smooth muscle paralysis, in-
dicating the activity did not encode mechanosensory in-
formation about the gut wall. Rather, we hypothesize
viscerofugal enteric neuron firing was closely related to
circuits that generate CMCs. Cholinergic-nicotinic neuro-
transmission is the principle form of fast excitatory neuro-
transmission in the ENS (Furukawa et al., 1986; Nurgali et
al., 2004) and thus most likely to drive viscerofugal neuron
firing. However, nicotinic transmission is also required for
CMCs in mouse colon (Bywater et al., 1989; Lyster et al.,
1995; Spencer et al., 1998a,b; Bush et al., 2000). We sug-
gest this explains the concomitant abolition of both vis-
cerofugal neuron burst firing and CMCs in the present
study. However, the results do not rule out a possibility
that burst firing is driven by a non-nicotinic neural mecha-
nism during CMCs (Bian et al., 2003; Nurgali et al., 2004).
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Most myenteric neurons fire during CMCs at ;2 Hz,
driving smooth muscle firing at the same frequency
(Spencer et al., 2018). The observation that viscerofugal
neurons also fire at this frequency during CMCs suggest
they receive input from circuitry that generate CMCs. This
is compatible with evidence viscerofugal neurons receive

inputs from enteric interneurons, as is the observation
that multiple viscerofugal neurons fired together in brief
bursts, which may be explained by a coordinating mecha-
nism provided by common interneuronal connections.
Also, individual viscerofugal neurons had a high probabil-
ity of not contributing action potentials to individual firing

Figure 8. Sympathetic neuron firing and motor complexes. A, Colonic EMG and lumbar colonic nerve recordings (central efferent
side) showing ongoing motor complexes over ;10min. Sympathetic firing increased during each motor complex. B, A single motor
complex showing sympathetic burst firing at close to 2Hz and single unit spikes.
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bursts during CMCs (Figs. 4, 5B). Thus, while assemblies
of multiple viscerofugal neurons clearly showed burst fir-
ing output at 2Hz during CMCs, individual neurons made
partial contributions to the overall behavior. The output of
viscerofugal neuron assemblies thus differed from their

individual contributions, highlighting the role of synchroni-
zation among viscerofugal neurons in producing a coher-
ent burst firing pattern.
Some studies report firing behavior that also challenge the

idea viscerofugal neurons simply relay mechanosensory

Figure 9. Simultaneous afferent/efferent nerve recording and the abolition of lumbar colonic nerve efferent firing by hypogastric
nerve crush. A, Example of three motor complexes and associated firing in two efferent recordings (lumbar colonic nerves) and a
single afferent recording (rectal nerve). B, The second motor complex shown in A on an expanded timescale. Note the coordination
of efferent firing between the two lumbar colonic nerves. Some burst firing activity in the rectal nerve (afferent) can be seen among
dense ongoing firing. C, Part of the same event shown in B with an expanded timescale. At this scale both afferent (rectal nerve)
and efferent (lumbar colonic nerves) burst firing can be visualized. D, Abolition of efferent nerve firing by hypogastric nerve crush.
Motor complexes persisted following hypogastric nerve crush, without associated bursts of sympathetic neuron firing.
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information about volume. In guinea pig colon, viscerofugal
neurons showed large bursts of firing that preceded sponta-
neous and stretch-evoked contractions after organ-culture
(Hibberd et al., 2012a). In mouse colon, large changes in
synaptic input frequency to sympathetic neurons were ob-
served during isovolumetric colonic contractions (Miller
and Szurszewski, 2002). Isovolumetric distension is closely
analogous to the maintained isometric conditions used in
the present study. We hypothesize that in the elegant
study of Miller and Szurszewski (2002), bursts of synaptic
input to sympathetic neurons during intracolonic filling
were not dependent on filling per se, but on the ENS activ-
ity associated with neurogenic contractions elicited by
colonic filling. A major difference here was use of pharma-
cological smooth muscle paralysis, enabling isolation of
periodic activation of viscerofugal and sympathetic neu-
rons from dynamic mechanical activities of the gut wall.
Thus, sympathetic reflexes evoked during gut motor activ-
ity do not simply reflect mechanosensory encoding by vis-
cerofugal neurons but rather, transmit the functional state
of ENS motor circuits. Thus, sympathetic reflexes through
viscerofugal neurons may represent negative feedback
loops for long-range self-regulation of ENS excitability.
The CMC in mouse is a self-organized motor pattern

that emerges from the ENS under maintained distension.
CMCs occur rarely without distension, and frequency is
graded with increasing amounts of distension (Barnes et
al., 2014; Hibberd et al., 2017). Thus, sustained increases
in gut volume represent an effective initiator of CMCs and
this may explain much of the association with synapti-
cally-driven viscerofugal neuron firing. Additionally, while
CMCs may occur without propulsive movements, as in
this study, the ENS-sympathetic peripheral loop may also
be activated during propulsive contractions, since they
feature similar coordinated 2-Hz firing in smooth muscle
(Spencer et al., 2018).
Interestingly, sympathetic neurons were activated dur-

ing colonic CMCs in decentralized inferior mesenteric
ganglia. This suggests that intestino-intestinal reflexes
may occur entirely peripherally and does not require on-
going excitation by spinal preganglionic neurons. As
noted, viscerofugal neurons provide numerous “weak”
(i.e., subthreshold) nicotinic synaptic inputs to sympa-
thetic prevertebral neurons (McLachlan and Meckler,
1989; Miller and Szurszewski, 1997; McLachlan, 2003).
To elicit firing, weak synapses require integration of multi-
ple inputs via temporal and spatial summation. The tem-
porally synchronized discharge of viscerofugal neurons
identified in the present study may therefore be significant
for determining activation of sympathetic neurons via the
well-established mechanisms of temporal summation.
Indeed, the appearance of large excitatory postsynaptic
currents in postganglionic neurons of mouse superior
mesenteric ganglion during colonic distension raised the
question whether viscerofugal inputs could be synchron-
ized (Skok et al., 1998). The present study argues in favor
of this explanation.
Additional sources of input to prevertebral ganglia are

axon collaterals of spinal sensory neurons, which synapse
en passant (Matthews and Cuello, 1982, 1984; Matthews

et al., 1987). During organ culture, extrinsic sensory and
sympathetic axons degenerate because they are cut off
from their cell bodies. Thus, the conclusion that enteric vis-
cerofugal neurons mediated burst firing behavior recorded
from rectal nerves during motor complexes in organ cul-
tured preparations cannot be escaped. However, it may be
suggested, at least in control preparations with intact spi-
nal afferent neurons, that spinal afferent axons branching
in prevertebral ganglia potentially activated postganglionic
sympathetic neurons in a mechanism similar to the
“Sokownin reflex” (Sokownin, 1877; Job and Lundberg,
1952; Bulygin, 1983). Spinal afferent collaterals contain
peptide transmitters that can be released during gut dis-
tension causing slow depolarization of sympathetic neu-
rons (Dun and Karczmar, 1979; Dun and Jiang, 1982;
Peters and Kreulen, 1986; Webber and Heym, 1988; Dun
and Mo, 1989; Ma and Szurszewski, 1996; Jobling and
Gibbins, 1999; Kaestner et al., 2019). Slow depolarizations
range seconds to minutes in duration, making this mode
unlikely to account for the high-fidelity transmission of the
;2-Hz burst firing pattern from the gut to sympathetic neu-
rons during CMCs. However, it is possible that activation
of spinal afferent collateral branches in sympathetic gan-
glia, can further enhance ENS-mediated excitation of sym-
pathetic neurons, in addition to participation in long spinal
intestino-intestinal inhibitory reflexes (Youmans, 1944;
Furness and Costa, 1974; Szurszewski and Miller, 1994).
In guinea pig, viscerofugal neurons selectively innervate

sympathetic motor and secretomotor neurons but not va-
soconstrictor neurons (Costa and Furness, 1984; Macrae
et al., 1986; Meckler and McLachlan, 1988; Gibbins et al.,
2003). The specificity of viscerofugal targets remain to be
confirmed in mouse and there is currently no useful
chemical coding scheme identified among sympathetic
neurons in mouse to differentiate functional subtypes
(Kaestner et al., 2019). However, we speculate the vis-
cerofugal-sympathetic loop ensures CMCs cause inhibi-
tion of motility and secretion further oral along the gut
(Messenger and Furness, 1993; Furness et al., 2000;
Furness, 2003). CMCs often propagate along most of the
length of colonic preparations isolated from prevertebral
ganglia and may do so at high apparent velocities in ei-
ther direction (Fida et al., 1997; Costa et al., 2017). One
implication of sympathetic reflex activation during CMCs
may be a limitation of ENS excitability to shorter gut
lengths, leading to shorter CMC events. Retrograde
CMCs may be particularly limited by orally-directed sym-
pathetic reflexes. These possibilities remain to be inves-
tigated experimentally.
In summary, we found that activation of hardwired

ENS-sympathetic reflexes accompanied physiological
motor behavior in mouse colon. Assemblies of viscerofu-
gal neurons fired concurrently in bursts at a frequency of
;2 Hz, leading to parallel activation of sympathetic neu-
rons in lumbar colonic nerves at a similar frequency.
Since the activity transmitted from the ENS to sympa-
thetic ganglia is highly coordinated, it is likely to represent
a powerful mechanism, involving interneuronal process-
ing, by which sympathetic ganglia read out the functional
state of ENS motor circuits.
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