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Abstract

Inference in a high-dimensional situation may involve regularization of a certain form to treat 

overparameterization, imposing challenges to inference. The common practice of inference uses 

either a regularized model, as in inference after model selection, or bias-reduction known as 

“debias.” While the first ignores statistical uncertainty inherent in regularization, the second 

reduces the bias inbred in regularization at the expense of increased variance. In this article, we 

propose a constrained maximum likelihood method for hypothesis testing involving unspecific 

nuisance parameters, with a focus of alleviating the impact of regularization on inference. 

Particularly, for general composite hypotheses, we unregularize hypothesized parameters whereas 

regularizing nuisance parameters through a L0-constraint controlling the degree of sparseness. 

This approach is analogous to semiparametric likelihood inference in a high-dimensional situation. 

On this ground, for the Gaussian graphical model and linear regression, we derive conditions 

under which the asymptotic distribution of the constrained likelihood ratio is established, 

permitting parameter dimension increasing with the sample size. Interestingly, the corresponding 

limiting distribution is the chi-square or normal, depending on if the co-dimension of a test is finite 

or increases with the sample size, leading to asymptotic similar tests. This goes beyond the 

classical Wilks phenomenon. Numerically, we demonstrate that the proposed method performs 

well against it competitors in various scenarios. Finally, we apply the proposed method to infer 

linkages in brain network analysis based on MRI data, to contrast Alzheimer’s disease patients 

against healthy subjects. Supplementary materials for this article are available online.
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1. Introduction

High-dimensional analysis has become increasingly important in modern statistics, where a 

model’s size may greatly exceed the sample size. For instance, in studying the brain activity, 

a brain network is often examined, which consists of structurally and functionally 

interconnected regions at many scales. At the macroscopic level, networks can be studied 

noninvasively in healthy and disease subjects with functional MRI (fMRI) and other 

modalities such as MEG and EEG. In such a situation, inferring the structure of a network 

becomes critically important, which is one kind of high-dimensional inference. Yet, high-

dimensional inference remains largely under-studied. In this article, we develop a full 

likelihood inferential method, particularly for a Gaussian graphical model and high-

dimensional linear regression.

In the literature, a great deal of effort has been devoted to estimation. For the linear model, 

many methods focus on estimation with sparsity-inducing convex and nonconvex 

regularization such as Lasso, SCAD, MCP, and TLP (Tibshirani 1996; Fan and Li 2001; 

Zhang 2010; Shen, Pan, and Zhu 2012), among others. For the Gaussian graphical model, 

methods include the regularized likelihood approach (Rothman et al. 2008; Friedman, 

Hastie, and Tibshirani 2008; Yuan and Lin 2007; Fan, Feng, and Wu 2009; Shen, Pan, and 

Zhu 2012) and the nodewise regression approach (Meinshausen and Bühlmann 2006), and 

their extensions, such as conditional Gaussian graphical (Li, Chun, and Zhao 2012; Yin and 

Li 2013) and multiple Gaussian graphical models (Zhu, Shen, and Pan 2014; Lin et al. 

2017). Despite progress, there is a paucity of inferential methods for high-dimensional 

models, although some have been recently proposed in Zhang and Zhang (2014), Van de 

Geer et al. (2014), Javanmard and Montanari (2014), and Janková and Van de Geer (2017), 

where CI are constructed based on a bias-reduction method called “debias” (Zhang and 

Zhang 2014). One potential issue of this kind of approach is not asymptotically similar with 

its null distribution depending on unknown nuisance parameters to be estimated, and most 

critically the variance is likely to increase after debias, resulting in an increased length of a 

CI.

In this article, we propose a maximum likelihood method subject to certain constraints for 

hypothesis testing involving unspecific nuisance parameters, referred to as the constrained 

maximum likelihood ratio (CMLR) test, which regularizes the degree of sparsity of un-

hypothesized parameters in a high-dimensional model, whereas hypothesized parameters are 

not regularized. This is an analogy of semiparametric inference with respect to the 

parametric component, which enables to alleviate the inherited bias problem due to 

regularization. For computation, we employ a surrogate of the L0-function, a truncated L1-

function, for the constraints. On this ground, we develop the CMLR test, which is 

asymptotically similar with its null distribution independent of unspecific nuisance 

parameters. Moreover, we derive the asymptotic distributions of the test in the presence of 

growing parameter dimensions for the Gaussian graphical model and linear model. Most 

importantly, the corresponding distribution for the CMLR test statistic converges to the chis-

quare distribution when the co-dimension, or the difference in dimensionality between the 

full and null spaces, is finite, and converges to normal (after proper centering and scaling) 

when the co-dimension tends to infinity. This occurs in a situation roughly when 
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( A0 + |B|)logp

n1/2 0 and 
|B|( A0 + |B|)

n 0, respectively, in the Gaussian graphical model and 

linear regression, where |B| and |A0| are the numbers of the hypothesized parameters and the 

nonzero unhypothesized parameters. Such a critical assumption is in contrast to a 

requirement of logp
n 0 for sparse feature selection Shen et al. (2013), which has been used 

in Portnoy (1988) for the maximum likelihood estimation in a different context. Empirically, 

the asymptotic approximation becomes inadequate when departure from this assumption 

occurs in a less sparse situation. To our knowledge, our result is the first of this kind, 

providing a multivariate likelihood test in the presence of high-dimensional nuisance 

parameters. This is in contrast to a univariate debias test Zhang and Zhang (2014), Van de 

Geer et al. (2014), Javanmard and Montanari (2014), and Janková and Van de Geer (2017). 

When specializing the CMLR test to a single parameter in the Gaussian graphical model and 

linear regression, we show that it has asymptotic power, that is, no less than that of the 

debias test; see, Theorem 3. This is anticipated since the debias test does not capture all the 

information contained in the likelihood, whereas the full likelihood takes into account 

component to component dependencies. This aspect is illustrated by our second numerical 

example in which a null hypothesis involves a row (column) of offdiagonals of the precision 

matrix. Of course, a multivariate likelihood test as ours may require stronger conditions than 

a univariate non-likelihood test, which is analogous to the classical situation of the 

maximum likelihood versus the method of moments in inference. Throughout this article, we 

shall focus our attention to the CMLR test as opposed to the corresponding Wald test based 

on the constrained maximum likelihood, which not asymptotically similar, given that it is 

rather challenging to invert a high-dimensional Fisher information matrix.

Computationally, we relax the nonconvex minimization using an L0-surrogate function by 

solving a sequence of convex relaxations as in Shen, Pan, and Zhu (2012). For each convex 

relaxation, we employ the alternating direction method of multipliers algorithm Boyd et al. 

(2011), permitting a treatment of problems of medium to large size. Moreover, we study the 

operating characteristics of the proposed inference method and compare against the debias 

methods through numerical examples. In simulations, we demonstrate that the proposed 

method performs well under various scenarios, and compares favorably against its 

competitors. Finally, we apply the proposed method to confirm that a reduced level of 

connectivity is observed in certain brain regions in the default mode network (DMN) but an 

increased level in others for Alzheimer’s disease (AD) patients as compared to healthy 

subjects.

The rest of the article is organized as follows. Section 2 proposes a constrained likelihood 

ratio test, and gives specific conditions under which the asymptotic approximation of the 

sampling distribution of the test is valid for the Gaussian graphical model and linear 

regression. Section 3 performs the power analysis for the CMLR test. Section 4 discusses 

computational strategies for the proposed test. Section 5 performs numerical studies, 

followed by an application of the tests to detect the structural changes in brain network 

analysis for AD subjects versus healthy subjects in Section 6. Section 7 is devoted to 

technical proofs.
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2. Constrained Likelihood Ratios

Given an iid sample X1,...,Xn from a probability distribution with density pθ, consider a 

testing problem H0 : θi = 0; i ∈ B versus Ha : θi ≠ 0 for some i ∈ B, with unspecific nuisance 

parameters θj for j ∈ Bc, possibly high-dimensional, where θ = θ1, …, θd ∈ ℝd, and B ⊆ 

{1,...,d}. Here, we allow the dimension of θ and size of |B| to grow as a function of the 

sample size n. For a problem of this type, we construct a constrained likelihood ratio with a 

sparsity constraint on nuisance parameters θBc. Specifically, define

θ(0) = argmax
θ

Ln(θ) subj to: ∑
i ∉ B

pτ θi ≤ K and θB = 0 (1)

θ(1) = argmax
θ

Ln(θ) subj to: ∑
i ∉ B

pτ θi ≤ K, (2)

where Ln(θ) = ∑i = 1
n logpθ Xi  is the log-likelihood, pτ(x) = min(x/τ, 1) is the truncated L1-

function Shen, Pan, and Zhu (2012) as a surrogate of the L0-function, and (K, τ) are 

nonnegative tuning parameters. In this situation, without the sparsity constraint, θ(0)
 and θ(1)

in (1) and (2) are exactly the maximum likelihood estimates under H0 and Ha, respectively. 

Now, we define the constrained likelihood ratio as: Λn(B) = 2 Ln θ(1) − Ln θ(0)
. In what is 

to follow, we derive the asymptotic distribution of Λn(B) in a high-dimensional situation for 

the Gaussian graphical model and linear regression. On this ground, an asymptotically 

similar test is derived, whose null distribution is independent of nuisance parameters.

Tuning parameters K and τ in (1) and (2) are estimated using a cross-validation (CV) 

criterion based on the full model (1). Choosing the same values of (K, τ) in (1) and (2) 

ensures the nestedness property of Λn(B) ≥ 0 because the constrained set in (1) is a subset of 

that in (2). With K = ∞, the test statistic Λn(B) reduces to the classical likelihood ratio test 

statistic.

2.1. Asymptotic Distribution of Λn(B) in Graphical Models

This subsection is devoted to a Gaussian graphical model, where X1,...,Xn follow from a p-

dimensional normal distribution N(0, Ω−1), with Ω a precision matrix, or the inverse of the 

covariance matrix ∑. In this case, θ = Ω. The log-likelihood is 

Ln(θ) = Ln(Ω) = n
2 log det(Ω) − n

2 tr(ΩS), where S = n−1∑i = 1
n XiXi

⊤ is the sample covariance 

matrix, and tr(·) denotes the trace of a matrix.

In the foregoing testing framework, the null and alternative hypotheses can be written as: 

H0 : ΩB = 0 versus Ha : ΩB ≠ 0 for some prespecified index set B. Then the constrained log-

likelihood ratio becomes Λn(B) = 2(Ln(Ω(1)) − Ln(Ω(0))), where Ω(0)
 and Ω(1)

 are the 

constrained maximum likelihood estimates (CMLE)s based on the null and full spaces of the 

test.
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To establish the asymptotic distribution of Λn(B), we first introduce some notations to be 

used. For any symmetric matrix M, let λmax(M) and λmin(M) be the maximum and 

minimum eigenvalues of M, and ||M||F be the Frobenius norm of M. Let \ and | · | denote the 

set difference and the size of a set. For any vector a ∈ ℝm, let a 2 = a1
2 + ⋯ + am2 . Denote 

by ΩA ∪ B
0 = argminΩ ≻ 0:Ω(A ∪ B)c = 0K Ω0, Ω  an approximating point in a space 

{Ω:Ω ≻ 0, Ω(A ∪ B)c = 0} to the true Ω0, where K(Ω0, Ω) = 1
2 (tr(ΩΣ0) + logdet(Ω0)

det(Ω) − p) is the 

Kullback–Leibler information. Let Ω0 − Ω = Σ0 Ω − Ω0 Σ0
F  be the Fisher-norm 

between Ω0 and Ω Shen (1997). Moreover, let A0 = {i:θi
0 ≠ 0} be the support of true 

parameter θ0, κ0 = λmax(Ω0)/λmin(Ω0) be the condition number of Ω0, and κ1 =
λ2

max
λmin

2 (Ω0)
, 

where λmax = maxA: |A | ≤ A0 , A ∩ B = ∅λmax(ΩA ∪ B
0 ). Let 

λmin = minA: |A | ≤ A0 , A ∩ B = ∅λmin(ΩA ∪ B
0 ). Let γmin = min(i, j) ∈ A0 ωij0  be the minimum 

nonzero offdiagonals of Ω0 representing the signal strength. The following technical 

conditions are made.

Assumption 1 (Degree of separation).

Cmin = min
A:A ≠ A0, A = A0 , A ∩ B = ∅

min Ω0 − ΩA ∪ B
0 2

A0\A
, 1

≥ C1κ1
A0 + B logp

n ,

(3)

where C1 > 0 is a constant.

Assumption 1 requires that the degree of separation Cmin exceeds a certain threshold level, 

roughly 
( A0 + |B|)logp

n , which measures the level of difficulty of the task of removing zero 

components of the nuisance (un-hypothesized) parameters of Ω by the constrained likelihood 

with the L0-constraint. To better understand (3) of Assumption 1, we consider a sufficient 

condition of (3) as follows:

Note that Ω0 − ΩA ∪ B
0 ≥ λmin Σ0 Ω0 − ΩA ∪ B

0
F ≥ λmax

−1 Ω0 γmin A0\A . Consequently, a 

simpler but stronger condition of (3) in terms of γmin is

min(γmin, λmax(Ω0)) ≥ C2κ0λmax
( A0 + B )logp

n
(4)

for some constant C2 > 0.
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Assumption 2 (Dimension restriction for Λn(B).

Assume that

κ0 B + A0 logp
n 0, as n ∞ .

Assumption 2 restricts the size p for an asymptotic approximation of the sampling 

distribution of the likelihood ratio tests, which is closely related to that in Portnoy (1988) for 

a different problem. Note that if |A0| = O(p) and |B| = O(p) then Assumption 2 roughly 

requires that plogp/ n 0.

Theorem 1 gives the asymptotic distribution of Λn(B) when |B| is either fixed or grows with 

n, referred to as Wilks phenomenon and generalized Wilks phenomenon, respectively.

Theorem 1 (Asymptotic sampling distribution of Λn(B).

Under Assumptions 1–2, there exists optimal tuning parameters (K, τ) with K |A0| and 

τ ≤
λminmin( Cmin, Cmin

2 )

12 A0  such that under H0

(i) Wilks phenomenon: If ωij0 = 0 for (i, j) ∈ B with |B| fixed, then

Λn(B) d χ B
2 as n ∞ .

(ii) Generalized Wilks phenomenon: If ωij0 = 0 for (i, j) ∈ B with |B| → ∞, then

(2 B )−1/2 Λn(B) − B d N(0, 1) as n ∞ .

Concerning Assumptions 1 and 2, we remark that the degree of separation assumption (3) or 

(4) is necessary for the result of Theorem 1. Without Assumption 1, the result may break 

down, as suggested by a counter example in Lemma 1 for a parallel condition—Assumption 

3 in linear regression in Section 2.2. This is expected because when the constrained 

likelihood cannot be over-selection consistency when Assumption 1 breaks down in view of 

the result of Shen, Pan, and Zhu (2012). That means that any under-selected component 

yields a bias of order logp
n . As a result, the foregoing results are not generally expected to 

hold. Moreover, Assumption 2 is intended for joint inference of multiple parameters, for 

instance, testing zero offdiagonals of one row or column of Ω as in the second simulation 

example of Section 4. These assumptions, as we believe, are needed for multivariate tests 

based on a full likelihood although we have not proved so, which appear stronger than those 

required for a univariate debias test based on a pseudo likelihood Janková and Van de Geer 

(2017). This is primarily due to the full likelihood approach estimating component to 

component dependencies in lieu of a marginal approach without them, leading to higher 

efficiency when possible. This is evident from Corollary 1 that the CMLR gives more 

precise inference than the debias test under these conditions.
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The result of Theorem 1 depends on the optimal tuning parameter K = K0 and τ, both of 

which are unknown in practice. Therefore, K is estimated by cross-validation through 

tuning, and the exact knowledge of the value K is not necessary, whereas τ is usually set to 

be a small number, say 10−2, in practice.

2.2. Asymptotic Distribution of Λn(B) in Linear Regression

In linear regression, a random sample (Y i, xi)i = 1
n  follows

Y i = βTxi + ϵi; ϵi N(0, σ2); i = 1, …, n (5)

where β = (β1,..., βp)T and xi = (xi1,..., xip)T are p-dimensional vectors of regression 

coefficients and predictors, and xi is independent of random error ϵi. In (5), it is known 

priori that β is sparse in that βj = 0, j ∉ A0, and βj ≠ 0, j ∈ A0, where A0 ⊆ 1, 2, …, p .

In this case, θ = (β, σ). Our focus is to test H0 : βB = 0 versus Ha = βB ≠ 0 for some index 

set B. The log-likelihood is Ln(θ) = Ln(β, σ) = − 1
2σ2 Y − Xβ

2
2 − nlog( 2πσ), and the 

constrained log-likelihood ratio is accordingly defined as 

Λn(B) = 2(Ln(β(1), σ(1)) − Ln(β(0), σ(0))), where β(0) and β(1)
 are the CMLE based on the null 

and full spaces of the test.

A parallel condition of Assumption 1 is made in Assumption 3.

Assumption 3 (Degree of separation condition, Shen et al. 2013).

min
A: A ≤ A0 and A ≠ A0

inf
β

Xβ0 − XA ∪ BβA ∪ B 2
2

n A0\A
≥ C0σ2 logp

n (6)

for some absolute constant C0 that may depend on the design matrix X.

A parallel result of Theorem 1 is established for linear regression.

Theorem 2 (Sampling distribution of Λn(B).

Assume that 
|B| A0 + |B|

n 0. Under Assumptions 3, there exists optimal tuning 

parameters (K, τ) with K = |A0| and 0 < τ ≤ σ 6
(n + 2)pλmax X⊤X

 such that under H0

(i) Wilks phenomenon: If βi = 0 for i ∈ B with |B| fixed, then

Λn(B) d χ B
2 as n ∞ .

(ii) Generalized Wilks phenomenon: If βi = 0 for i ∈ B with |B| → ∞, then
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(2 B )−1/2 Λn(B) − B d N(0, 1) as n ∞ .

Note of worthy is that the requirement 
|B| A0 + |B|

n 0 in linear regression appears weaker 

than that 
A0 + |B| logp

n1/2 0 in the Gaussian graphical model. This is primarily because the 

error for the likelihood ratio approximation in the former is smaller in magnitude.

Next we provide a counter example to show that the result in Theorem 2 breaks down when 

Assumption 3 is violated in the absence of a strong signal strength. In other words, such an 

assumption is necessary for such a full likelihood approach to gain the test efficiency, which 

is in contrast to a pseudo-likelihood approach.

Lemma 1 (A counter example).

In (5), we write y = β0 + β⊤ x, where x = (x1,...,xp) are independently distributed from N(μi, 

1) with μ1 = 0 and μj = 1; 2 ≤ j ≤ p, and ϵ is N(0, 1 − n−1), independent of x. Assume that β0 

= 0 and β = (n−1/2, 0,...,0), or, y = n−1/2x1 + ϵ. Then Assumption 3 is violated. Now consider 

a hypothesis test of H0 : β0 = 0 versus H1:β0 ≠ 0. If logp
n 0 as n, p → ∞, then Λn(B) p ∞

as n, p → ∞, with B = {0}.

3. Power Analysis

This section analyzes the local limiting power function of the CMLR test and compare it 

with that of the debias test of Janková and Van de Geer (2017) in Gaussian graphical model. 

To that the null H0 for fixed index set B for the Gaussian graphical end, we first establish the 

asymptotic distribution of θB under model and linear model. Then, we use those results to 

carry out a local power analysis for both models.

3.1. Asymptotic Normality

We first introduce some notations before presenting the asymptotic normality results for 

Gaussian graphical model. Let vecB(C) = ( 1 + I(i ≠ j)cij)(i, j): (i, j) or (j, i) ∈ B is a sub-vector 

of vec(C) excluding components with indices not in B, 

vec(C) = 1 + I(i ≠ j)cij i ≤ j ∈ ℝ
p(p + 1)

2  is a scaled vectorization of a p × p symmetric 

matrix C (Alizadeh et al. 1998) and I( ⋅ ) is the indicator. For the Fisher information, we need 

the symmetric Kronecker product Alizadeh et al. (1998) for a p × p symmetric matrix C to 

treat derivatives of the log-likelihood with respect to a matrix. Define the symmetric 

Kronecker product of C C ⊗s C ∈ ℝ
p(p + 1)

2 × p(p + 1)
2  as C ⊗s C vec(Δ) = vec(CΔC) for any 

symmetric matrix Δ, and define the Fisher information matrix for the p(p + 1)
2 -dimensional 

vector vec(Ω) as I = ∇2(− 1
2 log detΩ0) = 1

2Σ0 ⊗s Σ0, c.f., Lemma 2. Given an index set B, we 

define a |B| × |B| submatrix IB,B as IB, B = I(i, j), (k, l) (i, j), (k, l) ∈ B, extracting the 
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corresponding |B| × |B| submatrix from I. Theorem 1 gives the asymptotic distribution of 

vecB(Ω(1)).

Proposition 1 (Asymptotic distribution of CMLE Ω(1)).

for Gausian graphical model). Under Assumptions 1 and 2, if |B| is fixed, there exists a pair 

of tuning parameters (K, τ) with K = |A0| and τ ≤
λminmin Cmin, Cmin

2

12 A0 such that Ω(1)
 satisfies

n vecB Ω(1) − Ω0 d N 0, IA0 ∪ B, A0 ∪ B
−1

B, B , (7)

where IA0 ∪ B, A0 ∪ B
−1

B, B extracts a |B| × |B| submatrix from IA0 ∪ B, A0 ∪ B
−1

.

For linear regression, a similar asymptotic result can be derived.

Proposition 2 (Asymptotic distribution of CMLE).

Assume that XA0 ∪ B
⊤ XA0 ∪ B is inevitable. Under Assumptions 3, if |B| is fixed, there exists a 

pair of tuning parameters (K, τ) with K = |A0| and τ ≤ σ 6
(n + 2)pλmax X⊤X

 such that θB
(1)

satisfies

n βB
(1) − βB

0 d N 0, n−1XA0 ∪ B
⊤ XA0 ∪ B

−1

B, B
, (8)

where MB,B extracts a |B| × |B| submatrix from a matrix M.

3.2. Local Power Analysis

Consider a local alternative Ha θi
n = θi

0 + δn i; i ∈ B with δn Bc = 0, for any θBc, with 

δn 2 = ℎ
n if |B| is fixed, δn 2 = ℎ|B|1/4

n if |B | ∞, for some constant h. Let 

θn = θ1
n, …, θd

n T
. Subsequently, we study the behavior of the local limiting power function 

for the proposed CMLR test πLR ℎ, θBc = lim infn ∞PHa Λn(B) ≥ χα, |B|
2 if |B| is fixed 

and lim infn ∞PHa (2 |B | )−1/2Λn(B) − |B| ≥ zα) if |B | ∞. Let the corresponding 

πdebias(ℎ, θBc) of the debias test in Janková and Van de Geer (2017) in the Gaussian graphical 

model as a result for linear regression is similar.

Theorem 3.—If for any θn = Ωn the Assumptions 1 and 2 for the Gaussian graphical model 

are met and further assume that |B|3/2/n → 0, then for any nuisance parameters ΩBc,
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πLR ℎ, ΩBc

ℙ Z + n1/2JB, B
−1/2δn 2

2 ≥ χα, B
2 when B is fixed,

ℙ Z +
nδn⊤JB, B

−1 δn
2 B ≥ zα when B ∞,

where α > 0 is the level of significance, Z ∼ N(0, I|B| × |B|) is a multivariate normal random 

variable, Z ∼ N(0, 1), and JB,B is the asymptotic variance of vecB(Ω(1)) in (7). In particular, 

limℎ ∞πLR(ℎ, ΩBc) = 1. Moreover, in the one-dimensional situation with |B| = 1, for any h 

and ΩBc,

πLR(ℎ, ΩBc) ≥ πdebias(ℎ, ΩBc) . (9)

Theorem 3 suggests that the proposed CMLR test has the desirable power properties, which 

dominates the corresponding debias tests, which is attributed to optimality of the 

corresponding CMLE and likelihood ratio, as suggested by Theorem 1. Note that the debias 

test requires Assumption 2.

Next, we compare the asymptotic variance of our estimator to that of Janková and Van de 

Geer (2017) for the one-dimensional case with |B| = 1. As indicated by Corollary 1, our 

estimator has asymptotic variance, that is, no larger than that of its debias counterpart.

Corollary 1 (Comparison of asymptotic variances).—Under the assumption of 

Theorem 1, the asymptotic covariance matrix of n ωij − ωij0 (i, j) ∈ B is upper bounded by 

the matrix ωi′j
0 ωij′

0 + ωjj′
0 ωii′

0
(i, j) ∈ B, i′, j′ ∈ B, where ωij is the ijth element of the CMLE Ω. 

When specializing the above result to the one-dimensional case, it implies that the 

asymptotic variance of n ωij − ωij0  is no larger than ωij0
2 + ωii0ωjj0 , the asymptotic variance 

of the regression estimator in Janková and Van de Geer (2017).

A parallel result of Theorem 3 is established for linear regression.

Theorem 4.—If for any θn = βn the Assumptions 1 and 2 for the linear regression model 

are met. Then

πLR ℎ, βBc

ℙ Z + n1/2AXBδn 2
2 ≥ χα, B

2 if B is fixed;

ℙ Z +
n AXBδn 2

2

2 ∣ B ∣ ≥ zα if B ∞ .
(10)

where A ∈ ℝn × |B| with columns being the eigenvalues of PA0 ∪ B − PA0, Z N(0, 1), and Z is 

a |B| dimensional normal random vector. Hence, for any nuisance parameters 

βBc, limℎ ∞πLR(ℎ, βBc) = 1.

Zhu et al. Page 10

J Am Stat Assoc. Author manuscript; available in PMC 2020 August 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



4. Computation

To compute the CMLEs under the null and full spaces in (1) and (2), we approximately 

solve constrained nonconvex optimization through difference convex (DC) programming. 

Particularly, we follow the DC approach of Shen, Pan, and Zhu (2012) to approximate the 

nonconvex constraint by a sequence of convex constraints based on a difference convex 

decomposition iteratively. This leads to an iterative method for solving a sequence of relaxed 

convex problems. The reader may consult Shen, Pan, and Zhu (2012) for convergence of the 

method.

For (1) and (2), at the mth iteration, we solve

maxθ Ln(θ)
subj to ∑i ∉ A1 ωij I ωi

[m] ≤ τ
≤ τ K − ∑i ∉ A1 I ωi

[m] > τ , θA2 = 0,
(11)

to yield θ[m + 1]
, where A1 = B and A2 = ∅ for (1) and A1 = A2 = B for (2). Iteration 

continues until two adjacent iterates are equal. To solve (11), we employ the alternating 

direction method of multipliers algorithm (Boyd et al. 2011), which amounts to the 

following iterative updating scheme

θ[k + 1] = argmin
θ

−Ln(θ) + (ρ/2) ·

θ − δ[k] + γ[k] 2
2 ,

(12)

δ(k + 1) = Pℱ[m] θ[k + 1] + γ[k] ,

γ[k + 1] = γ[k] + θ[k + 1] − δ[k + 1],
(13)

where

ℱ[m] = ∑
i ∉ A1

θi I θi
[m] ≤ τ

≤ τ K − ∑
(i, j) ∉ A1

I θi
[m] > τ , θA2 = 0 ,

Pℱ[m]( ⋅ ) denotes the projection onto the set ℱ[m] and ρ > 0 is fixed or can be adaptively 

updated using a strategy in Zhu (2017). Note that in both cases, the θ-update (12) can be 

solved using an analytic formula involving a singular value decomposition for the Gaussian 

graphical model (see Section 6.5 of Boyd et al. 2011) and solving a linear system for the 

linear model, while (13) is performed using the L1-projection algorithm of Liu and Ye 

(2009) whose complexity is almost linear in a problem’s size. Specifically, consider a 

generic problem of projection onto a weighted L1-ball subject to equality constraint:
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minx ∈ ℝd1
2 x − y 2

2
subj to ∑i ∉ Aci xi ≤ z and xi, i ∈ A,

where ci ≥ 0; i = 1,..., d and A is a subset of {1,...,d}. The solution of this problem is 

xi⋆ = 0 if i ∈ A;xi⋆ = yi if ∑i ∉ Aci yi ≤ z;xi⋆ = sgn yi max yi − ciλ⋆, 0  otherwise, where λ★ 

is a root of f(λ) = ∑i ∉ Acimax yi − ciλ, 0 − z. This root-finding problem is solved 

efficiently by bisection.

5. Numerical Examples

This section investigates operating characteristics of the proposed CMLR test with regard to 

the size and power of a test through simulations and compare with several strong 

competitors in the literature.

For the Gaussian graphical model, we examine three different types of graphs—a chain 

graph, a hub graph, and a random graph, as displayed in Figure 1. For a given graph 

G = (V, ℰ), Ω is generated based on connectivity of the graph, that is, ωij ≠ 0 iff there exists 

a connection between nodes i and j for i ≠ j. Moreover, we set ωij = 0.3 if i and j are 

connected and diagonals equal to 0.3 + c with c chosen so that the smallest eigenvalue of the 

resulting matrix equals to 0.2. Finally, a random sample of size n = 200 is drawn from N(0, 

Ω−1).

In what follows, we consider two hypothesis testing problems concerning conditional 

independence of components of a Gaussian random vector X = (X1,...,Xp). The first 

concerns null hypothesis H0:ωi0j0 = 0 versus its alternative Ha:ωi0j0 ≠ 0; i0 ≠ j0, for testing 

conditional independence between Xi0 and Xj0. The second deals with 

H0:ωi0j = 0; 1 ≤ j ≠ i0 ≤ p versus Ha:ωi0j ≠ 0 for some j ≠ i0, for testing conditional 

independence of component i0 with the rest. In either case, we apply the proposed CMLR 

test in Section 2 and compare it with the univariate debias test of Janková and Van de Geer 

(2017) in terms of the empirical size and power only in the first problem. To our knowledge, 

no competing methods are available for the second problem in the present situation.

For the size of a test, we calculate its empirical size as the percentage of times rejecting H0 

out of 1000 simulations when H0 is true. For the power of a test, we consider four different 

alternatives: Ha:ωij = ωij
(l) for (i, j) ≠ i0, j0 and ωi0j0

(l) =
ωi0j0l

4 , l = 1, …, 4. Under each 

alternative, we compute the power as the percentage of times rejecting H0 out of 1000 

simulations when Ha is true.

With regard to tuning, we fix τ = 0.001 and propose to use a vanilla cross-validation to 

choose the optimal tuning parameter K for our test by minimizing a prediction criterion 

using a 5-fold CV. Specifically, we divide the dataset into five roughly equal parts denoted 

by D1, …, D5. Define Σl and Σ−l, respectively, as the sample covariance matrices calculated 

based on samples in Dl and D1, …, D5 \Dl; l = 1, …, 5. Similarly, define Ω−l(K) to be the 
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precision matrix calculated based on sample covariance matrix Σ−l; l = 1, …, 5. The 5-fold 

CV criterion is CV(K) = 5−1∑l = 1
5 −logdet Ω−l(K) + tr ΣlΩ−l(K) − p . Then the optimal 

tuning parameter is obtained by minimizing CV(K) over a set of grids in the domain of K. 

Finally, K★ = arg min K CV(K) is used to compute the final estimator based on the original 

data.

For the first testing problem, the nominal size of a test is set to 0.05 for our CMLR test and 

the univariate debias test of Janková and Van de Geer (2017), denoted as CMLR-chi-square 
and JG, where the confidence interval in Janková and Van de Geer (2017) is converted to a 

two-sided test. For each graph type, three different graph sizes p = 50, 100, 200 are 

examined. As indicated in Table 1, the empirical size of the CMLR test is under or close to 

the nominal size 0.05. Moreover, as suggested in Table 1, the power of the likelihood ratio 

test is uniformly higher across all the 12 scenarios with four alternatives and three different 

dimensions, where the largest improvements are seen for the hub graph, particularly with p = 

100, 200 for an amount of improvement of 50% or more. This result is anticipated because 

the likelihood method is more efficient than a regression approach.

To study operating characteristics of the constrained likelihood test, we focus on the validity 

of asymptotic approximations based on the chi-square or normal distribution under H0. For 

the first problem, Figure 2 indicates that the chi-square approximation on one degree of 

freedom is adequate for the likelihood ratio test. Similarly, for the second testing problem 

involving a column/row of Ω, Figure 3 confirms that the normal approximation is again 

adequate for the CMLR test. Overall, the asymptotic approximations appear adequate.

For the linear model, we perform a parallel simulation study to compare the CMLR test with 

the debiased lasso test (Zhang and Zhang 2014; Van de Geer et al. 2014) and the method of 

Zhang and Cheng (2017). In (5), we examine (n, p) = (100, 50), (100, 200), (100, 500), (100, 

1000), in which predictors xij and the error ϵi are generated independently from N(0, 1), 

where β0 = 1, 2, 3, βB
0 , 0  and βB 2 = l/10; l = 0, 1,...,4. Now consider a hypothesis test with 

null hypothesis H0 : βB = 0 versus its alternative Ha : βB ≠ 0, where we let |B| ≠ 1, 5, 10. 

With regard to size, power, and tuning, we follow the same scheme as in the Gaussian 

graphical model.

As indicated in Table 2, the empirical size of CMLR-chi-square and CMLR-normal are close 

to the target size 0.05, while the former does better than the latter for |B| is small and worse 

for large |B|, which corroborates with the result of Theorem 2. Moreover, the power of 

CMLR-chi-square is uniformly higher across all the three scenarios with four alternatives 

compared to the other two competing methods. Interestingly, when |B| is large, the method 

of Zhang and Cheng (2017) seems to control the size closer to the nominal level than the 

CMLR test, but the situation is just the opposite when |B| is not large. Additional simulations 

also suggest that similar results are obtained with additional correlation among covariates, 

which are not displayed in here.

Concerning sensitivity of the choice of tuning parameters (K, τ) for the proposed method, as 

illustrated in Figure 4, the choice of τ is much less sensitive than that of K. Moreover, when 
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K ≥ K0, both the size and power become less sensitive to a change of K. With regard to the 

estimated K by cross-validation, the estimator K is close to K0 = 3 in the linear regression 

example, as suggested by Table 2.

In summary, our simulation results suggest that the proposed method achieves high power 

compared to its competitors Janková and Van de Geer (2017), Zhang and Zhang (2014), Van 

de Geer et al. (2014), and Zhang and Cheng (2017). Moreover, the asymptotic 

approximation seems adequate in all the examples.

6. Brain Network Analysis

Alzheimer’s disease is the most common dementia without cure, while the prevalence is 

projected to continuously increase with an estimated 11% of the US senior population in 

2015 to 16% in 2050, costing over 1.1 trillion in 2050 Alzheimer’s Association (2016). AD 

is now widely believed to be a disease with disrupted brain networks, and cortical networks 

based in structural MRI have been constructed to contrast with that of normal/healthy 

controls (He, Chen, and Evans 2008). Using the ADNI-1 baseline data (adni.loni.usc.edu), 

we extracted the cortical thicknesses for p = 68 regions of interest (ROIs) based on the 

Desikan–Killany atlas Desikan et al. (2006). Since previous studies (e.g., Greicius et al. 

2004; Montembeault et al. 2015) have identified the DMN to be associated with AD, we will 

pay particular attention to this subnetwork, which includes 12 ROIs in our dataset. As in He, 

Chen, and Evans (2008), we first regress the cortical thickness on five covariates (gender, 

handedness, education, age, and intercranial volume measured at baseline), then use the 

residuals to estimate precision matrices, for 145 AD patients and 182 normal controls (CNs), 

respectively. Our approach here differs from previous studies He, Chen, and Evans (2008) 

and Montembeault et al. (2015) not only in estimating precision matrices, instead of 

covariance matrices, but also in rigorous inference.

For this data, we consider a hypothesis test of H0 : ωij = 0 versus Ha : ωij ≠ 0; 1 ≤ i ≠ j ≤ 12. 

For each estimated network for the two groups, significant edges under the overall error rate 

α = 0.05, after Bonferroni correction, are reported for the proposed CMLR test and the 

debias test of Janková and Van de Geer (2017) or JG. As indicated in Figure 5, the CMLR 

test yields 28 and 33 signif icant edges for the two groups of CN and AD, which is in 

contrast to 29 and 28 significant edges by the JG test. In other words, the CMLR test detects 

slightly more edges than the JG test, which is in agreement of the simulation results in Table 

1.

In what follows, we will focus on scientific interpretations of the statistical findings by the 

CMLR test. As shown in Montembeault et al. (2015), it is confirmed that for the AD 

patients, as compared to the normal controls, there seems to be reduced connectivity within 

DMN, but increased connectivity for some other ROIs, that is, the salience network and the 

executive network reported in Montembeault et al. (2015). Moreover, it seems that 

connectivity between the left and right brain within DMN somewhat deteriorates for the AD 

patients. To further explore the latter point, we then separately test the independence 

between each node in DMN and the other nodes outside DMN using the proposed CMLR 

test with the standard normal approximation. Specifically, for node i in DMN, we test H0 : 
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ωij = 0 for all j ∉ DMN versus Ha : ωij ≠ 0 for some j ∈ DMN, where DMN denotes the set 

of 12 nodes in DMN. This amounts to 2 × 12 = 24 tests, with 12 tests for each group. 

Specifically, it is confirmed that for the group AD, only L-parahippocampal (left side) is 

independent of all the other nodes outside DMN; in contrast, for the CN group, in addition 

to L-parahippocampal, three other ROIs in DMN, L-medial prefrontal cortex, R-

parahippocampal, and R-precuneus are independent of all the other nodes outside DMN.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Appendix

The following lemmas provide some key results to be used subsequently. Detailed proofs of 

Lemmas 2–8 are provided in a online Supplementary materials due to space limit. Before 

proceeding, we introduce some notations. Given an index set A ⊆ (i, j):1 ≤ i ≤ j ≤ p , define 

CMLE ΩA as ΩA = argmaxΩ ≻ 0, ΩAc = 0Ln(Ω), with ≻ indicating positive definiteness of a 

matrix. Worthy of note is that ΩA becomes the oracle estimator when 

A = A0, where A0 = (i, j): i ≤ j, ωij0 ≠ 0  is the index set including all the indices 

corresponding to nonzero entries of the true precision matrix Ω0 = (ωij0 )p × p

Lemma 2.

For any symmetric matrices C1 and C2, vec C1
⊤vec C2 = tr C1C2 . Moreover, for any 

positive definite matrix C ≻ 0,

∇(logdetC) = − vec(C−1),

∇2(−logdetΩ0) = C−1 ⊗s C−1, (A.1)

I = 1
2Σ0 ⊗s Σ0, (A.2)

var(vec(XX⊤)) = 4I with X N(0, Σ0), (A.3)
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vec(C)⊤I vec(C) = 1
2tr(Σ0CΣ0C) . (A.4)

Lemma 3.

For any symmetric matrix T and ν > 0

ℙ( tr((S − Σ0)T ) ≥ v) ≤ 2exp(−n v2

9 T 2 + 8v T
), (A.5)

where T 2 = n
2var(tr((S − Σ0)T ) . Furthermore, for T1,...,TK such that Tk ≤ c0; k = 1, …, K

with c0 > 0 and any ν > 0, we have that

ℙ max
1 ≤ k ≤ K

tr S − Σ0 Tk ≥ v

≤ 2exp −n v2

9c0
2 + 8c0v

+ logK ,
(A.6)

which implies that max1 ≤ k ≤ K tr S − Σ0 Tk = Op c0
logK

n . Particularly, for any ν > 0 and 

any index set B,

ℙ vecB S − Σ0
∞ ≥ v

≤ 2exp −n v2 ∣
9λmax

2 Σ0 + 8vλmax Σ0 + log B ,
(A.7)

implying that vecB S − Σ0
∞ = Op λmax Σ0 log |B|

n .

Lemma 4.

(The Kullback–Leibler divergence and Fisher-norm) For a positive definite matrix 

Ω ∈ ℝp × p, a connection between the Kullback–Leibler divergence K(Ω0, Ω) and the Fisher-

norm Ω0 − Ω  can be established:

K Ω0, Ω ≥ min 1
16 2,

K Ω0, Ω
2 6 Ω0 − Ω , (A.8)

K Ω0, Ω ≥ min 1
16 2, Ω0 − Ω

24 Ω0 − Ω . (A.9)
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Lemma 5.

(Rate of convergence of constrained MLE). Let A ⊇ A0 be an index set. For ΩA, we have that

ΩA − Ω0 ≤ 12 IA, A
−1/2vec Σ0 − S 2 . (A.10)

on the event that IA, A
−1/2vecA Σ0 − S 2 < 1

8 2 . Moreover, if |A | logp
n 0, then

ΩA − Ω0 = Op
A logp

n . (A.11)

Lemma 6.

(Selection consistency). If

K = A0 , τ ≤ λminmin Cmin, Cmin
2

12 A0 , then

max P Ω(0) ≠ ΩA0 , P Ω(1) ≠ ΩA0 ∪ B

≤ 2exp −nCmin
2560 × 512 + 2logp + exp −n

2560 + A0 logp

+ 2exp −n
min min Cmin/512, 3/32

48λmax
2 A0 + B

, λmax Σ0
2

18λmax
2 Σ0 + 2logp

0

(A.12)

as n → ∞ under Assumptions 1 and 2, where Ω(0), Ω(1)
, and Cmin are as defined in (1)–(3).

Lemma 7.

Let γk = γk1, . , ⋅ ⋅ γkm ∈ ℝm; k = 1, …, n be iid random vectors with var(γ1) = Im×m. If m is 

fixed, then

n−1 ∑
k = 1

n
γk

2

2
d χm2 , as n ∞ . (A.13)

Otherwise, if max (m, m2m/n, m3/n, m3m3/2/n2 → 0), where mj = max1 ≤ i ≤ mEγ1i
2j; j = 2, 3, 

then

∑k = 1
n γk 2

2 − nm
n 2m

d N(0, 1), as n ∞ . (A.14)

Zhu et al. Page 17

J Am Stat Assoc. Author manuscript; available in PMC 2020 August 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Lemma 8.

Let X ∼ N(0, Σ0) and γ = tr XX⊤ − Σ0 T  with T a symmetric matrix. Then

E γ2m ≤ (2m − 1)!2m − 1 E γ2 m for any integer m ≥ 1. (A.15)

Lemma 9.

(Asymptotic distribution for log-likelihood ratios). The log-likelihood ratio statistic 

Lr = 2(Ln(ΩA) − Ln(ΩA0)), where ΩA is the MLE over index set A with A ⊇ A0. Denote by 

κ0 the condition number of Σ0. If 
κ0 |A | logp

n 0 with p ≥ 2, then,

Lr
P0 W B , if B is a constant; Lr − B

2 B
P0 Z, if B ∞,

where B = A\A0, W |B| follows a chi-square distribution χ2 on |B| degrees of freedom and Z ∼ 

N(0, 1), respectively.

Proof of Theorem 1.

By Lemma 6, ℙ Ω(0) = ΩA0 1; ℙ Ω(1) = ΩA0 ∪ B 1, as n → ∞ under Assumptions 1 

and 2. Then, the asymptotic distribution of the likelihood ratio follows immediately from 

Lemma 9. □

Proof of Proposition 1.

Let A = A0 ∪ B. By Lemma 6, ℙ Ω(1) = ΩA0 ∪ B 1, as n → ∞. Asymptotic normality of 

vecB ΩA0 ∪ B  follows from an expansion of the score equation. Specifically, note that

n vecB ΩA0 ∪ B − Ω0 = n
2 IA, A

−1
B, A

× vecA(Λ) − vecA R ΔA ,

where R ΔA = Σ0∑i = 2
∞ ( − 1)i ΔAΣ0 i

. Let J = IA, A
−1  be as defined in (B.33) of the online 

supplementary material. Multiplying JB, B
−1/2 on both sides of this identity, we obtain

nJB, B
−1/2vecB ΩA0 ∪ B − Ω0

= n
2 JB, B

−1/2JB, A vecA(Λ) − vecA R ΔA .
(A.16)
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Next, we show that the first term tends to N 0, I|B | × |B|  in distribution and the second term 

tends to 0 in probability. For the second term, following similar calculations as in (B.34) of 

the online supplementary material, we have that 

JB, B
−1/2JB, Ax 2

2 = x⊤Jx − x⊤IA0, A0
−1 x ≤ x⊤Jx ≤ λmin

−2 Σ0 x 2
2
 for any x ∈ ℝ|A|. This, together 

with (B.37) of the online supplementary material, implies that

.5 nJB, B
−1/2JB, AvecA R ΔA 2 ≤ .5 n J1/2vecA R ΔA 2

≤ .5 nλmin
−1 Σ0 R ΔA 2 ≤ nκ0 Σ0ΔA F

2

= Op
κ0 A logp

n = op(1)
(A.17)

under Assumption 2. For the first term, note that

cov 1
2JB, B

−1/2JB, AvecA XX⊤ − Σ0 ,
1
2JB, B

−1/2JB, AvecA XX⊤ − Σ0

= JB, B
−1/2JB, Acov 1

2vecA XX⊤ − Σ0 , 1
2vecA XX⊤ − Σ0

JA, BJB, B
−1/2

= JB, B
−1/2JB, AIA, AJA, BJB, B

−1/2 = I B × B .

where the second last equality uses the property of exponential family Brown (1986). Hence, 

by the central limit theorem, vecA(Λ) d N 0, IA, A
−1

B, B . Finally, by Slutsky’s Theorem, we 

obtain that n vecB ΩA0 ∪ B − Ω0 d N 0, IA, A
−1

B, B . This completes the proof. □

Proof of Proposition 2.

By Theorem 3 of Shen et al. (2013), ℙ β(1) = βA0 ∪ B
ls

1, as n, p → ∞. Hence, with 

probability tending to 1,

βB
(1) = vecB XA0 ∪ B

⊤ XA0 ∪ B
−1

XA0 ∪ B
⊤ Y

= vecB XA0 ∪ B
⊤ XA0 ∪ B

−1
XA0 ∪ B

⊤ XA0 ∪ BβA0 ∪ B
0 + ϵ

= βB
0 + vecB XA0 ∪ B

⊤ XA0 ∪ B
−1

XA0 ∪ B
⊤ ϵ .

Simple moment generating function calculations show that when |B| is fixed,

vecB XA0 ∪ B
⊤ XA0 ∪ B

−1
XA0 ∪ B

⊤ ϵ N 0, XA0 ∪ B
⊤ XA0 ∪ B

−1

B, B
.
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Hence, n βB
(1) − βB

0 d N 0, n−1XA0 ∪ B
⊤ XA0 ∪ B

−1

B, B
.. This completes the proof. □

Proof of Corollary 1.

Let A = A0 ∪ B. The result follows directly from Theorem 1. Specifically, we bound the 

asymptotic covariance matrix of n ωij − ωij0 (i, j) ∈ B for any B of fixed size. Note that the 

asymptotic covariance matrix of n vecB ΩA − Ω0  can be bounded: 

IA, A
−1

B, B ≺ I−1
B, B = 2 Ω0 ⊗s Ω0

B, B. Moreover, for any 

(i, j), i′, j′ ∈ B, 2 Ω0 ⊗s Ω0
(i, j), i′, j′  can be written as

1 + I(i ≠ j) 1 + I i′ ≠ j′
2 tr

× eiej⊤ + ejei⊤ Ω0 ei′ej′
⊤ + ej′ei′

⊤ Ω0

= 1 + I(i ≠ j) 1 + I i′ ≠ j′ ωi′j
0 ωij′

0 + ωjj′
0 ωii′

0 .

Using vecB(C) = 1 + I(i ≠ j)cij (i, j) ∈ B, the asymptotic variance of n ωij − ωij0 (i, j) ∈ B is 

upper bounded by a |B| × |B| matrix ωi′j
0 ωij′

0 + ωjj′
0 ωii′

0
(i, j) ∈ B, i′, j′ ∈ B. Particularly, when B 

= {(i, j)}, this reduces to an upper bound on the asymptotic variance ωij0
2 + ωii0ωjj0 . This 

completes the proof. □

Proof of Theorem 2.

By Theorem 3 of Shen et al. (2013), ℙ β(1) = βA0 ∪ B
ls

∩ β(0) = βA0
ls

1, as n, p → ∞, by 

Assumption 1, where βA
ls

 is the least square estimate over A. Hence, in what follows, we 

focus our attention to event β(1) = βA0 ∪ B
ls

∩ β(0) = βA0
ls

.

Easily, after profiling out σ, we have Λn(B) = n log y − Xβ(0)
2
2

− log y − Xβ(1)
2
2

. Then 

an application of Taylor’s expansion of log(1 − x) yields that

n log y − Xβ 2
2 − log y − Xβ0

2
2

= − n ∑
i = 1

∞ 2ϵ⊤Xδ − Xδ 2
2 i

i ϵ 2
2i

(A.18)

where δ = β − β0. Moreover, on the event β(1) = βA0 ∪ B
ls

∩ β(0) = βA0
ls

,
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β(1) = β0 + XA0 ∪ B
⊤ XA0 ∪ B

−1
XA0 ∪ B

⊤ ϵ and

β(0) = β0 + XA0
⊤ XA0

−1
XA0

⊤ ϵ,

implying that X β(1) − β0 = PA0 ∪ Bϵ and X β(0) − β0 = PA0ϵ. Consequently, replacing 

δ = β(1) − β0, the right-hand of (A.18) reduces to

−n ∑
i = 1

∞ ϵ⊤PA0 ∪ Bϵ i

i ϵ 2
2i = − n

ϵ 2
2

× ϵ⊤PA0 ∪ Bϵ + ∑
i = 2

∞ ϵ⊤PA0 ∪ Bϵ i

i ϵ 2
2(i − 1) .

Similarly, replacing δ by β(1) − β0, (A.18) becomes − n
ϵ 2

2 ϵ⊤PA0ϵ + ∑i = 2
∞ ϵ⊤PA0ϵ i

i ϵ 2
2(i − 1) . 

Taking the difference leads to that Λn(B) =
nϵ⊤ PA0 ∪ B − PA0 ϵ

ϵ 2
2 + R(ϵ), where R(ϵ) is

∑
i = 2

∞ ϵ⊤PA0 ∪ Bϵ i − ϵ⊤PA0ϵ i

i ϵ 2
2(i − 1)

= ∑
i = 2

∞ ϵ⊤ PA0 ∪ B − PA0 ϵ ∑j = 0
i − 1 ϵ⊤PA0 ∪ Bϵ j ϵ⊤PA0ϵ i − j − 1

i ϵ 2
2(i − 1) .

Note that PA0 ∪ B − PA0 is idempotent with the rank |B|. Moreover, ϵ⊤PA0ϵ ≤ ϵ⊤PA0 ∪ Bϵ. 

Thus, R(ϵ) is no greater than

ϵ⊤ PA0 ∪ B − PA0 ϵ ∑
i = 2

∞ ϵ⊤PA0 ∪ Bϵ

ϵ 2
2

i − 1

= ϵ⊤ PA0 ∪ B − PA0 ϵ
ϵ⊤PA0 ∪ Bϵ

ϵ 2
2 1 −

ϵ⊤PA0 ∪ Bϵ

ϵ 2
2

−1

on the event that ϵ⊤PA0 ∪ Bϵ < ϵ 2
2 . This, together with the facts that 

n/ ϵ 2
2 ℙ 1 and A0 /n 0, implies that Λn(B) d χ2( |B | ) when |B| is fixed, and 

Λn(B) − |B|
2 |B|

d N(0, 1) when |B| → ∞ and 
|B| A0 + |B|

n 0, because
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R(ϵ)/ B ≤
ϵ⊤ PA0 ∪ B − PA0 ϵ

B
ϵ⊤PA0 ∪ Bϵ

ϵ 2
2

× 1 −
ϵ⊤PA0 ∪ Bϵ

ϵ 2
2

−1 ℙ 0

provided that 
|B| A0 + |B|

n 0 and |B| → ∞. This completes the proof. □
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Figure 1. 
Three types of graphs used in our simulations.
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Figure 2. 
Empirical null distribution of the proposed CMLR test based on the chi-square 

approximation with n = 200.
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Figure 3. 
Empirical null distribution of our likelihood ratio test based on the normal approximation for 

the second testing problem involving a single column/row.
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Figure 4. 
Sensitivity study of power as a function of tuning parameters τ and K, when n = 100, p = 

100, and K0 = 3 in the linear regression problem based on 1000 simulations. Dotted and 

black lines represent empirical power and sizes of the proposed method, while red lines 

serve as a reference of the nominal size α = 0.05.
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Figure 5. 
Estimated networks by the proposed method (first row) and the method Janková and Van de 

Geer (2017) (second row) for the CN (left) and AD (right) groups, where reported edges are 

significant under a p-value of 0.05 after Bonferroni correction. Nodes with square shape 

belong to DMN. The solid edges denote those that are shared by the two groups, whereas the 

dashed edges denote those that are only present within one group.

Zhu et al. Page 28

J Am Stat Assoc. Author manuscript; available in PMC 2020 August 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Zhu et al. Page 29

Ta
b

le
 1

.

E
m

pi
ri

ca
l s

iz
e 

an
d 

po
w

er
 c

om
pa

ri
so

ns
 o

f 
th

e 
pr

op
os

ed
 C

M
L

R
 te

st
 a

nd
 te

st
 o

f 
Ja

nk
ov

á 
an

d 
V

an
 d

e 
G

ee
r 

(2
01

7)
, d

en
ot

ed
 b

y 
C

M
L

R
-c

hi
-s

qu
ar

e 
an

d 
JG

, i
n 

th
e 

fi
rs

t t
es

tin
g 

pr
ob

le
m

 f
or

 th
e 

G
au

ss
ia

n 
gr

ap
hi

ca
l m

od
el

 b
as

ed
 o

n 
10

00
 s

im
ul

at
io

ns
.

C
M

L
R

-c
hi

-s
qu

ar
e

JG

G
ra

ph
(n

, p
)

Si
ze

P
ow

er
Si

ze
P

ow
er

B
an

d
(2

00
,5

0)
0.

05
4

(0
.2

7,
 0

.7
8,

 0
.9

8,
 1

.0
)

0.
04

3
(0

.2
4,

 0
.7

7,
 0

.9
9,

 1
.0

)

(2
00

,1
00

)
0.

05
5

(0
.3

0,
 0

.7
9,

 0
.9

8,
 1

.0
)

0.
04

2
(0

.2
4,

 0
.7

5,
 0

.9
9,

 1
.0

)

(2
00

,2
00

)
0.

04
8

(0
.2

9,
 0

.8
0,

 0
.9

9,
 1

.0
)

0.
03

6
(0

.2
3,

 0
.7

4,
 0

.9
8,

 1
.0

)

H
ub

(2
00

,5
0)

0.
01

9
(0

.1
0,

 0
.3

6,
 0

.7
4,

 0
.9

5)
0.

00
5

(0
.0

6,
 0

.2
7,

 0
.6

6,
 0

.9
2)

(2
00

,1
00

)
0.

02
8

(0
.1

2,
 0

.4
3,

 0
.8

1,
 0

.9
6)

0.
00

5
(0

.0
2,

 0
.1

7,
 0

.5
4,

 0
.8

6)

(2
00

,2
00

)
0.

03
1

(0
.1

6,
 0

.5
5,

 0
.8

6,
 0

.9
8)

0.
00

1
(0

.0
2,

 0
.1

5,
 0

.5
0,

 0
.8

6)

R
an

do
m

(2
00

,5
0)

0.
03

4
(0

.1
5,

 0
.5

1,
 0

.8
6,

 0
.9

8)
0.

02
5

(0
.1

4,
 0

.4
9,

 0
.8

3,
 0

.9
8)

(2
00

,1
00

)
0.

04
1

(0
.2

1,
 0

.6
8,

 0
.9

4,
 1

.0
)

0.
01

8
(0

.1
1,

 0
.5

3,
 0

.9
2,

 0
.9

9)

(2
00

,2
00

)
0.

04
9

(0
.1

5,
 0

.4
7,

 0
.8

1,
 0

.9
6)

0.
03

4
(0

.1
4,

 0
.4

1,
 0

.7
8,

 0
.9

5)

J Am Stat Assoc. Author manuscript; available in PMC 2020 August 11.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Zhu et al. Page 30

Ta
b

le
 2

.

E
m

pi
ri

ca
l s

iz
e 

an
d 

po
w

er
 c

om
pa

ri
so

ns
 in

 li
ne

ar
 r

eg
re

ss
io

n 
as

 w
el

l a
s 

es
tim

at
ed

 tu
ni

ng
 p

ar
am

et
er

 K
 b

y 
a 

5-
fo

ld
 c

ro
ss

-v
al

id
at

io
n 

ov
er

 1
00

0 
si

m
ul

at
io

ns
.

|B
|

n
p

M
et

ho
d

Si
ze

P
ow

er
K

1
10

0
50

C
M

L
R

-c
hi

-s
qu

ar
e

0.
05

7
(0

.1
65

, 0
.4

89
, 0

.8
37

, 0
.9

72
)

3.
36

 (
1.

08
)

C
M

L
R

-n
or

m
al

0.
06

1
(0

.1
7,

 0
.4

95
, 0

.8
4,

 0
.9

72
)

N
A

Z
ha

ng
 a

nd
 C

he
ng

0.
03

9
(0

.1
09

, 0
.2

62
, 0

.5
79

, 0
.7

88
)

N
A

D
L

0.
03

3
(0

.1
32

, 0
.4

04
, 0

.7
24

, 0
.9

17
)

N
A

20
0

C
M

L
R

-c
hi

-s
qu

ar
e

0.
05

5
(0

.1
7,

 0
.5

24
, 0

.8
29

, 0
.9

74
)

3.
19

1 
(0

.5
91

)

C
M

L
R

-n
or

m
al

0.
05

8
(0

.1
76

, 0
.5

32
, 0

.8
34

, 0
.9

75
)

N
A

Z
ha

ng
 a

nd
 C

he
ng

0.
01

3
(0

.0
42

, 0
.1

16
, 0

.3
06

, 0
.4

76
)

N
A

D
L

0.
05

2
(0

.1
44

, 0
.3

58
, 0

.6
94

, 0
.8

88
)

N
A

50
0

C
M

L
R

-c
hi

-s
qu

ar
e

0.
05

1
(0

.1
75

, 0
.5

09
, 0

.8
38

, 0
.9

63
)

3.
15

9 
(0

.5
83

)

C
M

L
R

-n
or

m
al

0.
05

1
(0

.1
79

, 0
.5

13
, 0

.8
4,

 0
.9

63
)

N
A

Z
ha

ng
 a

nd
 C

he
ng

N
A

N
A

N
A

D
L

N
A

N
A

N
A

10
00

C
M

L
R

-c
hi

-s
qu

ar
e

0.
05

6
(0

.1
65

, 0
.5

12
, 0

.8
28

, 0
.9

62
)

3.
11

5 
(0

.3
71

)

C
M

L
R

-n
or

m
al

0.
05

8
(0

.1
7,

 0
.5

22
, 0

.8
3,

 0
.9

64
)

N
A

Z
ha

ng
 a

nd
 C

he
ng

N
A

N
A

N
A

D
L

N
A

N
A

N
A

5
10

0
50

C
M

L
R

-c
hi

-s
qu

ar
e

0.
05

8
(0

.1
1,

 0
.3

28
, 0

.6
3,

 0
.8

65
)

3.
33

 (
0.

94
)

C
M

L
R

-n
or

m
al

0.
05

2
(0

.1
09

, 0
.3

22
, 0

.6
19

, 0
.8

62
)

N
A

Z
ha

ng
 a

nd
 C

he
ng

0.
05

(0
.0

63
, 0

.1
15

, 0
.2

26
, 0

.3
46

)
N

A

D
L

N
A

N
A

N
A

20
0

C
M

L
R

-c
hi

-s
qu

ar
e

0.
06

6
(0

.1
14

, 0
.2

97
, 0

.6
01

, 0
.8

78
)

3.
18

8 
(0

.6
06

)

C
M

L
R

-n
or

m
al

0.
06

3
(0

.1
12

, 0
.2

89
, 0

.5
92

, 0
.8

78
)

N
A

Z
ha

ng
 a

nd
 C

he
ng

0.
03

7
(0

.0
52

, 0
.1

11
, 0

.1
53

, 0
.2

53
)

N
A

D
L

N
A

N
A

N
A

50
0

C
M

L
R

-c
hi

-s
qu

ar
e

0.
06

4
(0

.1
24

, 0
.3

21
, 0

.6
25

, 0
.8

95
)

3.
15

3 
(0

.5
6)

J Am Stat Assoc. Author manuscript; available in PMC 2020 August 11.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Zhu et al. Page 31

|B
|

n
p

M
et

ho
d

Si
ze

P
ow

er
K

C
M

L
R

-n
or

m
al

0.
06

1
(0

.1
18

, 0
.3

15
, 0

.6
18

, 0
.8

93
)

N
A

Z
ha

ng
 a

nd
 C

he
ng

N
A

N
A

N
A

D
L

N
A

N
A

N
A

10
00

C
M

L
R

-c
hi

-s
qu

ar
e

0.
05

9
(0

.1
18

, 0
.3

04
, 0

.6
12

, 0
.8

72
)

3.
11

 (
0.

35
5)

C
M

L
R

-n
or

m
al

0.
05

7
(0

.1
12

, 0
.3

, 0
.6

04
, 0

.8
69

)
N

A

Z
ha

ng
 a

nd
 C

he
ng

N
A

N
A

N
A

D
L

N
A

N
A

N
A

10
10

0
50

C
M

L
R

-c
hi

-s
qu

ar
e

0.
06

8
(0

.0
94

, 0
.2

52
, 0

.5
28

, 0
.7

94
)

3.
41

 (
1.

20
)

C
M

L
R

-n
or

m
al

0.
05

9
(0

.0
85

, 0
.2

33
, 0

.5
03

, 0
.7

75
)

N
A

Z
ha

ng
 a

nd
 C

he
ng

0.
05

4
(0

.0
55

, 0
.0

85
, 0

.1
46

, 0
.2

1)
N

A

D
L

N
A

N
A

N
A

20
0

C
M

L
R

-c
hi

-s
qu

ar
e

0.
08

6
(0

.1
15

, 0
.2

53
, 0

.5
14

, 0
.7

86
)

3.
19

3 
(0

.6
18

)

C
M

L
R

-n
or

m
al

0.
07

9
(0

.1
04

, 0
.2

38
, 0

.4
87

, 0
.7

67
)

N
A

Z
ha

ng
 a

nd
 C

he
ng

0.
04

9
(0

.0
55

, 0
.0

89
, 0

.1
06

, 0
.1

52
)

N
A

D
L

N
A

N
A

N
A

50
0

C
M

L
R

-c
hi

-s
qu

ar
e

0.
09

3
(0

.1
23

, 0
.2

86
, 0

.5
4,

 0
.7

73
)

3.
15

9 
(0

.5
85

)

C
M

L
R

-n
or

m
al

0.
07

8
(0

.1
13

, 0
.2

62
, 0

.5
16

, 0
.7

6)
N

A

Z
ha

ng
 a

nd
 C

he
ng

N
A

N
A

N
A

D
L

N
A

N
A

N
A

10
00

C
M

L
R

-c
hi

-s
qu

ar
e

0.
07

3
(0

.1
23

, 0
.2

52
, 0

.5
26

, 0
.7

79
)

3.
11

 (
0.

35
5)

C
M

L
R

-n
or

m
al

0.
06

6
(0

.1
12

, 0
.2

3,
 0

.4
97

, 0
.7

66
)

N
A

Z
ha

ng
 a

nd
 C

he
ng

N
A

N
A

N
A

D
L

N
A

N
A

N
A

N
O

T
E

S:
 H

er
e 

“C
M

L
R

-c
hi

-s
qu

ar
e,

” 
“C

M
L

R
-n

or
m

al
,”

 “
D

L
,”

 a
nd

 “
Z

ha
ng

 a
nd

 C
he

ng
” 

de
no

te
 th

e 
pr

op
os

ed
 te

st
 b

as
ed

 o
n 

a 
ch

i-
sq

ua
re

 a
pp

ro
xi

m
at

io
n,

 a
 n

or
m

al
 a

pp
ro

xi
m

at
io

n,
 th

e 
de

bi
as

 m
et

ho
d 

of
 Z

ha
ng

 
an

d 
Z

ha
ng

 (
20

14
),

 a
nd

 th
e 

m
et

ho
d 

of
 Z

ha
ng

 a
nd

 C
he

ng
 (

20
17

).
 N

ot
e 

th
at

 th
e 

no
m

in
al

 s
iz

e 
is

 0
.0

5,
 D

L
 is

 a
 te

st
 c

on
ve

rt
ed

 f
ro

m
 a

 C
I,

 a
nd

 N
A

 m
ea

ns
 th

at
 a

 r
es

ul
t i

s 
no

t a
pp

lic
ab

le
 o

r 
th

e 
co

de
 f

ai
l t

o 
re

tu
rn

 a
 

re
su

lt 
af

te
r 

a 
co

de
’s

 r
un

tim
e 

ex
ce

ed
s 

on
e 

w
ee

k.

J Am Stat Assoc. Author manuscript; available in PMC 2020 August 11.


	Abstract
	Introduction
	Constrained Likelihood Ratios
	Asymptotic Distribution of Λn(B) in Graphical Models
	Assumption 1 (Degree of separation).
	Assumption 2 (Dimension restriction for Λn(B).
	Theorem 1 (Asymptotic sampling distribution of Λn(B).
	Asymptotic Distribution of Λn(B) in Linear Regression
	Assumption 3 (Degree of separation condition, Shen et al. 2013).
	Theorem 2 (Sampling distribution of Λn(B).
	Lemma 1 (A counter example).

	Power Analysis
	Asymptotic Normality
	Proposition 1 (Asymptotic distribution of CMLE
Ω^(1)).
	Proposition 2 (Asymptotic distribution of CMLE).
	Local Power Analysis
	Theorem 3.
	Corollary 1 (Comparison of asymptotic variances).
	Theorem 4.


	Computation
	Numerical Examples
	Brain Network Analysis
	Appendix
	References
	Figure 1.
	Figure 2.
	Figure 3.
	Figure 4.
	Figure 5.
	Table 1.
	Table 2.

