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Abstract
Prion diseases are a group of rare neurodegenerative disorders that develop as a result of the conformational conversion of normal
prion protein (PrPC) to the disease-associated isoform (PrPSc). The mechanism that actually causes disease remains unclear.
However, the mechanism underlying the conformational transformation of prion protein is partially understood—in particular,
there is strong evidence that copper ions play a significant functional role in prion proteins and in their conformational conver-
sion. Various models of the interaction of copper ions with prion proteins have been proposed for theCu (II)-binding, cell-surface
glycoprotein known as prion protein (PrP). Changes in the concentration of copper ions in the brain have been associated with
prion diseases and there is strong evidence that copper plays a significant functional role in the conformational conversion of PrP.
Nevertheless, because copper ions have been shown to have both a positive and negative effect on prion disease onset, the role
played byCu (II) ions in these diseases remains a topic of debate. Because of the unique properties of paramagnetic Cu (II) ions in
the magnetic field, their interactions with PrP can be tracked even at single atom resolution using nuclear magnetic resonance
(NMR) spectroscopy. Various NMR approaches have been utilized to study the kinetic, thermodynamic, and structural properties
of Cu (II)-PrP interactions. Here, we highlight the different models of copper interactions with PrP with particular focus on
studies that use NMR spectroscopy to investigate the role played by copper ions in prion diseases.
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Background

Prion diseases are a family of rare and progressive neurode-
generative disorders that develop as a result of the confor-
mational conversion of the normal form of the transmissible
prion protein (PrPC) into the disease-associated form (PrPSc)
[1]. These diseases usually take many years to develop;
during the incubation period, the disease advances asymp-
tomatically in the brain until initiation of nervous system
degeneration and subsequent death [2]. Human (Hu) PrPC

is a 209-residue glycoprotein that is attached by a C-terminal
glycosylphosphatidylinositol (GPI) to the outer leaflet of the
plasma membrane of a brain cell. Prion proteins are highly
conserved among mammals [3, 4], where the general struc-
ture of globular domain protein, PrPC contains three α-
helices and a two-strand antiparallel β-sheets, an NH2-termi-
nal tail consisting of an octapeptide repeat-containing un-
folded domain, and GPI attached to the short COOH-
terminal tail [5]. Figure 1 shows the structures of various
prion proteins.

Repeated published reports noted that copper may play a
significant role in the conversion of PrPC to PrPSc [6–9] (Fig.
2). Moreover, several reports have shown that cellular prion
protein (PrP) may play a crucial role in the redox control of the
neuronal environment and in the regulation of copper metab-
olism in a manner that contributes to disease pathology [7,
10–12]. The concentration of copper in humans varies in dif-
ferent organs. A high copper concentration is found in the

liver, brain, kidney, and heart [13]. In these organs, copper is
essential for the function of several enzymes, including cyto-
chrome C oxidase, catalase, dopamine hydroxylase, uricase,
tryptophan dioxygenase, lecithinse, and other monoamine and
diamine oxidases as well as superoxide dismutase (SOD)
[14–18]. These enzymes are important in oxidation-
reduction reactions, transport of oxygen and electrons, and
protection of the cell from oxygen radicals [19, 20].
Changes in copper ion concentrations in the brain are associ-
ated with several neurological diseases including prion dis-
eases [21–24]. Gasperini et al. showed that PrPC and copper
jointly inhibit N-methyl-d-aspartate receptors (NMDAR) and
prevent cell death, thus suggesting a positive role for copper in
disease treatment [12]. They also showed that PrPC and cop-
per cooperatively protect neurons from insults and exert neu-
roprotective effects [12].

Advances in medical research and technology, such as nu-
clear magnetic resonance (NMR) spectroscopy and imaging,
have contributed enormously to the detection and manage-
ment of prion diseases [25–36] as was successfully demon-
strated in the detection and description of Creutzfeldt-Jakob
disease (CJD) [30]. In particular, NMR spectroscopy provided
the first three-dimensional (3D) structure of the folded mouse
prion protein domain PrP [12, 37–146]. Recently, structures of
other PrP-associated diseases were resolved using NMR spec-
troscopy [147]. In addition, NMR enabled the investigation of
the dynamic equilibria between monomeric and oligomeric
misfolded states of mammalian PrP [148].

Fig. 1 a Hydrophobic regions of PrP highlighted in yellow. b
Comparison of the electrostatic surface between the wild-type PrP and
variants. The human PrP protein consists of 253 amino acids. PrPC

contains an octapeptide repeat-containing unfolded domain at the N-
terminal tail, three α-helices (α1, α2, and α3), antiparallel β-sheets (β1
and β2), and a GPI-anchor signal at the C-terminal tail

2390 Neurol Sci (2020) 41:2389–2406



Prion disease

Prion diseases, such as human prion diseases, are a group of
progressive neurodegenerative disorders caused by conforma-
tional conversion of the α-helix-rich isoform of the prion pro-
tein (PrPC), which is the normal form, into the β-sheet rich
isoform (PrPSc), which is the disease-associated form [1, 149,
150]. Abnormal folding of the protein (PrPSc) leads to brain
damage and causes high fatality rates in both humans and
animals [151–166]. However, the pathogenic mechanism that
triggers this abnormal folding leading to prion diseases re-
mains unknown. Prion diseases may take many years to de-
velop with long incubation periods [2, 149]; during this time,
the disease grows asymptomatically in the brain until the ini-
tiation of nervous-system degeneration and resulting death
[2]. The infection causes brain atrophy, spongiform encepha-
lopathy, and cerebellar degeneration. Although prion diseases
are rare, they remain an important public health issue requir-
ing attention to their management [167].

Prion diseases can be contracted through sporadic, genetic,
and infectious routes [168–171]. An individual who contracts
a prion disease sporadically is exposed to unknown risk fac-
tors that vary from one region to another [169]. Some people
and animals can inherit prion diseases from their parents,
whereas others acquire it from contaminated animal products
and feed. The most common types of animal prion diseases
are scrapie, bovine spongiform encephalopathy (mad cow dis-
ease), and transmissible mink encephalopathy [172, 173].
Examples of human prion diseases are Creutzfeldt-Jakob dis-
ease (CJD), Kuru, fatal familial insomnia (FFI), and
Gerstmann-Sträussler-Scheinker syndrome (GSS) [147, 174,
175]. Neurological clinical presentations and diagnosis vary

among the different human prion diseases. Research has
shown that Kuru disease has been eradicated, where it ac-
quired through consumption of the brains of infected humans
killed by the disease during the practice of funerary cannibal-
ism [176]. FFI is an autosomal illness characterized by lesions
in the thalamus of the brain. GSS is associated with the path-
ological Q212Pmutation, and, like CJD, results in progressive
dementia [147, 177]. CJD is associated with mutation in the
gene encoding the prion protein [178] and the most common
and fatal prion disease (Fig. 3), with about 90% of affected
individuals dying within a year of diagnosis. Early symptoms
include poor coordination, visual disturbance, and memory
problems; later symptoms include blindness, weakness, invol-
untary movement, and finally coma. Additional file 1:
Table S1 summarizes the similarities and differences among
the various human prion diseases.

Copper ions in nervous system development
and neurodegenerative disorders

Copper ions are found in all living organisms. It is an essential
nutrient in humans, animals, and plants [168–171], where it
plays crucial roles in redox chemistry and the actions of en-
zymes and proteins, especially those related to energy metab-
olism [169, 179].Moreover, it is fundamental for normal brain
and nervous system development, as it is involved in the syn-
thesis of neurotransmitters and in the production and mainte-
nance of myelin [147, 174, 175].

Copper-containing compounds have also been used in
medicine for centuries. Several studies proposed that copper
chelators may play a potential therapeutic role in certain

Fig. 2 Number of published papers using PubMed search engine. The PubMed database was searched for prion diseases (Red) and prion disease (Blue)
keywords over the last 25 years. Last updated on September 25, 2018
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inherited diseases of copper homeostasis as well as in neuro-
degenerative diseases, such as Parkinson’s,Wilson’s, Menkes,
Alzheimer’s [147, 177], and prion diseases [172, 173, 180,
181]. Various treatments for prion disease have been trialed.
One was based on the use of the copper chelator D-penicilla-
mine (D-PEN), which demonstrated a delay in the onset of
prion disease in mice [182, 183]. In another trial, a significant
delay in the onset of prion disease was observed when scrapie-
infected hamsters were treated with copper. Copper ions in-
hibit in vitro conversion of prion protein into amyloid fibrils
[20]. In cross-correlation analyses, it showed an
antiaggregatory effect [184–186]. Altered levels of copper
and manganese ions have been observed in prion-infected
brain tissues [182].

Copper can have one of several oxidation states, including
Cu (IV), Cu (III), Cu (II), and Cu(I); the most common states
are Cu(I) and Cu (II) [187–189]. The coordination chemistry
of Cu(I) is different from that of Cu (II), because Cu(I) com-
plexes usually have a lower coordination number (CN) than C
(II) complexes have. For example, Cu(I) complexes are usu-
ally tetrahedral or square planar with CN = 4, trigonal with
CN = 5, or linear with CN = 2, whereas Cu (II) complexes
usually have higher coordination numbers (primarily octahe-
dral, with CN = 6). The large number of possible

combinations of copper ions allows for a wide range of copper
coordination complexes, ranging from monodentate to
hexadentate [190–192]. Importantly, Cu(I) has d10 configura-
tions and forms colorless and diamagnetic compounds, where-
as Cu (II) has d9 configurations and forms colored and para-
magnetic compounds [10, 11, 193–203]. There is an important
difference in stability of Cu(I) and Cu (II) ions that strictly
defines their biological role in the living organisms. The low
stability of Cu(I) has led to the relative scarcity of studies on
the biological roles of Cu(I) [39], whereas the higher stability
of Cu (II) has led to extensive examination of its biological
role in neurodegenerative disorders [204].

Studies have highlighted the role of Cu (II) ions in synaptic
transmission, axonal targeting, neurite outgrowth as well as in
the modulation of signaling cascades induced by neurotrophic
factors. Copper not only modulates neurotransmitter receptors
at synapses but it can also affect the trafficking of synaptic
vesicles and modulate the interaction between proteins in-
volved in secretory vesicle pathways [205]. Copper is clearly
important in the normal development of the brain and nervous
system [206–211]. It follows that copper deficiency can lead
to nervous system degeneration. A decrease in copper from its
normal levels can lead to several neurodegenerative and other
diseases where aggregation of proteins plays a crucial role

Fig. 3 The occurrence ratio of the most common prion diseases
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[187, 212]. On the other hand, an excessive amount of copper
(applicable especially to Cu (II) ions) can lead to cytotoxicity,
owing to the ability of Cu (II) to initiate redox cycling and to
produce reactive oxygen species (ROS) [213, 214].

The biological function of copper ions in many copper-
binding proteins and enzymes involves changing copper’s ox-
idation state through various redox reactions (e.g., Fenton and
Haber Weiss reactions).

Cu2þ þ O2−→Cuþ þ H2O2 ð1Þ

Cuþ þ O2
−Cu2þ O2−

2

� �
→2HþCu2þ þ H2O2

Cu2þ þ O2−→Cuþ H2O2
ð2Þ

The enzyme superoxide dismutase 1 (SOD1) is present in
almost all eukaryotic cells and a few prokaryotic cells that
contain both copper and zinc [40–42, 215]. SOD1 catalyzes
the dismutation of the superoxide radical to hydrogen perox-
ide and oxygen [43–49]. This catalytic cycle is, however, be-
yond the scope of this review.

Interestingly, amyloid precursor protein (APP), which is
found in Alzheimer’s disease patients, can reduce Cu (II) to
Cu(I) in a cell-free system [11]; moreover, Cu (II) can be
reduced to Cu(I) and remains bound to APP [10, 22, 41, 42,
50, 51]. This suggests that PrP is a target of copper-catalyzed
oxidation and that this reaction leads to profound structural
changes in the protein. Oxidation therefore must be taken into
account as a potential side reaction when considering the role
of copper in prion disease [52, 53, 202, 203].

In summary, copper is known to play an important role in
neurological development. It can lead to neurodegenerative
disorders when present in excess or deficient levels. This sug-
gests that prion diseases may also be affected by the availabil-
ity or lack of availability of copper in the brain.

The biological roles of copper ions
in neurodegenerative disorders

Mis-folded protein aggregates have been associated in several
neurodegenerative disorders including Parkinson’s,
Alzheimer’s, and prion disease [54]. Proteins’ aggregation
rate depends on protein concentration and the ratio of the
presence of metal ions like Cu2+, Zn2+, Co2+, Cr3+, and Ni2+

[55–57]. Tau protein (TP) and α-Synuclein are examples of
biomolecules whose aggregation rates are dependent on their
concentration and the metal ion coordination properties
[58–60]. TP aggregation found in the neuronal cells of
Alzheimer’s disease patients [59, 60] while α-Synuclein ag-
gregation is associated with Parkinson’s disease progression
[58].

TP found in the neuronal cells of the central nervous sys-
tem and its aggregation is associated with Alzheimer’s disease
[61]. TP is a neuronal microtubule-associated protein and
plays a key role in microtubule stabilization in neuronal cells
[62]. In general, TP aggregation initiated when the protein
gets into the hyperphosphorylated form, which could result
in microtubule (MT) assembly decomposition [54, 63]. TP
aggregation is promoted in the presence of high Cu2+ concen-
tration in the brain [61, 64]. A number of binding sites of Cu2+

with TP have been reported [65–67]. This binding leads to
activation of GSK3β kinase [68] or activation of CDK5 [64]
supporting the progress of Alzheimer’s disease [69].

α-Synuclein protein abundant in the brain, mainly in the
presynaptic terminals and is involved the release of neuro-
transmitters, regulates glucose and dopamine level [70, 71].
Misfoldedα-synuclein aggregation is the major component of
Lewy neurites (LNs) and Lewy bodies (LBs), which are path-
ological hallmarks of Parkinson’s disease and other neurode-
generative synucleinopathies [72–74]. The aggregation rates
of α-synuclein affected by many factors for instance α-
synuclein concentration, pH, post-translational modifications
(PTM), and metal ions as Cu2+, Zn2+, Al3+, Fe3+, Ca2+, and
Mg2+ [75, 76]. High Cu2+ concentrations have been reported
in the cerebrospinal fluid of Parkinson’s disease patients [77],
which accelerates the aggregation rate by promoting the nu-
cleation [69, 78]. α-Synuclein–Cu (II) complexes formed
through a high-affinity copper-binding site or low-affinity
copper-binding sites. The high-affinity of copper-binding sites
is located at the N-terminus with residues Met1, Asp2, and
Met5. The low-affinity copper-binding sites are located at the
N-terminus residue His50 or at the C-terminal part with resi-
dues Asp119, Asp121, Asn122, and Glu123 [78–80].

In summary, association between Cu2+ and its effect on
protein aggregation had been repeatedly reported [64, 67,
78]. Misfolding protein aggregations are common in many
neurodegenerative diseases. This suggests that Parkinson
and Alzheimer’s diseases may also be affected by the avail-
ability or lack of availability of copper in the brain.

Roles of copper ions in prion diseases

PrP is known to bind copper ions, and this binding interaction
may affect PrPC function and its conformational transforma-
tion to the PrPSc form. However, there is contradictory evi-
dence concerning whether copper ions are beneficial or dele-
terious to the development of prion diseases [81–85].

Both in vitro and in vivo evidence has been reported for
PrP binding to copper ions. Hornshaw et al. showed the first
link between copper and prion proteins in 1995 [86] in an
investigation of the binding between different transition
metals and synthetic peptides. They hypothesized that copper
ions bind to the N-terminal octapeptide tandem repeat
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sequence that corresponds to three or four copies of human
PrP (PHGGGWGQ) [87–89]. Although Hornshaw et al. con-
ducted in vitro experiments, their results suggested that PrP
might be a copper-binding protein in vivo and that PrP pref-
erentially binds copper over other metals [90, 91, 180].
Another study showed that copper ions bind to His96 and
His111 of wild-type PrP at pH 5.5, whereas it interacts with
His111 at pH 7.5 [202]. Pathological point mutations alter
copper coordination under acidic conditions and metal is then
anchored to His111 [202]. Additional studies have since con-
firmed that PrP specifically and preferentially binds copper
compared with other transition metals [92, 93]. Some reports
have claimed that interaction with Mn causes conversion of
PrPc to PrPres, as detected by in vitro studies. Near-infrared
spectroscopy coupled with multivariate analysis suggested
that (i) PrP binds both Mn and Cu differently, (ii) PrP-Cu,
and not PrP-Mn, protects the metal from the water, increasing
protein stability, and (iii) PrP-Cu remains stable in solution,
whereas PrP-Mn undergoes changes leading to fibril forma-
tion [94].

Later studies have shown that the binding of copper to PrP
can affect its conformational transition to the infectious form.
Takeuchi et al. (1996) showed that PrP requires copper to
remain “normal” and non-infective. They suggested that a
lack of copper might contribute to prion diseases [95, 96]. A
similar study showed that the interaction of Cu (II) ions with
PrP promotes a shift from a predominant α-helical structure of
PrPC to the β-sheet structure of the infectious isoform, PrPSc,
thus suggesting a negative role for copper ions in disease onset
[97]. The results do not support Takeuchi’s proposal that the
interaction of copper with prion proteins may lead to confor-
mational changes (formation of an α-helical structure on the
C-terminal side) that prevent aggregation. Zheng et al. studied
the impact of the G127V mutation on the structural and dy-
namical properties of PrP using NMR and molecular dynamic
methods [189]. They concluded that replacement of G127 by
V destabilizes the β-sheet and affects the geometric stacking
of the α-helices inside the prion molecule.

Studies performed in cell culture models and animal
models have provided evidence both for and against the role
of copper in promoting the development of prion diseases. For
example, several studies have shown that copper functions as
an antioxidant agent in copper-containing PrP, which en-
hances neuronal survival [98]. In contrast, Hijazi et al. found
that copper plays a protective role in prion diseases, as they
observed a significant delay in prion disease onset in scrapie-
infected hamsters treated with copper ions, whereas adminis-
tration of copper ions to normal hamsters promoted cerebellar
PrPC accumulation [12, 39, 99–112, 202]. Moreover, the ac-
cumulation of the disease-related conformation (PrPSc) is sig-
nificantly decreased in scrapie-affected neuroblastoma cells
cultured in the presence of copper. On the other hand, normal
neuroblastoma cells cultured in the presence of copper

exhibited inhibition of the internalization of PrPSc [113]. In
agreement with this result, Toni et al. reported that copper
modifies PrPC expression and pathways in cultured neurons
and that PrP mRNA expression in GN11 neurons is signifi-
cantly decreased by the addition of copper ions at physiolog-
ical concentrations [114]. These results suggest that extracel-
lular copper can be used to control the amount of cellular PrP
and may be an effective strategy to decrease the expression of
PrPC, consequently decreasing the possibility of its conversion
to the pathological isoform PrPSc [115].

The contradictory results from the studies described above
indicate that the role played by copper in the development of
prion diseases is unclear. Further research is needed to resolve
these contradictions. Structural biology approaches, in gener-
al, and NMR spectroscopy, in particular, have the potential to
be very useful in the study of copper ion coordinationwith PrP
to help elucidate the role played by copper ions in prion dis-
eases [116].

NMR spectroscopy

NMR spectroscopy is a powerful analytical tool. It is able to
differentiate the unique magnetic environment of a nucleus in
a single molecule’s various positions at the atomic level [117,
118]. Moreover, NMR can be used in structural elucidation as
well as for kinetics and thermodynamics studies [99, 119,
120]. Most importantly, NMR provides information on the
environment of specific atom sites and their neighboring at-
tached atoms using in two dimensions [108, 121]. Thus, NMR
spectroscopy is extensively used in a wide range of applica-
tions, including organic chemistry [108], biochemistry, poly-
mer chemistry [122], inorganic chemistry [122], structural bi-
ology [52], physics [61, 123–127], biology, and drug discov-
ery [52, 128, 129]. Through NMR experiments, researchers
can study samples in the solid state [130–132], gel phase
[133–136], tissue state [137–139], gas phase, and solution
state [140–143]; these approaches have been used to investi-
gate molecular structures, concentration levels, and molecular
dynamics [144–146]. Moreover, the continuous development
of NMR experimental methods and NMR machinery, such as
dynamic nuclear polarization (DNP) and high-field NMR
spectrometers, has continuously enhanced research on the
physical and chemical properties of samples [216–218].

The main disadvantage of NMR spectroscopy is its low
sensitivity, making milligrams of a sample necessary for use-
ful NMR measurements. The low natural abundance of both
15N and 13C also has to be overcome in the application of
NMR spectroscopy to biological samples, such as in the study
of proteins. Proteins isotopically labeled with 13C and/or 15N
are therefore often used in protein NMR experiments. NMR
spectroscopy uses many multidimensional approaches to
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resolve protein structures, their dynamics and to enhance the
resolution of complicated NMR spectrum [219–223].

There are also several limitations to the use of NMR spec-
troscopy as an analytical tool to study the interaction between
copper ions and prion proteins. Generally, paramagnetic ions
such as Cu (II) cause a significant broadening in the NMR
resonance even at a very low concentration, and this broaden-
ing hinders NMR studies at a stoichiometric ratio.
Consequently, NMR studies of PrP are typically performed
at low copper-ion-to-PrP ratios. Diamagnetic Cu(I) ions that
facilitate the use of NMR studies at higher copper-to-PrP ra-
tios are unstable compared with Cu (II) ions and can be easily
oxidized to Cu (II) under physiological conditions. However,
this problem can be overcome by adding reducing reagents to
the NMR tube under inert conditions and then sealing the
NMR tube to prevent oxidation.

Two-dimensional NMR spectroscopy

NMR experiments are not only limited to the one-dimensional
(1D) space. They can be extended to different types of multi-
dimensional approaches. Two-dimensional (2D) NMR spec-
troscopy can be used for many applications including mole-
cule identification and structural elucidation, as has been done
for PrP and their biologically important complexes with tran-
sition metals and other proteins [224]. In general, 2D NMR
can be used to overcome the problem of overlapping reso-
nances by dispersing the overlapping chemical shift in a sec-
ond dimension. The additional resolution offers a practical
solution to detecting and identifying specific sites within mac-
romolecule, as in the case of Cu (II) ions [223]. Such identi-
fication is not possible with the 1D approach. For example,
various homo-nuclear 2D 1H-1H-NMR experiments, includ-
ing total correlation spectroscopy (TOCSY) [225–234], corre-
lation spectroscopy (COSY) [219, 234–241], and
heteronuclear experiments such as 1H,13C-single quantum co-
herence (1H-13C-HSQC) and heteronuclear multiple bond cor-
relation (HMBC) have been routinely used in to assign protein
signals and to study protein interactions with ligands in drugs
and small molecules [242]. Here, we present heteronuclear
single-quantum coherence spectroscopy (HSQC) as an exam-
ple of the most powerful approaches used to assign signals and
to probe ligand protein interactions [243]. HSQC is a type of
through-bond correlation spectroscopy that utilizes
heteronuclear correlations and enhancement of the signal
coming from the nucleus of lower sensitivity, such as 13C or
15N by transferring the nuclear spin polarization from the
more sensitive nucleus (usually 1H) via J-coupling. The gen-
eral output of HSQC is 2D spectra of the chemical shift of one
nucleus, such as 1H, which is usually detected in the directly
measured dimension, and the chemical shift of the other nu-
cleus, such as 13C, which is recorded in the indirect dimen-
sion. The 1H,13C-HSQC spectrum coordinates the chemical

shift of protons and nitrogen or carbon atoms that are directly
covalently bonded, providing only one cross peak for each H-
N or H-C coupled pair. Thus, HSQC is useful for the assign-
ment of the protein backbone and side-chain NH signals are
assigned by 1H,15N-HSQC.Moreover, utilizing the sensitivity
of the 1H atom is an effective approach to reducing the exper-
imental time for nuclei with low natural abundances and/or
sensitivities, such as 15N and 13C. The experimental time nec-
essary for HSQC experiments is usually shorter than for 1D,
13C, and 15N NMR experiments. Indeed, HSQC was used to
study the interaction of copper with PrP [52, 123, 219,
244–246].

NMR studies of Cu(I) and Cu (II) ions-prion
interactions

NMR is the method of choice for studying protein structures
and dynamics and for investigating protein-metal ion interac-
tions [247]. The protein binding sites for paramagnetic species
such as Cu (II) ions can be examined by monitoring the line
broadening of NMR resonance signals; the signals of the pro-
tein binding sites are more affected than are other signals.
Indeed, NMR spectroscopy was used frequently to study the
interaction of copper with PrP [248]. For example, Wells et al.
used NMR to investigate howCu (II) ions interact with the full
length of PrP under acidic conditions at pH 5.5. The results
showed that the protein binds with two copper ions while all
six histidine residues in the unfolded N-terminal act as ligands
(Fig. 4) [41, 246, 247, 250–252]. The interaction between a
diamagnetic ion such as Cu(I) and other molecules such as
proteins can be observed by monitoring the ordinary chemical
shift change (change of the location of the cross-peak on the
spectrum) and the interaction causing a change in the chemical
shift value of nuclei within residues of the binding site.
Indeed, detecting the interaction between Cu(I) and proteins
has become a common approach [41, 247, 252], and the in-
teraction between Cu(I) ions and PrP has been successfully
studied using NMR spectroscopy techniques [253–255].
Taking into account the fact that Cu(I) is diamagnetic, NMR
studies of its complexes with prions could be easier and more
accurate because Cu(I) ions do not cause signal broadening
[116].

Various NMR spectroscopy approaches have been utilized
to study the interaction of copper with PrP. Recently, 1H-15N
HSQC NMR spectroscopy was employed to study the inter-
action between the PrP’s copper-bound octarepeat domain
[249, 256–259]. The results suggest a molecular foundation
for the role of copper in mediating the cis interaction in prion
proteins and suggest that the global domain can regulate the
N-terminus, whereas the disruption of the cis-interaction oc-
curs by mutation or by direct competition with globular do-
main ligands, contributing to protein dysregulation and prion

2395Neurol Sci (2020) 41:2389–2406



disease [52, 260–267]. 1H NMR has been used to study the
interactions of copper with different peptides corresponding to
PrP, including 2-, 3-, and 4-octarepeat sequences [265]. The
resulting NMR spectra show a clear broadening of the histi-
dine 1H residues in each octarepeat coordinated with the Cu
(II) ion, with the four octarepeat peptides cooperatively bind-
ing to four Cu (II) ions. Two-dimensional 1H-1H TOCSY
NMR spectroscopy has been used to study the interaction
between copper and the residue 91–127 fragment of the hu-
man prion protein (hPrP) [268–273]. In agreement with pre-
vious results, NMR spectra from that study show that copper
ions selectively bind His-96 and His-111 (Fig. 5) [274, 275].
Interestingly, the results confirm that the protein undergoes a
conformational change after binding Cu (II) ions in the pres-
ence of sodium dodecyl sulfate (SDS) micelles; the binding
strongly stabilizes the α-helical conformation of the peptide
backbone [202]. Some researchers hypothesize that copper
binding to the prion protein can be protective against the con-
version of the protein to its infectious form [260].

NMR spectroscopy has also been used to analyze the
interactions between copper and PrP at different pH
values. The interaction of Cu (II) ions with full-length
PrP has been investigated under mildly acidic conditions.
The results show that two Cu (II) ions bind all six histi-
dine residues of the unfolded N-terminal domain and the
N-terminal amine coordinate as ligands [260]. Different
copper-protein coordination models have been reported
under different pH conditions [202, 276–279]. For in-
stance, at pH 7.4, PrP may interact with a fifth or even
sixth coordination site in the flexible region between the
octarepeats and the PrP globular C-terminal domain in-
volving His96 and His111 [280]. Similar studies have
shown that PrP binds between five and six equivalent
units of Cu (II) at pH 7.4, indicating that the interaction
of copper with PrP is highly dependent on pH [280].
These reports have proposed that PrP functions may be
associated with its ability to bind copper in a pH-
dependent fashion [280].

Fig. 4 Various binding models of
Cu (II) ion coordination with the
full-length prion protein at a
pH 5.5 and b pH 7.4,
demonstrating the coordination
by an exchange of histidine
imidazoles. From [249] with
permission from Portland Press
Ltd
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Although the coordination geometry of the different
copper-PrP interaction models [281] has been the focus of
many studies, surprisingly few investigations have focused
on the structural changes induced by the binding of Cu(I) to
PrP [265]. Badrick et al. investigated the interaction between
Cu(I) ions and the hPrP by using both 1D and 2D 1H NMR
experiments. The results show that Cu(I) interacts with PrP in

a manner different from that of Cu (II), with the Cu(I) inter-
action representing a tetrahedral model in which copper coor-
dinates with two imidazoles attached to His96 and His111 and
two sulfurs (Met109 and Met112) [282, 283]. The interaction
between the copper ions andMet residues has sparked a strong
debate in the literature concerning possible direct binding with
sulfur atoms [284]. Several reports have ruled out the

Fig. 5 a Aromatic region of the
1H 1D NMR spectra of hPrP91–
127 at pH 7.2 in the presence of
40 mM sodium dodecyl sulfate
(SDS) in the absence (black) and
presence (green) of Cu2+. b 2D
TOCSY spectra of the aliphatic
region with a copper-to-ligand
ratio of 1:10. c The aliphatic
region of the 1H–1H 2D TOCSY
spectra with a metal-to-ligand
ratio of 1:1.1 [231, 260–265]
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possibility of copper interacting with Met109 or Met112
[285–287]. However, Shearer et al. demonstrated that copper
interacts with both Met residues in PrP under mildly basic
conditions [265, 284]. These contradictory results may be ex-
plained by considering the factors that might lead to different
copper-PrP coordination models. Different factors should be
considered in explaining that different copper-prion interac-
tions, such as the pH, copper oxidation state, and copper/
protein ratio, may lead to different copper-PrP coordination
models. For example, the copper oxidation state is a very
important factor that determines copper complexation because
Cu(I) normally adopts a tetrahedral coordination geometry,
whereas Cu (II) prefers an octahedral or square planar coordi-
nation geometry [288, 289]. Cu(I) ions can be oxidized simply
to Cu (II), and Cu (II) can be reduced to Cu(I), thus enabling
copper to be involved in electron transfer reactions and
copper-protein interactions and potentially leading to confor-
mational changes associated with changes in the oxidation
state [290]. To elucidate the role of copper in prion diseases,
further investigations should be conducted to study the rela-
tionship between electron transfer reactions and the conforma-
tional transformation associated with copper-protein
interactions.

Conclusion

Prion diseases are a group of fatal neurodegenerative disorders
that occur when prion proteins change their conformation
from the normal PrPC form to the disease-specific PrPSc struc-
ture. These diseases affect both humans and animals. Animals
acquire prion diseases from contaminated feed or other ani-
mals, whereas humans can contract prion diseases genetically,
sporadically, or via acquisition from infected animals and
humans. Although the disease pathology is not completely
understood, there is general agreement that the abnormal
disease-associated protein conformation (PrPSc) causes prion
diseases through the degeneration of the nervous system and
leads to death at an advanced stage. It has been repeatedly
reported that copper ion may play a major role in structural
conversion from a healthy (native) α-helix rich PrP isoform to
the predominantly β-sheet conformation (PrPSc). The conver-
sion could be developed by the exposure of the protein to high
concentrations of Cu (II) ions.

It is well established that an excessive amount of copper
(especially Cu (II) ions) can lead to cytotoxicity, owing to the
ability of Cu (II) to initiate redox cycling and produce reactive
oxygen species (ROS). However, despite the wide range of
studies on copper interaction with prion proteins, the mecha-
nisms by which Cu (II) ions induced protein misfolding and
aggregation remains unknown.

The proper application of the NMR spectroscopy tech-
niques could lead to better insight if the studies include both

protein function and structure. A gradual titration of prion
proteins with different concentration levels of Cu (II) ions
could lead to the most optimal concentration as we believe
like other bioactive molecules with low or high concentrations
could lead to abnormal conditions. To evaluate the copper
redox effects, it is also important to study the interaction of
PrP with different copper oxidation states, particularly ion
(I\II) interactions. The NMR spectroscopy offers atomic-
level insights into the interactions of copper ions (I\II) with
PrP under physiological conditions (like pH ~ 7.4), enabling
researchers to study the role played by copper and other ions
in the progress of the prion disease.
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