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Abstract

The immune system is a highly complex and dynamic biological system. It operates through 

intracellular molecular networks and intercellular (cell–cell) interaction networks. Systems 

immunology is an emerging discipline that applies systems biology approaches of integrating 

high-throughput multi-omics measurements with computational network modeling to better 

understand immunity at various scales. In this review, we summarize key omics technologies and 

computational approaches used for immunological studies at both population and single-cell 

levels. We highlight the hidden driver analysis based on data-driven networks and comment on the 

potential of translating systems immunology discoveries to immunotherapy of cancer and other 

human diseases.
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Introduction

The immune system, one of the most complex and dynamic biological systems in mammals, 

is comprised of diverse cell types with varying functional states. Between the two major 

arms of the immune system, the innate immune system, comprised of macrophages, 

dendritic cells, neutrophils and other cells, serves as the first line of defense by mounting 

immediate and potent immune and inflammatory responses against invading pathogens and 

other immunological insults. Cells in the adaptive immune system, including T and B cells, 

have a more specialized role in immune reactions and are characterized by antigen 

specificity and long-term memory. These different elements interact as an integrative system 

to give rise to proper immune responses and regulation, and play crucial roles in protecting 

host health against viruses, bacteria, parasites and tumors. Dysfunctions in the immune 

network may lead to autoimmune, malignant, and inflammatory diseases. Characterizing 

these diverse cell types, their unique molecular features, and their interactions is the key to 

successfully manipulate the immune system for therapeutic applications. Advances in high-

throughput profiling technologies, particularly the emerging single-cell omics platforms, 

enable comprehensive characterization of the immune components at multiple scales. 

However, immunity is not merely a sum of its components, and its behavior cannot be 

explained or predicted solely by examining individual components. Therefore, systems 

biology approaches are essential for decoding the cellular complexity, plasticity, and 

functional diversity of the immune system, leading to the emerging field of systems 

immunology to better understand how the immune system works as a whole in health and 

disease.
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Gene regulatory networks function as the crucial molecular determinants of cell fate and 

state by governing gene expression programing and reprograming in immune development 

and homeostasis [1]. Signaling and epigenetic factors are also crucial drivers of 

immunological functions and are likely druggable, making them promising therapeutic 

targets. However, it is often difficult to identify many of these drivers (hence known as 

“hidden drivers”), because they may not be genetically altered or differentially expressed at 

the mRNA or protein levels but, rather, are altered by posttranslational modifications (PTMs; 

e.g., phosphorylation) or other mechanisms. Moreover, immune responses are mediated by 

both the intracellular gene networks and crosstalk between many types of immune cells in 

specific tissues and microenvironmental contexts; and their dysregulations can lead to 

diseases, including cancer and inflammatory disorders. Therefore, molecular and cellular 

networks, and their drivers and “hidden” drivers (cannot be easily detected by conventional 

approaches) must be systematically dissected to develop effective and curative 

immunotherapies for diseases such as cancer [2].

Omics technologies for immunology research

Technological advances in high-throughput and high-bandwidth profiling, phenotyping and 

perturbation assays have contributed to rapid advances of systems immunology. A variety of 

omics technologies at both population and single-cell levels have played important roles in 

improving our understanding of the immune system (Figure 1). Each technology has its 

advantages and limitations, and understanding these factors is essential to devise effective 

and reliable systems approaches that address immunological questions at the appropriate 

resolution. In this section, we discuss these technologies by summarizing the essential 

aspects of their proper use, with example applications and certain limitations.

Population level

Transcriptome profiling by microarray or RNA-based next-generation sequencing (RNA-

seq) is the most widely used omics method in immunology research. Transcriptome analysis 

has provided instrumental insights into the mechanisms of immune system development and 

homeostasis under steady state, and transcriptional dynamics during the immune response to 

antigens or pathogens, including the identification of diverse immune cell types and 

functional states [3]. As the cost of sequencing decreases, RNA-seq, particularly bulk RNA-

seq, has become the more prevalent technology for gene expression profiling, with several 

advantages than microarray technology: high coverage and sensitivity (detecting low-

abundance transcripts); detection of splicing events, gene fusions, and small RNAs; low 

background noise and batch effects; and the ability to handle low RNA input (down to 10 

pg). The community-driven and publicly available databases of gene expression profiles, 

such as Gene Expression Omnibus (GEO), have enabled data mining across platforms, 

studies, and species. A few curated immune-specific databases with analysis and 

visualization tools have provided valuable resources for immunology researchers, including 

ImmGen [4], ImmPort [5], ImmuneSpace [6], and 10K Immunomes [7].

The expression levels of mRNA and protein can differ substantially for many genes [8], 

especially during the dynamic transitional state when there is a temporal delay between 
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transcription and translation [9]. Moreover, posttranslational modifications, such as 

phosphorylation, are crucial regulators of protein functions and signaling, but are poorly 

correlated with mRNA or total protein expression. With the recent advances in mass 

spectrometry (MS) analytical technologies [10], in-depth proteomic profiling can now 

identify more than 10,000 proteins (whole proteomics) and 30,000 phosphopeptides 

(phosphoproteomics) across multiple samples simultaneously [11**,12,13]. The tandem 

mass tagging (TMT) [14] and the label-free quantitation (LFQ) are two common proteomic 

methods to quantify the differential abundance of expressed proteins, with the TMT method 

recently shown to have higher precision and coverage than the LFQ method [15,16]. Despite 

the challenge to cover the entire proteome and PTM landscape, current MS-based proteomic 

technologies are capable of providing comprehensive characterizations of proteome 

dynamics and biological insights into gene regulation and signaling circuits in immunology, 

such as T-cell activation [11**,17] and host-pathogen interaction [18]. Proteomics by 

affinity purification-mass spectrometry (AP-MS) is also commonly used to identify protein-

protein interactions (PPIs) [19**] that help dissect the molecular mechanisms of crucial 

immunological modulators, for example, Mst1 signaling in regulatory T cells [20]. Recently, 

advanced MS-based platforms have been developed to profile and explore the metabolome 

that may shape the functions of immune cells (e.g., metabolomics [21] and lipidomics 

[22,23]).

DNA-based next-generation sequencing (NGS) has revolutionized the study of many fields 

in biology, including immunology [24**]. Whole-genome or -exome sequencing and 

targeted DNA sequencing are now routinely used to identify somatic genetic alterations 

associated with cancer and other diseases, spurring the advent of precision medicine [25]. In 

basic immunology research, NGS is commonly used to dissect protein-DNA interactions 

(ChIP-seq) [26], protein-RNA interactions (CLIP-seq) [27], DNA methylation (Bisulfite-

seq) [28], chromosomal interactions (Hi-C) [29], and chromatin accessibility (ATAC-seq) 

[30].

The revolutionary CRISPR/Cas-based genome engineering technologies enable the use of 

genome-wide functional perturbation screening [31] to systematically interrogate novel 

players and circuits that regulate or modulate immune development, homeostasis and 

response [32,33**]. CRISPR and conventional RNAi screens perform comparably for 

identifying essential genes [34]. Novel CRISPRi/a technologies provide a complementary 

but superior approach to RNAi by repressing or activating gene expression at the 

transcriptional level, while RNAi represses gene expression at the mRNA level [35].

Single-cell level

The immune system encompasses various cell types and functional states. Population- or 

bulk-based profiling performed by averaging results from thousands of cells of distinct types 

presents an inherent heterogeneity problem for data analysis and interpretation. However, the 

advent of single-cell technologies to profile the transcriptome (scRNA-seq) [36], proteome 

(mass cytometry or CyTOF, NanoLC-MS) [37,38], genome [39], and chromatin accessibility 

or epigenome (scATAC-seq, scChIP-seq, scBS-seq, scHi-C) [40,41,42,43,44] has provided 

an unprecedented opportunity to overcome this challenge by simultaneously quantifying 

Yu et al. Page 4

Curr Opin Syst Biol. Author manuscript; available in PMC 2020 August 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



molecular features at the single-cell resolution. Indeed, single-cell technology was 

recognized as the breakthrough of the year for 2018. In immunology research, scRNA-seq 

[45**] and mass cytometry [37] are widely adapted.

In the last few years, advances in technologies of cell suspension, automation, microfluidics 

and implementation of unique molecular identifiers have boosted the scRNA-seq field by 

improving the throughput (the number of cells), sensitivity (the number of uniquely-detected 

genes), precision (level of noise), and reproducibility [46**]. The scRNA-seq technology 

has been widely used in immunology to reveal immune cell heterogeneity and dynamics in 

healthy and malignant conditions [47*,48*,49*]. Significant efforts have been invested to 

profile the entire human and mouse cell atlas [50,51,52]. Because of their high-throughput of 

cells, droplet-based scRNA-seq platforms, including 10X Genomics Chromium [53], inDrop 

[54], and Drop-seq [55], are becoming more popular than FACS- or plate-based protocols 

for immunology studies [56]. However, plate-based methods have no sequencing bias on the 

5’ or 3’ end of transcript tags and capture more molecules than droplet-based platforms [57]. 

The combined use of both platforms can provide more comprehensive and in-depth 

information [58]. Imaging-based, single-molecule fluorescence in situ hybridization 

(smFISH) [59,60] is another powerful, emerging technology for high-throughput single-cell 

transcriptomics with additional spatial information integrated, but is yet to be applied to the 

immune system.

Flow cytometry uses fluorescent antibodies to simultaneously profile multiple proteins per 

cell and has been the mainstay for immune-phenotyping. Mass cytometry overcomes the 

limitation associated with the spectral overlap of fluorophores in flow cytometry by using 

metal-conjugated antibodies that increase the dimension [37]. It has enabled the 

identification and characterization of a variety of immune cell types and states in the 

mammalian immune system with emerging applications in the clinic [61]. However, this 

technology is limited to a small number of pre-defined parameters (e.g., surface markers), 

and the profiling of these parameters depends on the availability of protein-specific 

antibodies. More recently, a multiplexed immunofluorescence method has been developed to 

obtain 40 protein readouts of thousands of cells in situ [62], which may also be adopted in 

immunology.

To understand cellular behaviors in-depth, strategies to integrate multiple single-cell omics 

technologies or combine them with population-based profiling to simultaneously profile 

various dimensions of biological information from the same cell have emerged [63]. For 

instance, recent studies have combined profiles of single-cell and bulk transcriptomes [64]; 

transcriptomes and chromatin states [65,66*]; transcriptomes and protein epitopes 

[67,68,69]; transcriptomes obtained by scRNA-seq and those obtained by smFISH [70*]; 

epitomes and protein epitopes [71]; transcriptomes and functional genomes [72,73,74]; and 

genome, transcriptome, and methylome data [75]. Application of these cutting-edge 

integrative technologies to immunological questions will likely provide new insight in our 

understanding of the immune system.
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Computational approaches for systems immunology

Multi-omics technologies providing population– and single-cell–level information give rise 

to remarkably rich and complex datasets with which to tackle immunological questions. 

However, interpretation and integration of such “big” data remain a challenge and a barrier 

to broad implementation of systems approaches in immunological studies. In this section, 

we review common computational algorithms and strategies for in-depth analysis and 

integration of multi-omics data in systems immunology (Figure 2). We start with the 

immune cell deconvolution to identify proportions of cells within heterogenous populations, 

and then discuss various systems biology strategies to dissect the molecular pathways or 

features associated with immune cell identity, function and response, with an emphasis on 

hidden driver analysis based on data-driven networks to decode regulatory mechanisms of 

the immune system.

Deconvolution of the immune cellular heterogeneity

One of the most frequent analyses in immunology is immune-cell phenotyping because 

extensive cellular heterogeneity underpins the functional diversity of the immune system. 

For bulk microarray or RNA-seq gene expression profiles, linear regression-based 

deconvolution algorithms [76,77,78] have been developed to predict the frequency of diverse 

cell subsets based on predefined signatures. However, these approaches rely on prior 

knowledge on existing immune cell types. Instead, the widespread adoption of single-cell 

profiling enables unbiased identification of known and unknown subsets of immune cells. 

Several algorithms for clustering analysis, cell-type identification, and visualization from 

single-cell transcriptomics data have emerged. For instance, SC3 employs consensus k-

means clustering method with a combination of various distance metrics and initial 

conditions that improves the accuracy and robustness of clustering in comparison with 

previous approaches [79]. For more detailed discussion of cluster algorithms for scRNA-seq, 

we refer readers to other comprehensive reviews [80**,81]. However, more advanced and 

efficient algorithms of scRNA-seq analysis remain needed to capture the nonlinear cell–cell 

correlations, to reduce noise from the “dropout” effects, and to handle datasets with millions 

of cells.

Gene signature and pathway enrichment analysis

Genome-wide transcriptomic and proteomic profiles of immune cells following treatments, 

stimulations or genetic perturbations provide valuable insights into molecular signatures and 

pathways that define cell identity, gene regulation, and immune responses. Differential gene 

expression analysis is the mainstream strategy to define a gene signature, followed by 

functional or pathway enrichment by hypergeometric test or gene set enrichment analysis 

(GSEA)-type approaches [82,83,84,85]. However, the signature analysis may be limited by 

poor correlation between different studies, as signature genes derived from independent 

experiments may not be entirely consistent. Additionally, the pathway databases may lack 

context-specific information and are limited by incomplete or inaccurate prior knowledge. 

Immune cell deconvolution gives the proportion of heterogeneous cell types while functional 

enrichment analysis defines the molecular features in each cell type. A combination of these 

two approaches facilitates downstream analysis of intracellular and intercellular interactions.
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Intracellular gene network inference

The availability of large-scale profiling platforms enables the study of relationships among 

the molecular elements (i.e., intracellular gene networks) in the immune system. Most of the 

network reconstruction methods are based on gene expression profiles of perturbation 

experiments (e.g., gene silencing, deletion or overexpression), as previously reviewed 

[86,87]. Here, we highlight two common network inference strategies that use baseline 

transcriptomic data. One is co-expression network analysis by WGCNA [88] based on 

Pearson or Spearman correlations. However, co-expression networks usually contain a large 

number of redundant interactions that lack biological relationships. To overcome this 

problem, ARACNe [89] uses mutual information to capture nonlinear gene–gene 

relationships and applies data processing inequality to remove redundant edges. It has been 

widely used to infer transcription factor (TF) regulatory networks from gene expression data. 

Recently, SJARACNe [90] was developed to scale up and extend ARACNe to infer both TF 

regulatory and signaling networks from large-input datasets, including scRNA-seq data. For 

example, SJARACNe was used to reverse-engineer the signaling interactome of dendritic 

cells (DCs), leading to novel molecular insights into the functions of DC subsets [91**]. For 

scRNA-seq data, SCENIC utilizes TF motif databases to reconstruct regulatory networks 

that improves clustering and reduces batch effects [92]. Other modeling approaches 

including Bayesian network, Boolean network, and diffusion or differential equation–based 

network approaches, are used for inference of small-sized networks [93]. For example, 

Bayesian network was used to identify causal correlations of molecular and clinical features 

of Alzheimer’s disease [94]. However, it remains challenging to scale up these approaches 

for genome-wide networks, because of the high complexity of parameters and limited 

samples [95]. To complement and improve networks predicted in silico, experimental 

approaches are also used to directly infer subnetworks of proteins of interest (e.g., TF 

regulatory network by ChIP-seq [96], post-transcriptional networks by CLIP-seq [27], PPI 

by AP-MS [19], enzyme-substrate network by PTM-enriched proteomics [97], and 

metabolic networks by metabolomics [21]). However, these networks are limited to selected 

proteins and lack generalizability.

Network-based integrative analysis

Integration of multi-tier omics data increases the sensitivity and reliability of discoveries in 

the immune and other complex biological systems by aggregating information at multi-

layers to increase the signal-to-noise ratio [93,98]. This approach is particularly important in 

understanding immune system function, given the high complexity of cellular components 

and molecular circuits in the immune system. However, different omics platforms have 

distinct features and dimensions, making the meta-analysis challenging. The most popular 

strategy is to superimpose co-expression or regulatory networks, constructed from 

transcriptomes and/or knowledge-based network databases (e.g., MSigDB, PPI, TF-target, 

kinase-substrate) on various omics data to identify network modules that control immune 

cell development and response [99]. For example, this strategy has been applied to integrate 

temporal transcriptome, proteome, and phosphoproteome data, leading to the identification 

of novel signaling circuits and bioenergetics pathways that mediate T-cell quiescence exit 

[11]. Additionally, PARADIGM [100] integrates genomic and transcriptomic alterations to 

identify dysregulated pathways. NetGestalt [101] defines the hierarchical architecture in the 
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network of omics data clustering. CellNet [102] utilizes co-expression networks to 

determine the cell identity and master regulators of cell types/states. PageRank combines 

ATAC-seq and transcriptomic datasets to identify master regulators of T-cell residency in 

non-lymphoid tissues and tumors [103**]. Both VIPER [104] and NetBID [91**] use 

ARACNe/SJARACNe-derived regulatory networks to infer protein activities in individual 

samples and master regulators associated with phenotypes. While VIPER is focused 

primarily on gene expression data, NetBID uses a distinct activity inference algorithm and a 

Bayesian framework to integrate multiple omics data.

Hidden driver analysis based on data-driven and context-specific networks

In addition to transcription factors that are the focus of most network-based algorithms, 

signaling and epigenetic factors are also crucial drivers of immunological functions. 

However, many of these factors are hidden drivers, because their activities are associated 

with PTM but not with genetic alterations or expression abundance. PTM proteomics-based 

direct measurements of protein activities are technically challenging. Here, we highlight 

NetBID [91] (Figure 3), a recently developed algorithm to identify hidden drivers from 

multi-omics data by using data-driven networks and Bayesian inference. In our study of DC 

subset functions [91], NetBID superimposed a DC-specific signaling interactome, which 

was computationally reconstructed from a set of transcriptomic profiles of total DCs, onto 

multi-layer omics datasets (transcriptome, proteome, phosphoproteome) to infer activities of 

signaling proteins in CD8α+ and CD8α− DCs, followed by a Bayesian approach to integrate 

information at all levels, leading to the identification of putative hidden drivers that 

selectively modulate functions of DC subsets. In particular, NetBID has identified the Hippo 

kinase Mst1/Stk4 as a hidden driver, selectively active in CD8α+ DCs, which was further 

validated by genetic and functional experiments. Of note, there is no differential expression 

of Mst1 at mRNA levels, while Mst1 protein expression is even lower in CD8α+ than CD8α
− DCs. One advantage of NetBID for successfully capturing Mst1 is that the Mst1 

subnetwork inferred in silico is enriched in its putative downstream targets as defined by 

perturbation experiments, enabling inference of its true functional activity. NetBID currently 

relies on bulk omics data. An improved version that handles single-cell omics data to infer 

cell-type–specific hidden drivers remains to be developed.

Intercellular network inference

Cell–cell communication fundamentally regulates how the immune system operates as a 

network to effectively respond to infection and other insults. Systematically decoding 

intercellular networks that modulate immunity has been a longstanding challenge. Recently, 

an algorithm developed by text mining the literature has predicted previously unappreciated 

cell–cytokine interactions [105*], but the attempt is limited by the inherent bias of existing 

knowledge. Single-cell technologies have provided a unique opportunity to tackle this 

challenge in a more unbiased manner. Systematic inference of intercellular communications 

is still in early development, with a few limited examples based on scRNA-seq to date 

[106,107*,108,109**,110].
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Closing remarks: towards translational systems immunology

Technological advancement is driving fundamental discoveries in immunology. Recent 

advances in single-cell technologies enable the study of immunological diversity and 

complexity at an unprecedented resolution. Next-generation, single-cell omics methods are 

able to simultaneously capture additional information, such as spatial organization [111], 

dynamic clonality via lineage barcoding [112], and immune receptor repertoire 

[113*,114,115]. An equally important and complementary effort is to develop sophisticated 

computational algorithms to analyze and integrate high-throughput multi-omics and multi-

sourced data [116].

The importance of translational immunology is illustrated by the remarkable success of 

cancer immunotherapies that demonstrate durable responses in the clinic, including CAR-T-

cell therapies [117] and checkpoint-blockade therapies [118], which were recently 

recognized by the Nobel prize [119]. For example, tumor cells escape immune surveillance 

by up-regulating PD-L1 that interacts with PD-1 receptor on T cells to elicit the immune 

checkpoint response. Therefore, blocking the crosstalk between PD-L1 on tumor cells and 

PD-1 on T cells will reactivate the cytotoxic T cells to kill tumor cells. However, 

immunotherapies are efficacious for only a fraction of patients, and existing biomarkers 

based on tumor mutation burden and single protein expression (e.g., PD-L1) have limited 

prediction power. The emerging systems immunology approaches could be translated to 

tackle pressing issues in the clinic [98] by dissecting the heterogeneity and interactions of 

tumor and immune microenvironment [116]. For instance, integrative systems biology 

analysis of bulk omics data from over 10,000 patient samples of 33 cancer types has 

provided instrumental insights into the immune landscape of cancer [120]. More recently, 

scRNA-seq and high-dimensional flow cytometry analyses of human tumors have revealed a 

unique CD8 T cell subset that infiltrates tumors and responds to checkpoint blockade 

immunotherapy to mediate effective tumor immunity [121,122], and this control mechanism 

is also observed and validated in murine tumor models [123,124]. The state-of-the-art 

technologies are enabling comprehensive molecular characterization of tumor cells and their 

microenvironment from large cohorts of patient samples at the single-cell resolution. The 

development of immune-competent and humanized mouse models is facilitating immune-

related functional and mechanistic studies. We envision that network-based systems 

immunology analysis of multi-omics data, from both the human and mouse model systems, 

will enable identification of hidden drivers of resistance to existing cancer immunotherapies, 

novel predictive biomarkers to better stratify patients, and novel therapeutic targets and 

combination strategies to overcome drug resistance and develop more precise 

immunotherapy. These strategies may also manifest legitimate therapeutic opportunities for 

other immune-related disorders, including autoimmune, inflammatory and 

neurodegenerative diseases.
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Abbreviation

ChIP-seq chromatin immunoprecipitation sequencing

CLIP-seq crosslinking immunoprecipitation sequencing

BS-seq bisulfite sequencing

ATAC-seq assay for transposase-accessible chromatin using sequencing

Hi-C all-vs-all chromosome conformation capture by sequencing

CyTOF cytometry by time of flight

LC-MS liquid chromatography-mass spectrometry

References and recommended reading

Papers of particular interest, published within the period of review, have been highlighted as:

* of special interest

** of outstanding interest

1. Yui MA, Rothenberg EV: Developmental gene networks: a triathlon on the course to T cell identity. 
Nat Rev Immunol 2014, 14:529–545. [PubMed: 25060579] 

2. Sharma P, Allison JP: Immune checkpoint targeting in cancer therapy: toward combination 
strategies with curative potential. Cell 2015, 161:205–214. [PubMed: 25860605] 

3. Burel JG, Apte SH, Doolan DL: Systems Approaches towards Molecular Profiling of Human 
Immunity. Trends Immunol 2016, 37:53–67. [PubMed: 26669258] 

4. Shay T, Kang J: Immunological Genome Project and systems immunology. Trends Immunol 2013, 
34:602–609. [PubMed: 23631936] 

5. Bhattacharya S, Andorf S, Gomes L, Dunn P, Schaefer H, Pontius J, Berger P, Desborough V, Smith 
T, Campbell J, et al.: ImmPort: disseminating data to the public for the future of immunology. 
Immunol Res 2014, 58:234–239. [PubMed: 24791905] 

6. Sauteraud R, Dashevskiy L, Finak G, Gottardo R: ImmuneSpace: Enabling integrative modeling of 
human immunological data. The Journal of Immunology 2016, 196:124.165–124.165. [PubMed: 
26573834] 

7. Zalocusky KA, Kan MJ, Hu Z, Dunn P, Thomson E, Wiser J, Bhattacharya S, Butte AJ: The 10,000 
Immunomes Project: Building a Resource for Human Immunology. Cell Rep 2018, 25:1995. 
[PubMed: 30428364] 

8. Walley JW, Sartor RC, Shen Z, Schmitz RJ, Wu KJ, Urich MA, Nery JR, Smith LG, Schnable JC, 
Ecker JR, et al.: Integration of omic networks in a developmental atlas of maize. Science 2016, 
353:814–818. [PubMed: 27540173] 

9. Liu Y, Beyer A, Aebersold R: On the Dependency of Cellular Protein Levels on mRNA Abundance. 
Cell 2016, 165:535–550. [PubMed: 27104977] 

10. Aebersold R, Mann M: Mass-spectrometric exploration of proteome structure and function. Nature 
2016, 537:347–355. [PubMed: 27629641] 

11**. Tan H, Yang K, Li Y, Shaw TI, Wang Y, Blanco DB, Wang X, Cho JH, Wang H, Rankin S, et al.: 
Integrative Proteomics and Phosphoproteomics Profiling Reveals Dynamic Signaling Networks 
and Bioenergetics Pathways Underlying T Cell Activation. Immunity 2017, 46:488–503. 

Yu et al. Page 10

Curr Opin Syst Biol. Author manuscript; available in PMC 2020 August 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



[PubMed: 28285833] This paper uses co-expression network-based approach to integrate time-
series proteomics, phosphoproteomics and transcriptomics data to study T cell activation.

12. Stewart E, McEvoy J, Wang H, Chen X, Honnell V, Ocarz M, Gordon B, Dapper J, Blankenship K, 
Yang Y, et al.: Identification of Therapeutic Targets in Rhabdomyosarcoma through Integrated 
Genomic, Epigenomic, and Proteomic Analyses. Cancer Cell 2018, 34:411–426 e419. [PubMed: 
30146332] 

13. Zhang B, Wang J, Wang X, Zhu J, Liu Q, Shi Z, Chambers MC, Zimmerman LJ, Shaddox KF, Kim 
S, et al.: Proteogenomic characterization of human colon and rectal cancer. Nature 2014, 513:382–
387. [PubMed: 25043054] 

14. Rauniyar N, Yates JR, 3rd: Isobaric labeling-based relative quantification in shotgun proteomics. J 
Proteome Res 2014, 13:5293–5309. [PubMed: 25337643] 

15. O’Connell JD, Paulo JA, O’Brien JJ, Gygi SP: Proteome-Wide Evaluation of Two Common 
Protein Quantification Methods. J Proteome Res 2018, 17:1934–1942. [PubMed: 29635916] 

16. Hogrebe A, von Stechow L, Bekker-Jensen DB, Weinert BT, Kelstrup CD, Olsen JV: 
Benchmarking common quantification strategies for large-scale phosphoproteomics. Nat Commun 
2018, 9:1045. [PubMed: 29535314] 

17. Ron-Harel N, Santos D, Ghergurovich JM, Sage PT, Reddy A, Lovitch SB, Dephoure N, 
Satterstrom FK, Sheffer M, Spinelli JB, et al.: Mitochondrial Biogenesis and Proteome 
Remodeling Promote One-Carbon Metabolism for T Cell Activation. Cell Metab 2016, 24:104–
117. [PubMed: 27411012] 

18. Weekes MP, Tomasec P, Huttlin EL, Fielding CA, Nusinow D, Stanton RJ, Wang EC, Aicheler R, 
Murrell I, Wilkinson GW, et al.: Quantitative temporal viromics: an approach to investigate host-
pathogen interaction. Cell 2014, 157:1460–1472. [PubMed: 24906157] 

19**. Huttlin EL, Bruckner RJ, Paulo JA, Cannon JR, Ting L, Baltier K, Colby G, Gebreab F, Gygi 
MP, Parzen H, et al.: Architecture of the human interactome defines protein communities and 
disease networks. Nature 2017, 545:505–509. [PubMed: 28514442] This paper defines the 
largest PPI network (BioPlex) to date using AP-MS approaches.

20. Shi H, Liu C, Tan H, Li Y, Nguyen TM, Dhungana Y, Guy C, Vogel P, Neale G, Rankin S, et al.: 
Hippo Kinases Mst1 and Mst2 Sense and Amplify IL-2R-STAT5 Signaling in Regulatory T Cells 
to Establish Stable Regulatory Activity. Immunity 2018, 49:899–914 e896. [PubMed: 30413360] 

21. Lai Z, Tsugawa H, Wohlgemuth G, Mehta S, Mueller M, Zheng Y, Ogiwara A, Meissen J, 
Showalter M, Takeuchi K, et al.: Identifying metabolites by integrating metabolome databases with 
mass spectrometry cheminformatics. Nat Methods 2018, 15:53–56. [PubMed: 29176591] 

22. Yang K, Han X: Lipidomics: Techniques, Applications, and Outcomes Related to Biomedical 
Sciences. Trends Biochem Sci 2016, 41:954–969. [PubMed: 27663237] 

23. Geiger R, Rieckmann JC, Wolf T, Basso C, Feng Y, Fuhrer T, Kogadeeva M, Picotti P, Meissner F, 
Mann M, et al.: L-Arginine Modulates T Cell Metabolism and Enhances Survival and Anti-tumor 
Activity. Cell 2016, 167:829–842 e813. [PubMed: 27745970] 

24**. Goodwin S, McPherson JD, McCombie WR: Coming of age: ten years of next-generation 
sequencing technologies. Nat Rev Genet 2016, 17:333–351. [PubMed: 27184599] This review 
summarizes the technology development of NGS.

25. Ashley EA: Towards precision medicine. Nat Rev Genet 2016, 17:507–522. [PubMed: 27528417] 

26. Northrup DL, Zhao K: Application of ChIP-Seq and related techniques to the study of immune 
function. Immunity 2011, 34:830–842. [PubMed: 21703538] 

27. Lee FCY, Ule J: Advances in CLIP Technologies for Studies of Protein-RNA Interactions. Mol 
Cell 2018, 69:354–369. [PubMed: 29395060] 

28. Ghoneim HE, Fan Y, Moustaki A, Abdelsamed HA, Dash P, Dogra P, Carter R, Awad W, Neale G, 
Thomas PG, et al.: De Novo Epigenetic Programs Inhibit PD-1 Blockade-Mediated T Cell 
Rejuvenation. Cell 2017, 170:142–157 e119. [PubMed: 28648661] 

29. Burren OS, Rubio Garcia A, Javierre BM, Rainbow DB, Cairns J, Cooper NJ, Lambourne JJ, 
Schofield E, Castro Dopico X, Ferreira RC, et al.: Chromosome contacts in activated T cells 
identify autoimmune disease candidate genes. Genome Biol 2017, 18:165. [PubMed: 28870212] 

Yu et al. Page 11

Curr Opin Syst Biol. Author manuscript; available in PMC 2020 August 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



30. Buenrostro JD, Giresi PG, Zaba LC, Chang HY, Greenleaf WJ: Transposition of native chromatin 
for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and 
nucleosome position. Nat Methods 2013, 10:1213–1218. [PubMed: 24097267] 

31. Shalem O, Sanjana NE, Zhang F: High-throughput functional genomics using CRISPR-Cas9. Nat 
Rev Genet 2015, 16:299–311. [PubMed: 25854182] 

32. Parnas O, Jovanovic M, Eisenhaure TM, Herbst RH, Dixit A, Ye CJ, Przybylski D, Platt RJ, Tirosh 
I, Sanjana NE, et al.: A Genome-wide CRISPR Screen in Primary Immune Cells to Dissect 
Regulatory Networks. Cell 2015, 162:675–686. [PubMed: 26189680] 

33**. Shifrut E, Carnevale J, Tobin V, Roth TL, Woo JM, Bui CT, Li PJ, Diolaiti ME, Ashworth A, 
Marson A: Genome-wide CRISPR Screens in Primary Human T Cells Reveal Key Regulators of 
Immune Function. Cell 2018.This paper combines CRISPR screens with scRNA-seq to identify 
regulators of T cell stimulation and suppression.

34. Morgens DW, Deans RM, Li A, Bassik MC: Systematic comparison of CRISPR/Cas9 and RNAi 
screens for essential genes. Nat Biotechnol 2016, 34:634–636. [PubMed: 27159373] 

35. Gilbert LA, Horlbeck MA, Adamson B, Villalta JE, Chen Y, Whitehead EH, Guimaraes C, Panning 
B, Ploegh HL, Bassik MC, et al.: Genome-Scale CRISPR-Mediated Control of Gene Repression 
and Activation. Cell 2014, 159:647–661. [PubMed: 25307932] 

36. Tang F, Barbacioru C, Nordman E, Li B, Xu N, Bashkirov VI, Lao K, Surani MA: RNA-Seq 
analysis to capture the transcriptome landscape of a single cell. Nat Protoc 2010, 5:516–535. 
[PubMed: 20203668] 

37. Spitzer MH, Nolan GP: Mass Cytometry: Single Cells, Many Features. Cell 2016, 165:780–791. 
[PubMed: 27153492] 

38. Zhu Y, Clair G, Chrisler WB, Shen Y, Zhao R, Shukla AK, Moore RJ, Misra RS, Pryhuber GS, 
Smith RD, et al.: Proteomic Analysis of Single Mammalian Cells Enabled by Microfluidic 
Nanodroplet Sample Preparation and Ultrasensitive NanoLC-MS. Angew Chem Int Ed Engl 2018, 
57:12370–12374. [PubMed: 29797682] 

39. Gawad C, Koh W, Quake SR: Single-cell genome sequencing: current state of the science. Nat Rev 
Genet 2016, 17:175–188. [PubMed: 26806412] 

40. Mezger A, Klemm S, Mann I, Brower K, Mir A, Bostick M, Farmer A, Fordyce P, Linnarsson S, 
Greenleaf W: High-throughput chromatin accessibility profiling at single-cell resolution. Nat 
Commun 2018, 9:3647. [PubMed: 30194434] 

41. Cusanovich DA, Hill AJ, Aghamirzaie D, Daza RM, Pliner HA, Berletch JB, Filippova GN, Huang 
X, Christiansen L, DeWitt WS, et al.: A single-cell atlas of in vivo mammalian chromatin 
accessibility. Cell 2018, 174:1309–1324 e1318. [PubMed: 30078704] 

42. Clark SJ, Lee HJ, Smallwood SA, Kelsey G, Reik W: Single-cell epigenomics: powerful new 
methods for understanding gene regulation and cell identity. Genome Biol 2016, 17:72. [PubMed: 
27091476] 

43. Stevens TJ, Lando D, Basu S, Atkinson LP, Cao Y, Lee SF, Leeb M, Wohlfahrt KJ, Boucher W, 
O’Shaughnessy-Kirwan A, et al.: 3D structures of individual mammalian genomes studied by 
single-cell Hi-C. Nature 2017, 544:59–64. [PubMed: 28289288] 

44. Rotem A, Ram O, Shoresh N, Sperling RA, Goren A, Weitz DA, Bernstein BE: Single-cell ChIP-
seq reveals cell subpopulations defined by chromatin state. Nat Biotechnol 2015, 33:1165–1172. 
[PubMed: 26458175] 

45**. Giladi A, Amit I: Single-Cell Genomics: A Stepping Stone for Future Immunology Discoveries. 
Cell 2018, 172:14–21. [PubMed: 29328909] This review discusses current applications and 
future perspectives of single-cell genomics in immunology research.

46**. Tanay A, Regev A: Scaling single-cell genomics from phenomenology to mechanism. Nature 
2017, 541:331–338. [PubMed: 28102262] This paper reivews recent advances in single-cell 
genomics and applications to transform observational studies to mechanistic insights.

47*. Papalexi E, Satija R: Single-cell RNA sequencing to explore immune cell heterogeneity. Nat Rev 
Immunol 2018, 18:35–45. [PubMed: 28787399] This paper reviews recent stuides using scRNA-
seq to dissect the immune system heterogeneity.

Yu et al. Page 12

Curr Opin Syst Biol. Author manuscript; available in PMC 2020 August 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



48*. Ren X, Kang B, Zhang Z: Understanding tumor ecosystems by single-cell sequencing: promises 
and limitations. Genome Biol 2018, 19:211. [PubMed: 30509292] This review discusses recent 
studies of single-cell omics in understanding tumor microenvironment.

49*. Zhang L, Yu X, Zheng L, Zhang Y, Li Y, Fang Q, Gao R, Kang B, Zhang Q, Huang JY, et al.: 
Lineage tracking reveals dynamic relationships of T cells in colorectal cancer. Nature 2018, 
564:268–272. [PubMed: 30479382] This study uses scRNA-seq to dissect the dynamics of tumor 
infiltrating T cells in colorectal cancer patients.

50. Adlung L, Amit I: From the Human Cell Atlas to dynamic immune maps in human disease. Nat 
Rev Immunol 2018, 18:597–598. [PubMed: 30078033] 

51. Regev A, Teichmann SA, Lander ES, Amit I, Benoist C, Birney E, Bodenmiller B, Campbell P, 
Carninci P, Clatworthy M, et al.: The Human Cell Atlas. Elife 2017, 6.

52. Han X, Wang R, Zhou Y, Fei L, Sun H, Lai S, Saadatpour A, Zhou Z, Chen H, Ye F, et al.: 
Mapping the Mouse Cell Atlas by Microwell-Seq. Cell 2018, 173:1307. [PubMed: 29775597] 

53. Zheng GX, Terry JM, Belgrader P, Ryvkin P, Bent ZW, Wilson R, Ziraldo SB, Wheeler TD, 
McDermott GP, Zhu J, et al.: Massively parallel digital transcriptional profiling of single cells. Nat 
Commun 2017, 8:14049. [PubMed: 28091601] 

54. Klein AM, Mazutis L, Akartuna I, Tallapragada N, Veres A, Li V, Peshkin L, Weitz DA, Kirschner 
MW: Droplet barcoding for single-cell transcriptomics applied to embryonic stem cells. Cell 2015, 
161:1187–1201. [PubMed: 26000487] 

55. Macosko EZ, Basu A, Satija R, Nemesh J, Shekhar K, Goldman M, Tirosh I, Bialas AR, Kamitaki 
N, Martersteck EM, et al.: Highly Parallel Genome-wide Expression Profiling of Individual Cells 
Using Nanoliter Droplets. Cell 2015, 161:1202–1214. [PubMed: 26000488] 

56. Zhang X, Li T, Liu F, Chen Y, Yao J, Li Z, Huang Y, Wang J: Comparative Analysis of Droplet-
Based Ultra-High-Throughput Single-Cell RNA-Seq Systems. Mol Cell 2018.

57. Tabula Muris Consortium: Single-cell transcriptomics of 20 mouse organs creates a Tabula Muris. 
Nature 2018, 562:367–372. [PubMed: 30283141] 

58. Wallrapp A, Riesenfeld SJ, Burkett PR, Abdulnour RE, Nyman J, Dionne D, Hofree M, Cuoco 
MS, Rodman C, Farouq D, et al.: The neuropeptide NMU amplifies ILC2-driven allergic lung 
inflammation. Nature 2017, 549:351–356. [PubMed: 28902842] 

59. Eng CL, Shah S, Thomassie J, Cai L: Profiling the transcriptome with RNA SPOTs. Nat Methods 
2017, 14:1153–1155. [PubMed: 29131163] 

60. Moffitt JR, Bambah-Mukku D, Eichhorn SW, Vaughn E, Shekhar K, Perez JD, Rubinstein ND, 
Hao J, Regev A, Dulac C, et al.: Molecular, spatial, and functional single-cell profiling of the 
hypothalamic preoptic region. Science 2018, 362.

61. Hartmann FJ, Babdor J, Gherardini PF, Amir E-AD, Jones K, Sahaf B, Marquez DM, Krutzik P, 
O’Donnell E, Sigal N, et al.: Comprehensive Immune Monitoring of Clinical Trials to Advance 
Human Immunotherapy. Biorxiv 2018.

62. Gut G, Herrmann MD, Pelkmans L: Multiplexed protein maps link subcellular organization to 
cellular states. Science 2018, 361.

63. Macaulay IC, Ponting CP, Voet T: Single-Cell Multiomics: Multiple Measurements from Single 
Cells. Trends Genet 2017, 33:155–168. [PubMed: 28089370] 

64. Hagai T, Chen X, Miragaia RJ, Rostom R, Gomes T, Kunowska N, Henriksson J, Park JE, 
Proserpio V, Donati G, et al.: Gene expression variability across cells and species shapes innate 
immunity. Nature 2018, 563:197–202. [PubMed: 30356220] 

65. Buenrostro JD, Corces MR, Lareau CA, Wu B, Schep AN, Aryee MJ, Majeti R, Chang HY, 
Greenleaf WJ: Integrated Single-Cell Analysis Maps the Continuous Regulatory Landscape of 
Human Hematopoietic Differentiation. Cell 2018, 173:1535–1548 e1516. [PubMed: 29706549] 

66*. Karmaus PWF, Chen X, Lim SA, Herrada AA, Nguyen TM, Xu B, Dhungana Y, Rankin S, Chen 
W, Rosencrance C, et al.: Metabolic heterogeneity underlies reciprocal fates of TH17 cell 
stemness and plasticity. Nature 2019, 565:101–105. [PubMed: 30568299] This paper integrates 
scRNA-seq with ATAC-seq to delineate novel mechanisms and regualtors that underlie TH17 cell 
stemness and plasticity.

Yu et al. Page 13

Curr Opin Syst Biol. Author manuscript; available in PMC 2020 August 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



67. Genshaft AS, Li S, Gallant CJ, Darmanis S, Prakadan SM, Ziegler CG, Lundberg M, Fredriksson 
S, Hong J, Regev A, et al.: Multiplexed, targeted profiling of single-cell proteomes and 
transcriptomes in a single reaction. Genome Biol 2016, 17:188. [PubMed: 27640647] 

68. Frei AP, Bava FA, Zunder ER, Hsieh EW, Chen SY, Nolan GP, Gherardini PF: Highly multiplexed 
simultaneous detection of RNAs and proteins in single cells. Nat Methods 2016, 13:269–275. 
[PubMed: 26808670] 

69. Stoeckius M, Hafemeister C, Stephenson W, Houck-Loomis B, Chattopadhyay PK, Swerdlow H, 
Satija R, Smibert P: Simultaneous epitope and transcriptome measurement in single cells. Nat 
Methods 2017, 14:865–868. [PubMed: 28759029] 

70*. Zhu Q, Shah S, Dries R, Cai L, Yuan GC: Identification of spatially associated subpopulations by 
combining scRNAseq and sequential fluorescence in situ hybridization data. Nat Biotechnol 
2018.This paper integrates scRNA-seq and seqFISH to identify spatially unique subpopulations.

71. Chen X, Litzenburger UM, Wei Y, Schep AN, LaGory EL, Choudhry H, Giaccia AJ, Greenleaf 
WJ, Chang HY: Joint single-cell DNA accessibility and protein epitope profiling reveals 
environmental regulation of epigenomic heterogeneity. Nat Commun 2018, 9:4590. [PubMed: 
30389926] 

72. Dixit A, Parnas O, Li B, Chen J, Fulco CP, Jerby-Arnon L, Marjanovic ND, Dionne D, Burks T, 
Raychowdhury R, et al.: Perturb-seq: dissecting molecular circuits with scalable single-cell RNA 
profiling of pooled genetic screens. Cell 2016, 167:1853–1866 e1817. [PubMed: 27984732] 

73. Datlinger P, Rendeiro AF, Schmidl C, Krausgruber T, Traxler P, Klughammer J, Schuster LC, 
Kuchler A, Alpar D, Bock C: Pooled CRISPR screening with single-cell transcriptome readout. 
Nat Methods 2017, 14:297–301. [PubMed: 28099430] 

74. Jaitin DA, Weiner A, Yofe I, Lara-Astiaso D, Keren-Shaul H, David E, Salame TM, Tanay A, van 
Oudenaarden A, Amit I: Dissecting Immune Circuits by Linking CRISPR-Pooled Screens with 
Single-Cell RNA-Seq. Cell 2016, 167:1883–1896 e1815. [PubMed: 27984734] 

75. Bian S, Hou Y, Zhou X, Li X, Yong J, Wang Y, Wang W, Yan J, Hu B, Guo H, et al.: Single-cell 
multiomics sequencing and analyses of human colorectal cancer. Science 2018, 362:1060–1063. 
[PubMed: 30498128] 

76. Li B, Liu JS, Liu XS: Revisit linear regression-based deconvolution methods for tumor gene 
expression data. Genome Biol 2017, 18:127. [PubMed: 28679386] 

77. Li B, Severson E, Pignon JC, Zhao H, Li T, Novak J, Jiang P, Shen H, Aster JC, Rodig S, et al.: 
Comprehensive analyses of tumor immunity: implications for cancer immunotherapy. Genome 
Biol 2016, 17:174. [PubMed: 27549193] 

78. Newman AM, Liu CL, Green MR, Gentles AJ, Feng W, Xu Y, Hoang CD, Diehn M, Alizadeh AA: 
Robust enumeration of cell subsets from tissue expression profiles. Nat Methods 2015, 12:453–
457. [PubMed: 25822800] 

79. Kiselev VY, Kirschner K, Schaub MT, Andrews T, Yiu A, Chandra T, Natarajan KN, Reik W, 
Barahona M, Green AR, et al.: SC3: consensus clustering of single-cell RNA-seq data. Nat 
Methods 2017, 14:483–486. [PubMed: 28346451] 

80**. Kiselev VY, Andrews TS, Hemberg M: Challenges in unsupervised clustering of single-cell 
RNA-seq data. Nat Rev Genet 2019.This review summarizes existing algorithms and challenges 
for clustering analysis of scRNA-seq data.

81. Stubbington MJT, Rozenblatt-Rosen O, Regev A, Teichmann SA: Single-cell transcriptomics to 
explore the immune system in health and disease. Science 2017, 358:58–63. [PubMed: 28983043] 

82. Godec J, Tan Y, Liberzon A, Tamayo P, Bhattacharya S, Butte AJ, Mesirov JP, Haining WN: 
Compendium of Immune Signatures Identifies Conserved and Species-Specific Biology in 
Response to Inflammation. Immunity 2016, 44:194–206. [PubMed: 26795250] 

83. Chapman NM, Zeng H, Nguyen TM, Wang Y, Vogel P, Dhungana Y, Liu X, Neale G, Locasale JW, 
Chi H: mTOR coordinates transcriptional programs and mitochondrial metabolism of activated 
Treg subsets to protect tissue homeostasis. Nat Commun 2018, 9:2095. [PubMed: 29844370] 

84. Yang K, Blanco DB, Neale G, Vogel P, Avila J, Clish CB, Wu C, Shrestha S, Rankin S, Long L, et 
al.: Homeostatic control of metabolic and functional fitness of Treg cells by LKB1 signalling. 
Nature 2017, 548:602–606. [PubMed: 28847007] 

Yu et al. Page 14

Curr Opin Syst Biol. Author manuscript; available in PMC 2020 August 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



85. Karmaus PWF, Herrada AA, Guy C, Neale G, Dhungana Y, Long L, Vogel P, Avila J, Clish CB, 
Chi H: Critical roles of mTORC1 signaling and metabolic reprogramming for M-CSF-mediated 
myelopoiesis. J Exp Med 2017, 214:2629–2647. [PubMed: 28784627] 

86. Amit I, Regev A, Hacohen N: Strategies to discover regulatory circuits of the mammalian immune 
system. Nat Rev Immunol 2011, 11:873–880. [PubMed: 22094988] 

87. Marbach D, Costello JC, Kuffner R, Vega NM, Prill RJ, Camacho DM, Allison KR, Consortium D, 
Kellis M, Collins JJ, et al.: Wisdom of crowds for robust gene network inference. Nat Methods 
2012, 9:796–804. [PubMed: 22796662] 

88. Langfelder P, Horvath S: WGCNA: an R package for weighted correlation network analysis. BMC 
Bioinformatics 2008, 9:559. [PubMed: 19114008] 

89. Margolin AA, Nemenman I, Basso K, Wiggins C, Stolovitzky G, Dalla Favera R, Califano A: 
ARACNE: an algorithm for the reconstruction of gene regulatory networks in a mammalian 
cellular context. BMC Bioinformatics 2006, 7 Suppl 1:S7.

90. Khatamian A, Paull EO, Califano A, Yu J: SJARACNe: a scalable software tool for gene network 
reverse engineering from big data. Bioinformatics 2018.

91**. Du X, Wen J, Wang Y, Karmaus PWF, Khatamian A, Tan H, Li Y, Guy C, Nguyen TM, 
Dhungana Y, et al.: Hippo/Mst signalling couples metabolic state and immune function of 
CD8alpha(+) dendritic cells. Nature 2018, 558:141–145. [PubMed: 29849151] This paper is the 
first for hidden driver inference by integrating multi-omics data, using NetBID algorithm based 
on data-driven networks and Bayesian inference.

92. Aibar S, Gonzalez-Blas CB, Moerman T, Huynh-Thu VA, Imrichova H, Hulselmans G, Rambow F, 
Marine JC, Geurts P, Aerts J, et al.: SCENIC: single-cell regulatory network inference and 
clustering. Nat Methods 2017, 14:1083–1086. [PubMed: 28991892] 

93. Kidd BA, Peters LA, Schadt EE, Dudley JT: Unifying immunology with informatics and 
multiscale biology. Nat Immunol 2014, 15:118–127. [PubMed: 24448569] 

94. Mostafavi S, Gaiteri C, Sullivan SE, White CC, Tasaki S, Xu J, Taga M, Klein HU, Patrick E, 
Komashko V, et al.: A molecular network of the aging human brain provides insights into the 
pathology and cognitive decline of Alzheimer’s disease. Nat Neurosci 2018, 21:811–819. 
[PubMed: 29802388] 

95. Huang S, Chaudhary K, Garmire LX: More Is Better: Recent Progress in Multi-Omics Data 
Integration Methods. Front Genet 2017, 8:84. [PubMed: 28670325] 

96. Gerstein MB, Kundaje A, Hariharan M, Landt SG, Yan KK, Cheng C, Mu XJ, Khurana E, 
Rozowsky J, Alexander R, et al.: Architecture of the human regulatory network derived from 
ENCODE data. Nature 2012, 489:91–100. [PubMed: 22955619] 

97. Mischnik M, Sacco F, Cox J, Schneider HC, Schafer M, Hendlich M, Crowther D, Mann M, 
Klabunde T: IKAP: A heuristic framework for inference of kinase activities from 
Phosphoproteomics data. Bioinformatics 2016, 32:424–431. [PubMed: 26628587] 

98. Davis MM, Tato CM, Furman D: Systems immunology: just getting started. Nat Immunol 2017, 
18:725–732. [PubMed: 28632713] 

99. Chaussabel D, Baldwin N: Democratizing systems immunology with modular transcriptional 
repertoire analyses. Nat Rev Immunol 2014, 14:271–280. [PubMed: 24662387] 

100. Vaske CJ, Benz SC, Sanborn JZ, Earl D, Szeto C, Zhu J, Haussler D, Stuart JM: Inference of 
patient-specific pathway activities from multi-dimensional cancer genomics data using 
PARADIGM. Bioinformatics 2010, 26:i237–245. [PubMed: 20529912] 

101. Shi Z, Wang J, Zhang B: NetGestalt: integrating multidimensional omics data over biological 
networks. Nat Methods 2013, 10:597–598. [PubMed: 23807191] 

102. Morris SA, Cahan P, Li H, Zhao AM, San Roman AK, Shivdasani RA, Collins JJ, Daley GQ: 
Dissecting engineered cell types and enhancing cell fate conversion via CellNet. Cell 2014, 
158:889–902. [PubMed: 25126792] 

103**. Milner JJ, Toma C, Yu B, Zhang K, Omilusik K, Phan AT, Wang D, Getzler AJ, Nguyen T, 
Crotty S, et al.: Runx3 programs CD8(+) T cell residency in non-lymphoid tissues and tumours. 
Nature 2017, 552:253–257. [PubMed: 29211713] This paper combines RNAi screening, ATAC-
seq with RNA-seq to reveal novel immune regulators.

Yu et al. Page 15

Curr Opin Syst Biol. Author manuscript; available in PMC 2020 August 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



104. Alvarez MJ, Shen Y, Giorgi FM, Lachmann A, Ding BB, Ye BH, Califano A: Functional 
characterization of somatic mutations in cancer using network-based inference of protein activity. 
Nat Genet 2016, 48:838–847. [PubMed: 27322546] 

105*. Kveler K, Starosvetsky E, Ziv-Kenet A, Kalugny Y, Gorelik Y, Shalev-Malul G, Aizenbud-
Reshef N, Dubovik T, Briller M, Campbell J, et al.: Immune-centric network of cytokines and 
cells in disease context identified by computational mining of PubMed. Nat Biotechnol 
2018.This paper develops a literature-mining algorithm to identify intercellular networks.

106. Boisset JC, Vivie J, Grun D, Muraro MJ, Lyubimova A, van Oudenaarden A: Mapping the 
physical network of cellular interactions. Nat Methods 2018, 15:547–553. [PubMed: 29786092] 

107*. Vento-Tormo R, Efremova M, Botting RA, Turco MY, Vento-Tormo M, Meyer KB, Park JE, 
Stephenson E, Polanski K, Goncalves A, et al.: Single-cell reconstruction of the early maternal-
fetal interface in humans. Nature 2018, 563:347–353. [PubMed: 30429548] This paper develops 
a database of ligand-receptor complexes and a tool to predict cell–cell communication from 
scRNA-seq data.

108. Cohen M, Giladi A, Gorki AD, Solodkin DG, Zada M, Hladik A, Miklosi A, Salame TM, 
Halpern KB, David E, et al.: Lung Single-Cell Signaling Interaction Map Reveals Basophil Role 
in Macrophage Imprinting. Cell 2018, 175:1031–1044 e1018. [PubMed: 30318149] 

109**. Biton M, Haber AL, Rogel N, Burgin G, Beyaz S, Schnell A, Ashenberg O, Su CW, Smillie C, 
Shekhar K, et al.: T Helper Cell Cytokines Modulate Intestinal Stem Cell Renewal and 
Differentiation. Cell 2018, 175:1307–1320 e1322. [PubMed: 30392957] This study uses scRNA-
seq to identify novel interactions between intestinal stem cells and T helper subsets that module 
distinct intestinal stem cell fates.

110. Camp JG, Sekine K, Gerber T, Loeffler-Wirth H, Binder H, Gac M, Kanton S, Kageyama J, 
Damm G, Seehofer D, et al.: Multilineage communication regulates human liver bud 
development from pluripotency. Nature 2017, 546:533–538. [PubMed: 28614297] 

111. Moor AE, Itzkovitz S: Spatial transcriptomics: paving the way for tissue-level systems biology. 
Curr Opin Biotechnol 2017, 46:126–133. [PubMed: 28346891] 

112. Biddy BA, Kong W, Kamimoto K, Guo C, Waye SE, Sun T, Morris SA: Single-cell mapping of 
lineage and identity in direct reprogramming. Nature 2018, 564:219–224. [PubMed: 30518857] 

113*. Villani AC, Sarkizova S, Hacohen N: Systems Immunology: Learning the Rules of the Immune 
System. Annu Rev Immunol 2018, 36:813–842. [PubMed: 29677477] This review summarizes 
recent progresses in transcriptome and TCR/BCR reportire analyses.

114. Wendel BS, Del Alcazar D, He C, Del Rio-Estrada PM, Aiamkitsumrit B, Ablanedo-Terrazas Y, 
Hernandez SM, Ma KY, Betts MR, Pulido L, et al.: The receptor repertoire and functional profile 
of follicular T cells in HIV-infected lymph nodes. Sci Immunol 2018, 3.

115. Ma KY, He C, Wendel BS, Williams CM, Xiao J, Yang H, Jiang N: Immune Repertoire 
Sequencing Using Molecular Identifiers Enables Accurate Clonality Discovery and Clone Size 
Quantification. Front Immunol 2018, 9:33. [PubMed: 29467754] 

116. Hackl H, Charoentong P, Finotello F, Trajanoski Z: Computational genomics tools for dissecting 
tumour-immune cell interactions. Nat Rev Genet 2016, 17:441–458. [PubMed: 27376489] 

117. June CH, O’Connor RS, Kawalekar OU, Ghassemi S, Milone MC: CAR T cell immunotherapy 
for human cancer. Science 2018, 359:1361–1365. [PubMed: 29567707] 

118. Ribas A, Wolchok JD: Cancer immunotherapy using checkpoint blockade. Science 2018, 
359:1350–1355. [PubMed: 29567705] 

119. Wolchok J: Putting the Immunologic Brakes on Cancer. Cell 2018, 175:1452–1454. [PubMed: 
30500529] 

120. Thorsson V, Gibbs DL, Brown SD, Wolf D, Bortone DS, Ou Yang TH, Porta-Pardo E, Gao GF, 
Plaisier CL, Eddy JA, et al.: The Immune Landscape of Cancer. Immunity 2018, 48:812–830 
e814. [PubMed: 29628290] 

121. Sade-Feldman M, Yizhak K, Bjorgaard SL, Ray JP, de Boer CG, Jenkins RW, Lieb DJ, Chen JH, 
Frederick DT, Barzily-Rokni M, et al.: Defining T Cell States Associated with Response to 
Checkpoint Immunotherapy in Melanoma. Cell 2018, 175:998–1013 e1020. [PubMed: 
30388456] 

Yu et al. Page 16

Curr Opin Syst Biol. Author manuscript; available in PMC 2020 August 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



122. Brummelman J, Mazza EMC, Alvisi G, Colombo FS, Grilli A, Mikulak J, Mavilio D, Alloisio M, 
Ferrari F, Lopci E, et al.: High-dimensional single cell analysis identifies stem-like cytotoxic 
CD8(+) T cells infiltrating human tumors. J Exp Med 2018, 215:2520–2535. [PubMed: 
30154266] 

123. Siddiqui I, Schaeuble K, Chennupati V, Fuertes Marraco SA, Calderon-Copete S, Pais Ferreira D, 
Carmona SJ, Scarpellino L, Gfeller D, Pradervand S, et al.: Intratumoral Tcf1(+)PD-1(+)CD8(+) 
T Cells with Stem-like Properties Promote Tumor Control in Response to Vaccination and 
Checkpoint Blockade Immunotherapy. Immunity 2019, 50:195–211 e110. [PubMed: 30635237] 

124. Kurtulus S, Madi A, Escobar G, Klapholz M, Nyman J, Christian E, Pawlak M, Dionne D, Xia J, 
Rozenblatt-Rosen O, et al.: Checkpoint Blockade Immunotherapy Induces Dynamic Changes in 
PD-1(−)CD8(+) Tumor-Infiltrating T Cells. Immunity 2019, 50:181–194 e186. [PubMed: 
30635236] 

Yu et al. Page 17

Curr Opin Syst Biol. Author manuscript; available in PMC 2020 August 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Highlights

• Systems immunology is emerging with omics tools at population & single-

cell levels

• Integrative analysis of multi-omics data has revealed novel insights in 

immunology

• Single-cell sequencing technology is driving immunology research

• Data-driven and context-specific networks enable capture of hidden drivers
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Figure 1. 
Overview of the omics profiling technologies to characterize the immune system of human 

and mouse at population and single-cell levels.
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Figure 2. 
Overview of common computational analyses and algorithms in systems immunology.
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Figure 3. 
Hidden driver analysis by NetBID. (A) The overview flowchart of NetBID analysis to 

identify hidden drivers of phenotype case vs. control. (B) An illustration of an example 

hidden driver (HD) that has no differential expression but has network enrichment and 

activity. Diff-exp, differential expression.
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