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Shared genetic background between children and adults
with attention deficit/hyperactivity disorder
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Montserrat Corrales2,6,19, Christian Fadeuilhe2,6,19, Rosa Bosch2,6,19, Gemma Español Martin2,19,20, Peter Almos21, Alysa E. Doyle22,23,
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Per M. Knappskog27,28, Astri J. Lundervold 29, Olga Rivero 21, Diego Luiz Rovaris 13,26,30, Angelica Salatino-Oliveira26,
Bruna Santos da Silva13,26, Evgeniy Svirin 21,31, Emma Sprooten32, Tatyana Strekalova21,31,33, ADHD Working Group of the Psychiatric
Genomics Consortium, 23andMe Research team, Alejandro Arias-Vasquez11,14, Edmund J. S. Sonuga-Barke34,35, Philip Asherson36,
Claiton Henrique Dotto Bau13,26, Jan K. Buitelaar 32,37, Bru Cormand7,38,39,40, Stephen V. Faraone41, Jan Haavik 8,25, Stefan E. Johansson 27,28,
Jonna Kuntsi 36, Henrik Larsson42,43, Klaus-Peter Lesch 21,31,33, Andreas Reif 16, Luis Augusto Rohde44, Miquel Casas1,2,6,19,
Anders D. Børglum 3,4,5, Barbara Franke 11,14, Josep Antoni Ramos-Quiroga 1,2,6,19, María Soler Artigas1,2,6,7 and Marta Ribasés 1,2,6,7

Attention deficit/hyperactivity disorder (ADHD) is a common neurodevelopmental disorder characterized by age-inappropriate symptoms
of inattention, impulsivity, and hyperactivity that persist into adulthood in the majority of the diagnosed children. Despite several risk
factors during childhood predicting the persistence of ADHD symptoms into adulthood, the genetic architecture underlying the trajectory
of ADHD over time is still unclear. We set out to study the contribution of common genetic variants to the risk for ADHD across the lifespan
by conducting meta-analyses of genome-wide association studies on persistent ADHD in adults and ADHD in childhood separately and
jointly, and by comparing the genetic background between them in a total sample of 17,149 cases and 32,411 controls. Our results show
nine new independent loci and support a shared contribution of common genetic variants to ADHD in children and adults. No subgroup
heterogeneity was observed among children, while this group consists of future remitting and persistent individuals. We report similar
patterns of genetic correlation of ADHD with other ADHD-related datasets and different traits and disorders among adults, children, and
when combining both groups. These findings confirm that persistent ADHD in adults is a neurodevelopmental disorder and extend the
existing hypothesis of a shared genetic architecture underlying ADHD and different traits to a lifespan perspective.
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INTRODUCTION
Attention deficit/hyperactivity disorder (ADHD) is a common
neurodevelopmental disorder that severely impairs the daily
functioning of patients due to age-inappropriate levels of
impulsivity and hyperactivity, and/or difficulties in focusing
attention [1]. ADHD has a prevalence of 5–6% in childhood, and
impairing symptoms persist into adulthood in around two-thirds
of children with ADHD diagnosis, with an estimated adult
prevalence around 3.4% [1, 2].
ADHD is a multifactorial disorder with heritability averaging

76% throughout the lifespan [3–5]. There is consistent evidence
that both common and rare variants make an important
contribution to the risk for the disorder [6–11]. Several genome-
wide association studies (GWAS) and meta-analyses across those
have been conducted [7], but only the largest GWAS meta-analysis
(GWAS-MA) performed to date reported genome-wide significant
loci [6]. This study concluded that common genetic variants
(minor allele frequency, MAF > 0.01) account for 22% of the
heritability of the disorder [6] and supported substantial genetic
overlap between ADHD and other brain disorders and behavioral/
cognitive traits [6, 12].
The presentation of ADHD symptoms changes from childhood

to adulthood, with lower levels of hyperactivity in adulthood but a
high risk for ongoing attention problems, disorganization, and
emotional dysregulation [13, 14]. As in the general population, the
pattern of psychiatric and somatic comorbid conditions in ADHD
also changes substantially over time, with learning disabilities,
oppositional defiant disorder, and conduct disorder being more
prevalent in children, and substance use disorders, social phobia,
insomnia, obesity, and mood disorders becoming more pro-
nounced in adulthood [1, 15–18]. In addition, persistent ADHD in
adults is, compared with the general population (and to cases with
remitting ADHD), associated with higher risk for a wide range of
functional and social impairments, including unemployment,
accidents, and criminal behavior [7, 19–23].
Several risk factors measured in childhood predict the

persistence of ADHD symptoms into adulthood, such as the
presence of comorbid disorders, the severity of ADHD symptoms,
being exposed to psychosocial adversity, as well as having a high
polygenic risk score (PRS) for childhood ADHD [24–28]. Twin
studies suggest that both stable and dynamic genetic influences
affect the persistence of ADHD symptoms [4, 5, 29, 30]. However,
specific genetic factors differentiating childhood and persistent
ADHD into adulthood are not well understood due to the lack of
longitudinal studies. Molecular studies, including the most recent
GWAS-MA of ADHD [6], have been performed in children and
adults either separately or jointly [6, 31–40], but large-scale
analyses comparing their genetic basis are yet to be conducted.
Given this background, we set out to study the contribution of

common genetic variants to the risk for ADHD from a lifespan
perspective by conducting the largest GWAS-MAs performed so
far on persistent ADHD in adults (diagnosed according to DSM-IV/
ICD-10 criteria) and on ADHD in childhood (that may include
remittent and persistent forms of the disorder) separately and
jointly. For the first time, we estimated the genetic correlation
between childhood and persistent ADHD, compared their patterns
of genetic correlation with other traits and disorders, assessed the
effect of childhood ADHD PRSs on persistent ADHD, and explored
whether individuals in which ADHD symptoms may persist into
adulthood could be distinguished already in childhood using
genetic data.

MATERIAL AND METHODS
Sample description
A total of 19 GWAS of ADHD comprising 49,560 individuals (17,149
cases and 32,411 controls), provided by the Psychiatric Genomics
Consortium (PGC), the Lundbeck Foundation Initiative for

Integrative Psychiatric Research (iPSYCH), and the International
Multi-centre persistent ADHD CollaboraTion (IMpACT), were
analyzed. All participants were of European ancestry, had provided
informed consent, and all sites had documented permission from
local ethics committees.
The meta-analysis on persistent ADHD was conducted in 22,406

individuals (6,532 ADHD adult cases and 15,874 controls) using six
datasets from the IMpACT consortium, two datasets from the PGC,
and the adult subset from the iPSYCH cohort included in
Demontis and Walters et al. [6]. The meta-analysis on ADHD in
childhood included 27,154 individuals (10,617 cases and 16,537
controls), comprising two Brazilian and Spanish cohorts, seven
datasets from the PGC, and the children subset from the iPSYCH
cohort included in Demontis and Walters et al. [6]. All patients met
DSM-IV/ICD-10 diagnostic criteria. In total, 7,086 new samples not
included in Demontis and Walters et al. [6] were considered in the
present study. Detailed information on each dataset is provided in
Table S1 and in Supplementary Methods.

GWAS and meta-analyses
Genotyping platforms and quality control (QC) filters for each of
the datasets are shown in Table S1. Pre-imputation QC at
individual and SNP level were performed using the Rapid
Imputation and COmputational PIpeLIne with the default settings
(https://sites.google.com/a/broadinstitute.org/ricopili/). Non-
European ancestry samples, related and duplicated individuals,
and subjects with sex discrepancies were excluded. Phasing of
genotype data was performed using the SHAPEIT2 algorithm, and
imputation for unrelated samples and trios was performed with
MaCH, IMPUTE2, or MINIMAC3 (http://genome.sph.umich.edu/
wiki/Minimac3) depending on software availability at the time of
imputation (Table S1) [41–43]. The European ancestry panel of the
1000 Genomes Project using genome build hg19 was considered
as reference for genotype imputation (ftp://ftp.1000genomes.ebi.
ac.uk/vol1/ftp/). After imputation, the association with ADHD of
genotype dosages was tested using logistic regression in PLINK
1.9 [44], assuming an additive genetic model and including sex,
the first ten principal components, and other relevant covariates
for each case-control study (Table S1). GWAS summary statistics
were filtered prior to meta-analysis, excluding variants with MAF <
0.01, and imputation quality scores (INFO) ≤ 0.8. Inverse-variance
weighted fixed-effects meta-analyses were conducted using
METAL [45] and results were filtered by effective sample size >
70% of the total, defined as Neff ¼ 2

1
Ncað Þþ 1

Ncoð Þ [46]. The genome-

wide significance threshold was set at P < 5.00E−08 to correct for
multiple testing. Independent loci for variants exceeding this
threshold were defined based on clumping using PLINK 1.9.
Variants that were ±250 kb away from the index variant (variant
with smallest P value in the region), with P value < 0.001, and with
an estimated linkage disequilibrium (LD) of r2 > 0.2 with the index
variant were assigned to a clump (p1= 5.00E−08, p2= 0.001, r2=
0.2, kb= 250). Manhattan and Forest plots were generated using
the “qqman” and “forestplot” R packages (3.4.4R version),
respectively. The LocusZoom software [47] was used to generate
regional association plots.

Details of downstream analyses for top signals identified are
provided in the online supplement and include conditional
analysis, Bayesian credible set analysis, and functional character-
ization of the significant variants.

SNP-based heritability (SNP-h2)
The SNP-h2 was estimated by single-trait LD score regression using
summary statistics, HapMap 3 LD-scores, considering default SNP
QC filters (INFO > 0.9 and MAF > 0.01) and assuming population
prevalence of 3.4, 5.5, and 5% for persistent ADHD, ADHD on
childhood, and ADHD across the lifespan, respectively, [48]. Data
of 1,113,287, 1,072,558, and 1,092,418 SNPs from the GWAS-MA of
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persistent ADHD, ADHD on childhood, and ADHD across the
lifespan, respectively, were considered to estimate the liability-
scale SNP-h2. Partitioning and enrichment of the heritability by
functional categories was analyzed using the 24 main annotations
(no window around the functional categories) described by
Finucane et al. [49]. Statistical significance was set using
Bonferroni correction (P < 2.08E−03).

Gene-based and gene-set analyses
MAGMA software was undertaken for gene-based and gene-set
association testing using summary data from our GWAS-MAs [50].
Variants were mapped to a gene if they were within 20 kb
upstream or downstream from the gene according to dbSNP build
135 and NCBI 37.3 gene definitions. Genes in the MHC region
(hg19:chr6:25-35M) were excluded from the analyses. LD patterns
were estimated using the European ancestry reference panel of
the 1000 Genomes Project. Gene sets denoting canonical path-
ways were downloaded from MSigDB (http://www.broadinstitute.
org/gsea/msigdb), which integrates Kyoto Encyclopedia of Genes
and Genomes (http://www.genome.jp/kegg/), BioCarta (http://
www.biocarta.com/), Reactome (https://reactome.org/), and Gene
Ontology (GO) (http://www.geneontology.org/) resources. Bonfer-
roni correction (P < 2.77E−06 for 18,038 genes in persistent ADHD;
P < 2.75E−06 for 18,218 genes in childhood ADHD; P < 2.79E−06
for 17,948 genes in ADHD across the lifespan) and 10,000
permutations were used for multiple testing correction in the
gene-based and gene-set analyses, respectively.

BUHMBOX analysis
The Breaking Up Heterogeneous Mixture Based On cross(X)-locus
correlations (BUHMBOX) analysis [51] was used to test whether the
genetic correlation between persistent ADHD and ADHD in
childhood was driven by subgroup heterogeneity, found when
there is a subset of children enriched for persistent ADHD-
associated alleles. Subgroup heterogeneity was tested in each
childhood dataset considering independent SNPs (r2= 0.1, kb=
10,000) with MAF > 0.05 from the GWAS-MA of persistent ADHD
using two different P value thresholds of P < 5.00E−05 (62 SNPs)
and P < 1.00E−03 (710 SNPs). Results were meta-analyzed using
the standard weighted sum of z-score approach, where z-scores
are weighted by the square root of the effective sample size. The
statistical power was calculated using 1,000 simulations, consider-
ing the ADHD children meta-analysis sample size, the odds ratios
and risk allele frequencies from the GWAS-MA of persistent ADHD,
and assuming 65% of heterogeneity proportion (π).

Sign test
The direction of the effect of variants associated with ADHD in
childhood was tested in persistent ADHD and vice versa, using
strict clumping (r2= 0.05, kb= 500, p2= 0.5) and different P value
thresholds (1.00E−07, 5.00E−07, 1.00E−06, 5.00E−06, 1.00E−05,
5.00E−05, 1.00E−04, and 5.00E−04). The concordant direction of
effect was evaluated using a one sample test of the proportion
with Yates’ continuity correction against a null hypothesis of P=
0.50 with the “stats” R package.

Polygenic risk scoring
PRSs were constructed using different P value thresholds (P < 0.001,
0.05, 0.1, 0.2, 0.3, 0.4, 0.5, and 1) to select independent variants (p1=
1, p2= 1, r2= 0.1, kb= 250) from the childhood GWAS-MA of ADHD
and were then tested for association with persistent ADHD in each of
the nine datasets, adjusting for the covariates included in the GWAS
and using PRSice-2 (https://choishingwan.github.io/PRSice/). Best
guess genotypes for nonambiguous strand variants present in all
the persistent ADHD studies (missing rate <= 0.02) were included
(NSNPs= 32,584 for P=1). Results from the nine PRS analyses at each
P value threshold were combined using inverse-variance weighted
meta-analysis.

Genetic correlation
Cross-trait LD score regression with unconstrained intercept was
used to calculate genetic correlations (rg) between pairs of traits,
considering HapMap3 LD-scores, markers with INFO ≥ 0.90, and
excluding the MHC region (hg19:chr6:25-35M) [48]. Other ADHD
datasets [6, 52] and phenotypes from the LD-hub centralized
database [53] with heritability z-scores (observed heritability/
observed standard error) >4 and with an observed heritability >
0.1 were considered (N= 139 out of 689 available traits). Statistical
significance was set using Bonferroni correction (P < 3.60E−04).
Pearson’s correlation coefficient (Pearson’s r) was calculated
between the genetic correlations of persistent ADHD with the
phenotypes from the LD-hub and the genetic correlations of
ADHD in childhood with the phenotypes from the LD-hub.

RESULTS
GWAS-MA of persistent ADHD in adults
The GWAS-MA of persistent ADHD in adults included 6,532 adult
ADHD cases and 15,874 controls. Minimal population stratification
or other systematic biases were detected (LD score regression
intercept= 1.01, Fig. S1a). The proportion of heritability of
persistent ADHD attributable to common single-nucleotide
polymorphisms on the liability scale (SNP-h2) was 0.19 (SE=
0.024), with a nominally significant enrichment in the heritability
of variants located in conserved genomic regions (P= 5.18E−03)
and in the cell-specific histone mark H3K4me1 (P= 3.17E−02)
(Fig. S2a). The gene-based analysis revealed six genes in four loci
(ST3GAL3, FRAT1/FRAT2, CGB1, and RNF225/ZNF584) significantly
associated with persistent ADHD, with ST3GAL3 being the most
significant one (P= 8.72E−07) (Table S2a). The single-marker
analysis showed no variants exceeding genome-wide significance,
with the most significant signal being rs3923931 (P= 1.69E−07)
(Fig. 1a and Table S3a). Similarly, no significant gene sets were
identified in the pathway analysis after correction for multiple
comparisons (Table S4a [excel file]).

GWAS-MA of ADHD in childhood
To compare the genetic background between persistent ADHD in
adults and ADHD in childhood (that may include future remittent
and persistent forms of the disorder), we conducted a GWAS-MA
on children with ADHD in a total of 10,617 ADHD cases and 16,537
controls. We found no evidence of genomic inflation or
population stratification (LD score regression intercept= 1.02,
Fig. S1b). The liability-scale SNP-h2 for ADHD in childhood was 0.19
(SE= 0.021), with a significant enrichment in the heritability of
variants located in conserved genomic regions after Bonferroni
correction (P= 1.21E−06) (Fig. S2b). The gene-based analysis
highlighted a significant association between FEZF1 and ADHD in
childhood (P= 5.42E−07) (Table S2b). No single genetic variant
exceeded genome-wide significance, with the top signal being in
rs55686778 (P= 1.67E−07) (Fig. 1b and Table S3b), and no
significant gene sets were identified in the pathway analysis after
correction for multiple comparisons (Table S4b [excel file]).

Comparison of the genetic background of persistent ADHD in
adults and ADHD in childhood
We found a strong genetic correlation between persistent ADHD
in adults and ADHD in childhood (rg= 0.81, 95% CI: 0.64–0.97),
significantly different from 0 (P= 2.13E−21) and from 1 (P= 0.02).
Sign test results provided evidence of a consistent direction of
effect of genetic variants associated with ADHD in childhood in
persistent ADHD and vice versa (P= 6.60E−04 and P= 4.47E−03,
respectively, for variants with P < 5.00E−05 in each dataset)
(Table S5). In addition, PRS analyses showed that childhood ADHD
PRSs were associated with persistent ADHD at different pre-
defined P value thresholds, with the P= 0.40 threshold (NSNPs=
20,398) explaining the most variance (r2= 0.0041 and P= 1.20E
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−27) (Fig. 2a). The quintiles of the PRS built using this threshold
showed the expected trend of higher ADHD risk for individuals in
higher quintiles (Fig. 2b, Table S6).
We then tested whether the genetic correlation between

persistent ADHD and ADHD in childhood was driven by a subset
of children enriched for persistent ADHD-associated alleles using
the Breaking Up Heterogeneous Mixture Based On Cross-locus
correlations (BUHMBOX) analysis. We found no evidence of
subgroup genetic heterogeneity in children, supporting that the
sharing of persistent ADHD-associated alleles between children
and adults was driven by the whole group of children, with a
statistical power of 98.4 and 100% for thresholds of P < 5.00E−05
and P < 1.00E−03, respectively (Table S7).

GWAS-MA of ADHD across the lifespan
Given the strong genetic correlation between persistent ADHD in
adults and in childhood, we performed a GWAS-MA of ADHD
across the lifespan considering all datasets included in the GWAS-
MAs. In total, 17,149 ADHD cases and 32,411 controls were
included, and no evidence of genomic inflation or population
stratification was found (LD score regression intercept= 1.03,
Fig. S1c). The liability-scale SNP-h2 for ADHD across the lifespan
was 0.17 (SE= 0.013), and a significant enrichment in the
heritability of variants located in conserved genomic regions
was observed after Bonferroni correction (P= 1.53E−06) (Fig. S2c).
We identified four genome-wide significant variants (Figs. 1c
and 3, Table 1a, and Fig. S3) and nine genes in seven loci (FEZF1,
DUSP6, ST3GAL3/KDM4A, SEMA6D, C2orf82/GIGYF2, AMN, and
FBXL17) significantly associated with ADHD across the lifespan
(Table 1b). The most significantly associated locus was on
chromosome 6 (index variant rs183882582-T, OR= 1.43 (95% CI:
1.26–1.60), P= 1.57E−08), followed by loci on chromosome 7
(index variant rs3958046), chromosome 4 (index variant
rs200721207), and chromosome 3 (index variant rs1920644)
(Table 1a, Fig. 3). The gene-set analysis showed a significant
association of the “ribonucleoprotein complex” GO term with
ADHD across the lifespan (P.adj= 0.021) (Table S4c [excel file]).
One of the four loci identified in the single-variant analysis also

reached genome-wide significance in the previous GWAS-MA on
ADHD [6], and all of them showed consistent direction of the
effect in that study (Table S8a). Significant loci reported by
Demontis et al. [6] showed nominal association with ADHD across
the lifespan in our study (Table S8b, c), with single variant hits
showing the same direction of the effect (Table S8b).
Analyses conditioning on the index variant for the four ADHD-

associated loci did not reveal new independent markers. These
four significant loci were functionally characterized by obtaining
Bayesian credible sets and searching for expression quantitative
trait loci (eQTL) using available data in blood or brain [54, 55]. We
found that credible sets for three of the four loci contained at least
one eQTL within 1 Mb of the index variant. The credible set on
chromosome 6 included the index variant (rs183882582) and
rs12197454. This variant, in LD with the index variant (r2= 0.56),
was associated with the expression of RSPH3 in blood and brain
(P.adj < 1.65E−05 and P.adj= 2.36E−07, respectively), and with
the expression of VIL2 in blood (P.adj= 3.21E−03). The credible
set for the second most associated locus on chromosome 7
included 24 variants. The index variant, rs3958046, and other
variants in this set, were eQTLs for CADPS2 in brain (maximum
P.adj= 2.91E−03). The credible set for the locus on chromosome 4
contained 50 variants, most of them located in or near PCDH7, but
no eQTLs were identified. In the credible set for the locus on
chromosome 3, which included 98 variants, the index variant,
rs1920644, was associated with the expression of KPNA4, IFT80,
and KRT8P12 in brain (P.adj= 1.16E−04, P.adj= 1.40E−03, and
P.adj= 1.77E−03, respectively). Many other variants in this set
were eQTLs for these genes and also for TRIM59, OTOL1, and/or
C3orf80 in brain (P.adj < 0.05) (Table S9 [excel file]).

Fig. 1 Manhattan plots of the three GWAS meta-analyses
conducted. (a) GWAS-MA of nine cohorts of persistent ADHD in
adults, (b) GWAS-MA of ten cohorts of ADHD in childhood, and
(c) GWAS-MA of all datasets of ADHD across the lifespan (ADHD in
childhood+ persistent ADHD). Horizontal lines indicate suggestive
(P value= 5.00E−06) and genome-wide significant (P= 5.00E−08)
thresholds in a-b, and c, respectively.
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In a summary-data-based Mendelian randomization (SMR)
analysis, we used summary data from the GWAS-MA of ADHD
across the lifespan and the eQTL data in blood and brain from
Westra et al. [54] and Qi et al. [55] to identify gene expression
levels associated with ADHD. We found a significant association
between ADHD across the lifespan and RMI1 expression in blood
(PSMR= 5.36E−06) (Table S10 [in excel]), finding not likely to be an
artifact due to LD between eQTL and other ADHD-associated
variants given that the PHEIDI was 0.47.

Genetic correlation with other ADHD datasets and phenotypes
We found significant genetic correlations of ADHD in children and
adults from the previous GWAS-MA [6] (N= 53,296) and persistent
ADHD (rg= 0.85, SE= 0.04, P= 5.49E−99), ADHD in childhood (rg
= 0.99, SE= 0.03, P= 5.02E−273), and ADHD across the lifespan
(rg= 0.98, SE= 0.01, P < 2.23E−308) (Table S11). When removing
sample overlap (LD score genetic covariance intercept= 0.75) and
considering only the subset of new samples included in our

GWAS-MA on ADHD across the lifespan (N= 7086), a significant
genetic correlation was also obtained between their sample and
ours (rg= 0.91, SE= 0.35, P= 8.70E−03).
We also observed significant genetic correlations between

childhood ADHD symptom scores from a GWAS-MA in a
population of children reported by the EAGLE consortium [52]
(N= 17,666) and persistent ADHD (rg= 0.65, SE= 0.20, P= 1.10E
−03), ADHD in childhood (rg= 0.98, SE= 0.21, P= 2.76E−06), and
ADHD across the lifespan (rg= 0.87, SE= 0.19, P= 4.80E−06).
Similarly, significant genetic correlations between GWAS of self-
reported ADHD status from 23andMe (N= 952,652) and persistent
ADHD (rg= 0.75, SE= 0.05, P= 2.49E−45), ADHD in childhood
(rg= 0.63, SE= 0.05, P= 1.39E−42), and ADHD across the lifespan
(rg= 0.72, SE= 0.04, P= 4.86E−88) were observed (Table S11).
We also estimated the genetic correlation of persistent ADHD in

adults, ADHD in childhood, and ADHD across the lifespan with all
available phenotypes in LD-hub. Results for 139 phenotypes
passed the QC parameters and 41 genetic correlations were
significant after Bonferroni correction in both children and adults
with persistent ADHD (Table S12 [excel file]). Again, the genetic
correlations with ADHD were consistent across the lifespan, with
similar patterns found in adulthood and childhood (Pearson’s r=
0.89) (Fig. 4a, Table S12 [excel file]). The strongest genetic
correlations with ADHD were found for traits related to academic
performance, intelligence, and risk-taking behaviors, including
smoking and early pregnancy (Fig. 4b).

DISCUSSION
In the current study, we set out to explore the contribution of
common genetic variants to the risk of ADHD across the lifespan
by conducting GWAS-MAs separately for children and adults with
persistent ADHD that meet DSM-IV/ICD-10 criteria. Using the
largest GWAS datasets available from the PGC, the iPSYCH, and
IMpACT consortia we found evidence for a common genetic basis
for ADHD in childhood and persistent ADHD in adults and
identified nine new loci associated with the disorder.
We found a highly similar proportion of the heritability of

ADHD explained by common variants in children and in adults
(SNP-h2= 0.19), which is consistent with the SNP-h2 estimate
reported in the recent GWAS-MA on ADHD [6] (SNP-h2= 0.22),
that included children and adults, and is in line with multiple
studies supporting the stability of ADHD’s heritability from
childhood to adulthood [3–5]. These results together with the
0.81 genetic correlation found between children and adults with
persistent ADHD reinforce the hypothesis of the neurodevelop-
mental nature of persistent ADHD in adults. Consistently, the
sign test and the PRS analysis confirmed the extensive overlap
of common genetic risk variants for ADHD in childhood and
adulthood.
In the view of the fact that children with ADHD may be an

admixed group of individuals whose ADHD symptoms will persist
or remit in adulthood, we ran a BUHMBOX analysis to elucidate if
the potential “persistent” individuals could be distinguishable
already in childhood. Our data supported genetic similarities in
ADHD across the lifespan with no evidence of a subset of patients
enriched for persistent ADHD-associated alleles within the group
of children.
Despite not having identified specific genetic contributions for

ADHD in children or persistent ADHD, our results are not
inconsistent with evidence suggesting changes in the genetic
contribution to ADHD symptoms from childhood into adulthood,
as described in previous twin studies in the general population
[4, 5, 29, 30]. Our study design and the still limited statistical power
of the GWAS-MAs may have facilitated the identification of the
shared genetic basis rather than specific genetic factors for
persistence. Also, differences between the origin of the samples
(population-based versus clinical) and/or discrepancies between

Fig. 2 Polygenic risk scores for ADHD in childhood tested on
persistent ADHD as target sample. a Bar plot and b quintile plot of
meta-analysis odds ratios (OR meta) with 95% confidence intervals
for P value threshold= 0.4 using the third quintile as baseline.
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self- and medical reports could explain why we found no group-
specific genetic variants. In addition, given that Chen et al. [56]
and Biederman et al. [57] reported that persistence of ADHD into
adulthood indexed stronger familial aggregation of ADHD, we
cannot yet discard influences of non-additive genetic effects, or
other types of genetic variation, such as rare mutations or copy
number variation, playing a role in the different ADHD trajectories
across the lifespan.
We also found strong and significant positive genetic correla-

tions of ADHD ascertained in clinical populations of adults,
children, or both with other ADHD-related measures from general
population samples, including the largest GWAS of self-reported
ADHD status from 23andMe participants (N= 952,652) and the
GWAS-MA of childhood rating scales of ADHD symptoms in the
general population [52]. In agreement with previous reports, these
data suggest that a clinical diagnosis of ADHD in adults is an
extreme expression of continuous heritable traits [6] and that a
single question about ever having received an ADHD diagnosis, as
in the 23andMe sample, may be informative for molecular
genetics studies.
Similar patterns of genetic correlation of ADHD with different

somatic disorders and anthropometric, cognitive, and educational
traits were identified for children and adults. These findings were
highly similar to those observed in the recent GWAS-MA [6] and
further extend the existing hypothesis of a shared genetic
architecture underlying ADHD and these traits to a lifespan
perspective.

We report 13 loci in gene- and SNP-based analyses for
childhood ADHD, adult ADHD, and/or ADHD across the lifespan.
Four ADHD-associated loci were previously identified by Demontis
et al. [6], which was expected due to the sample overlap between
the two datasets. The new loci identified in the present study
mainly included genes involved in brain formation and function,
such as FEZF1, a candidate for autism spectrum disorder
implicated in the formation of the diencephalon [58, 59], RSPH3,
which participates in neuronal migration in embryonic brain [60],
CADPS2, which has been associated with psychiatric conditions
due to its role in monoamine and neurotrophin neurotransmission
[61–64], AMN, which is involved in the uptake of vitamin B12
[65, 66], essential for brain development, neural myelination, and
cognitive function [67], and FBXL17, which has previously been
related to intelligence [68].
The main limitation of this study is the sample overlap (85.7%)

between the present GWAS-MAs and the previous one by
Demontis et al. [6], which highlighted loci previously associated
with ADHD. Although sample overlap may have inflated the
genetic correlation found between these studies, the estimate
remained strong and significant when excluding nonoverlapping
datasets.
In summary, the present cross-sectional analyses identify new

genetic loci associated with ADHD and, more importantly, support
the hypothesis that persistent ADHD in adults is a neurodevelop-
mental disorder that shows a high and significant genetic overlap
with ADHD in children. Future longitudinal studies will be required

Fig. 3 Regional association plots for genome-wide significant loci identified in the GWAS meta-analysis of ADHD across the lifespan. Each
plot includes information about the locus, the location and orientation of the genes in the region, the local estimates of recombination rate (in
the right corner), and the LD estimates of surrounding SNPs with the index SNP (r2 values are estimated based on 1000 Genomes European
reference panel), which is indicated by color (in the upper left corner).
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to disentangle the role of common genetic variants on ADHD
remittance and/or persistence.
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Table 1. Genome-wide significant loci in the GWAS meta-analysis of ADHD across the lifespan identified through (A) single-variant analysis and (B)
gene-based analysis.

Chr BP SNP Effect allele Freq effect allele OR CI 95% P value Gene

A

6 159384224 rs183882582 T 0.98 1.43 1.26–1.60 1.57E−08 RSPH3 (+14 kb)

7 121955328 rs3958046 T 0.40 1.09 1.06–1.10 2.28E−08 CADPS2 (+3.2 kb)/FEZF1 (−13.9 kb)/FEZF1-AS1 (+5.2 kb)

4 31151465 rs200721207 T 0.66 1.10 1.06–1.13 3.56E−08 PCDH7 (−3.0 kb)

3 160313354 rs1920644 T 0.52 1.09 1.05–1.12 4.74E−08 BC125159 (+27.9 kb)/KPNA4 (−30 kb)/ARL14 (−81.6 kb)

Gene Chr Start Stop N SNPs* N PARAM** Z-STAT P value

B

FEZF1 7 121921373 121971173 108 18 5.6 9.57E−09

DUSP6 12 89721837 89766296 103 12 5.4 3.51E−08

ST3GAL3 1 44153204 44416837 521 19 5.4 3.58E−08

SEMA6D 15 47456403 48086420 1565 55 5.3 7.24E−08

KDM4A 1 44095797 44191189 169 13 4.9 4.34E−07

C2orf82 2 233713724 233761111 138 17 4.8 7.74E−07

GIGYF2 2 233542015 233745287 511 19 4.8 8.36E−07

AMN 14 103368993 103417179 101 21 4.6 2.56E−06

FBXL17 5 107174734 107738080 1273 35 4.6 2.59E−06

The location (chromosome (Chr) and base position (BP)), effect allele and its frequency, odds ratio (OR) of the effect allele with 95% confidence interval (CI
95%) and association P values, along with genes in the locus are shown for each index variant ID (SNP). For the gene-based results, the number of single-
nucleotide polymorphisms in the genes (*) and the number of relevant parameters used in the model by MAGMA software (**) are given.

Fig. 4 Genetic correlation of ADHD and several traits. a Dots represent genetic correlations (rg) for all traits considered (with h2 > 0.1 and
z-score > 4) and those traits that met Bonferroni correction in both children and adult ADHD groups are presented in grey. r indicates
Pearson’s correlation coefficient. b The ten strongest genetic correlations (with 95% confidence intervals) surpassing Bonferroni corrections in
the children and persistent ADHD analysis are shown for each trait and ADHD.
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