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Abstract
Purpose Twin-to-twin transfusion syndrome (TTTS) is a placental defect occurring in monochorionic twin pregnancies. It is
associated with high risks of fetal loss and perinatal death. Fetoscopic elective laser ablation (ELA) of placental anastomoses
has been established as the most effective therapy for TTTS. Current tools and techniques face limitations in case of more
complex ELA cases. Visualization of the entire placental surface and vascular equator; maintaining an adequate distance
and a close to perpendicular angle between laser fiber and placental surface are central for the effectiveness of laser ablation
and procedural success. Robot-assisted technology could address these challenges, offer enhanced dexterity and ultimately
improve the safety and effectiveness of the therapeutic procedures.
Methods This work proposes a ‘minimal’ robotic TTTS approach whereby rather than deploying a massive and expensive
robotic system, a compact instrument is ‘robotised’ and endowed with ‘robotic’ skills so that operators can quickly and
efficiently use it. The work reports on automatic placental pose estimation in fetoscopic images. This estimator forms a
key building block of a proposed shared-control approach for semi-autonomous fetoscopy. A convolutional neural network
(CNN) is trained to predict the relative orientation of the placental surface from a single monocular fetoscope camera image.
To overcome the absence of real-life ground-truth placenta pose data, similar to other works in literature (Handa et al. in:
Proceedings of the IEEE conference on computer vision and pattern recognition, 2016; Gaidon et al. in: Proceedings of the
IEEE conference on computer vision and pattern recognition, 2016; Vercauteren et al. in: Proceedings of the IEEE, 2019) the
network is trained with data generated in a simulated environment and an in-silico phantom model. A limited set of coarsely
manually labeled samples from real interventions are added to the training dataset to improve domain adaptation.
Results The trained network shows promising results on unseen samples from synthetic, phantom and in vivo patient data.
The performance of the network for collaborative control purposes was evaluated in a virtual reality simulator in which the
virtual flexible distal tip was autonomously controlled by the neural network.
Conclusion Improved alignment was established compared to manual operation for this setting, demonstrating the feasibility
to incorporate a CNN-based estimator in a real-time shared control scheme for fetoscopic applications.

Keywords Deep learning · Convolutional neural networks · Robot assisted surgery · Shared control · Orientation estimation ·
Fetoscopy

B Mirza Awais Ahmad
mirzaawais.ahmad@kuleuven.be

1 Department of Mechanical Engineering, KU Leuven, Leuven,
Belgium

2 Department of Development and Regeneration, KU Leuven,
Leuven, Belgium

3 Department of Obstetrics and Gynaecology, UZ Leuven,
Leuven, Belgium

4 School of Biomedical Engineering and Imaging Sciences,
King’s College London, London, UK

Introduction

Twin-to-twin transfusion syndrome (TTTS) is a placental
defect occurring in monozygotic twins that share a single
placenta (monochorionic). This anomaly occurs in 10–15%
of monochorionic twin pregnancies [15]. This placental
defect causes disproportional blood transfusion among the
twin fetuses through placental anastomoses. This leads to
over-development of one of the twins (recipient) and under-
development of the other twin (donor). This condition can
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Fig. 1 Laser coagulation for
TTTS: a a straight rigid
fetoscope is used in the case of
posterior placenta b a curved
rigid fetoscope for an anterior
placenta

be fatal for both of the fetuses and has near-100% mortality
rate if not treated [3]. The suggested therapy is endoscopic
laser ablation (ELA). In ELA, the surgeon enters the uter-
ine cavity with an endoscope (fetoscope) having a working
channel for passing a therapeutic laser. The anastomosing
vessels on the shared placenta are identified visually and
coagulated by laser ablation [19]. ELA for TTTS has become
one of the most common fetoscopic operations today. The
survival of at least one of the fetuses is in the range of
75–80% [15]. ELA requires only a small, typically 3mm
diameter, incision in the uterine wall. Compared to hys-
terotomy, ELA decreases the procedure-induced morbidity
significantly [26].

In the conventional approach, shown in Fig. 1, a rigid
fetoscope is inserted through a cannula in a small inci-
sion into the uterine cavity. For effective vessel coagulation
Deprest et al. [3] showed the importance of a clear visu-
alization inside the amniotic sac, the possibility to view
the complete inter-twin membrane for target vessel iden-
tification, and the possibility to position the laser fiber at
an angle close to 90◦ (thus perpendicular to the surface).
The insertion site must be chosen carefully, in function of
the position of the fetuses and of the location of the pla-
centa to maximally comply with above factors. Especially
for anterior placentas, when the placenta is attached to the
front of the stomach (Fig. 1b) adequate insertion sites are
scarce, possibly leading to sub-optimal coagulation. Classi-
cal rigid instruments offer little dexterity inside the womb.
Surgeons, therefore, tend to exert overly large forces on the
insertion point to gain maneuverability. However, such large
forces could increase the risk for iatrogenic Preterm Pre-
mature Rupture of Membranes (iPPROM) [6] and should
therefore be avoided.

In summary, shortcomings of the current instruments
include: inability to achieve orthogonal orientation of the
fetoscope and laser (more pronounced in the case of ante-
rior placenta); the need to change scopes over different
interventional stages; poor image stability (motion compen-
sation schemes are absent); difficulty to prevent inadvertent

ablation or tissue contact and feto-placental hemorrhage
when operating in too close proximity to the surface [5].
In the literature, different types of scopes have been pro-
posed to overcome these issues: a rigid endoscope with
a rotating mirror at the distal tip [24]; a side-firing laser
fiber or fiber deflecting mechanism [12]; flexible scopes
that can bend both the laser fiber and the camera [9,25,27].
Rigid scopes cannot re-orient the camera and suffer from
limited range of visibility. The flexible instruments in the lit-
erature provide more degrees of freedom (DoFs) but they
can so far only accommodate one single tool at a time,
either a camera, laser fiber or forceps. For TTTS both
a camera, illumination and a laser fiber are needed. In
our previous work an instrument with a rigid shaft and a
steerable flexible distal tip was presented. The instrument
has a chip-on-tip camera, a fiber-optic light source and a
working channel for laser fiber. The design, usability and
shared control approaches have been discussed in [1,14].
Due to usability issues and steep learning curves, a shared
control approach was proposed where the surgeon was in
charge of the gross instrument motion and the distal tip
moved autonomously. A sensing system would be needed
for autonomous control, but as size limitations are severe,
adding extra sensors is no option as this would increase
instrument diameter and potentially give a higher prevalence
of iPPROM.

Therefore, we propose in this work to rely solely on the
intrinsic fetoscopic camera. We postulate that as the in-utero
environment is dark and illuminated by a light source fixed
with respect to the camera, a single fetoscopic image might
contain enough information (a.o. in the form of the pro-
jected light cone) to estimate the orientation of the scene.
The in-utero environment is different for each patient and
acquiring a clear view is, sometimes, difficult. The surgeon
may also change the scopes and the light intensity during an
intervention, making it a challenging task to estimate pla-
centa pose from these images. This work presents the use of
convolutional neural networks (CNNs) to estimate the rela-
tive orientation of the placental surface with respect to the
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fetoscopic camera. Convolutional neural networks (CNNs)
have found wide application in image processing due to their
automatic feature extracting abilities. Via back-propagation
convolutional filters in a multi-layer structure can efficiently
learn specific features [13]. Olmschenk et.al. [17] demon-
strated the use of CNNs to regress the pitch and roll of a
camera using a single monocular image as the input. The
architecture used in this work is achieved by progressively
reducing depth of the first network presented in [17] to
achieve fast inference time without reducing performance
significantly. This architecture was used due to its simplic-
ity and faster inference which can be crucial for our real
time application. The regressed placenta pose is used to
complete a feedback loop that realizes autonomous align-
ment of the flexible scope’s distal tip. This leads to a more
flexible approach to ELA with improved usability as the sur-
geon does not need to bother how to deal with the distal
tip.

Methods

Flexible actuated fetoscope for ELA

ELA for TTTS is a minimally invasive procedure in which
the instrument is introduced into the uterine cavity through
an entry port or cannula. For effective ablation, the laser
must be preferably oriented perpendicular to the anastomos-
ing vessel and at a certain distance (typically 10–20 mm)
to the vessel. This positioning task would require 6 DoFs,
but, given that the laser beam is axi-symmetric and rotation
of the fiber about this axis is redundant, only 5 DoFs are
needed. However, the entry port acts as a fulcrum point that
restricts the motion of the instrument by 2 DoFs. So from the
total 6 only 4DoFs are available for the surgeon to steer these
instruments (from outside the patient’s body, Fig. 1). Figure 2
shows how introducing a 5th DoF in the form of a distal flex-
ible tip suffices to reach all locations and orientations. Note
that in the figure the instrument enters the body, from the bot-
tom of the figure, into the uterine cavity (upper part). A frame
of reference {I } is attached to the entry port (fulcrum) and
a frame {H} to the instrument handle (that is manipulated
by the surgeon). Frame {E} is attached to the endpoint of
the rigid portion of the instrument. Frame {C} is attached to
the camera, mounted at the instrument tip. The origin of {C}
coincides with the center of the 2D fetoscopic image. Frame
{P} is attached to the placental surface such that −Pz is nor-
mal to the placental surface, which is locally represented as
a plane. Vector −Pz points inside the uterine cavity. The {P}
frame is placed arbitrarily on the xy − plane of {P} and
coincides with the inner wall of the uterine cavity. The twist
of {P} about Pz does not matter due to axi-symmetry. With
5 DOFs (in normal conditions), Cz can be made parallel to

Fig. 2 Sketch of intra-uterine cavity (upside down). Flexible instrument
in straight, re-oriented and bent configuration. Automatic alignment of
the distal flexible tip is achieved by aligning z-axes of camera frame
{C} and placenta frame {P}

vector Pz . A deviation of 5 around this orientation is deemed
acceptable as it would not significantly affect the coagula-
tion process and its efficiency. For rigid instruments that end
at {E} (and have only 4 DoFs), it is generally impossible to
align Ez sufficiently parallel to Pz . The figure shows that by
introducing the extra bending DoF, perpendicularity can be
aimed for.

A functional instrument for ELA has 3 essential parts:
an image source, a light source and a working channel for
the laser fiber. Commercially available instruments come
with a rod-lens or a fiber-bundle. Rod-lenses are used in
straight rigid fetoscopes. Fiber-bundles are for curved semi-
rigid fetoscopes [4]. Both imaging systems act as image
conduits and are optically connected to an external camera.
More recently chip-on-tip cameras appeared. These sen-
sors are more flexible as only thin electrical cables need
to be connected. Figure 3a shows an in-house-built instru-
ment [1] that features an integrated NanEye camera [2]
and a single optical fiber as light source. The bending of
the flexible segment is controlled by actuating a McKibben
Muscle [21]. Further, a motor is embedded in the handle.
This motor rotates the, possibly bent, shaft about its lon-
gitudinal axis. With these 2 actuated DoFs the distal tip
can be computer-controlled. Given a desired orientation
(e.g., from a known pose of the placenta) a shared con-
trol approach becomes feasible, where the gross motion is
controlled by the surgeon and the orientation of the dis-
tal tip is controlled by autonomously steering the 2 distal
DoFs.
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Fig. 3 Distal tip of a in-house
built fetoscope; b conventional
ELA instrument

Data generation

A large amount of labeled data would typically be needed to
train a neural network to recognize the placenta pose. For in-
utero applications, large datasets, leave alone large labeled
datasets, are not available. Using dedicated sensors to capture
the ground truth pose during actual clinical interventions is
not feasible. Manual labeling is burdensome and impossible
to perform accurately for pose estimation. To overcome these
issues, we propose, similar to other works in the literature
[7,8,22] to generate datasets for CNN training via a virtual
reality simulator, and complement this with data from an in-
silico model. To improve domain adaptation, a small set of
roughly labeled samples from in vivo data is also included.
This would introduce in vivo features in the trained network
in a semi-unsupervised manner, while the accuracy is mainly
driven by accurately labeled data. Images from all above data
sources can be included, generating a rich dataset for training
a neural network.

Data representation

Two actuated distal DoFs: R1, the rotation about the axis
shaft and R2, the distal bending, are needed to adequately
orient the distal tip. Given the relative short distance to the
placenta and the small camera field of view (FoV) the pla-
centa can be locally approximated to be planar. Recalling
that the rotation about the axis Pz , normal to the plane, is
redundant; therefore, only 2 DoFs are needed to describe the
placenta inclination locally. The rotation matrix CRP

CRP =
[
CXP

CYP
CZP

]
(1)

that represents the orientation of frame {P} relative to {C},
is however a non-minimal representation. Other minimal
representations, e.g., based on Euler angles, suffer from
representational singularities. To avoid these problems, we
propose a minimal representation based on the x- and y-
components of vector CZP :

Fig. 4 Representation of 2 DoFs for different image frames: camera a
perpendicular to placental surface; b inclined w.r.t. placental surface

[x_component, y_component] =
[
CZP .x,

C ZP .y
]
. (2)

As shown in Fig. 4a, when the camera is perpendicular to the
placenta, Pz and Cz are aligned and the projection of Pz on
the Cxy-plane is [0, 0]. When the camera is not perpendic-
ular (Fig. 4b) the projection of Pz on Cxy-plane is a vector
from the origin of {C} to (x, y). This representation embeds
sufficient information to re-orient the camera to become per-
pendicular to the placenta. It is also this information that will
be used to label the data. Note that the two components sim-
ply follow from CRP according to (1) and (2). Conversions
to Euler angles, which could lead to multiple solutions or
large jumps at zero-crossing, are hereby elegantly avoided.
A further advantage is that this representation maps the DoFs
within a Cartesian [−1, 1]×[−1, 1] area, a feature that is
beneficial for CNN applications as it simplifies regulariza-
tion. Further, as shown in Fig. 2, when the axis of rotation
of bending R2 aligns with Cx , the x and y components can
be straightforwardly used as error signals for R2 and R1 in
autonomous controllers.
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Fig. 5 Distribution of training data in output space

Fig. 6 Samples from different
image sources: a Simulation, b
NanEye (in silico), c
Fiber-bundle (in silico), d
rod-lens (in silico), e–h in vivo
from patients

Simulation dataset

Six real placenta high-resolution photographs were taken
ex vivo from patients after delivery. These images were
used as texture inside six virtual uterine cavities. A sim-
ulated camera and illumination were added to recreate
fetoscopic views of the surgical scene. The relative posi-
tion and orientation of the placental surface and the camera
were programmatically altered creating various images with
known ground-truth inclinations. The Visualization Toolkit
(VTK), an open-source C++ toolkit, has been used to build
up this simulation environment [18]. Note that thanks to
the virtual reality it is possible to generate nice, uniformly
distributed training datasets without too much human inter-
vention. The distance between the camera and the placenta
was varied between 10 mm to 50 mm, representative of
the distances at which a surgeon typically operates. Mean-
while, the camera was rotated about the placenta in a conical
trajectory such that x_component and y_component vary
over a −0.6 to 0.6 range to cover the relevant space of out-
put features (Fig. 5). In total 4 real placenta photographs
were used to generate a training dataset containing 30,000

samples. 2 photographs were used to create a dataset of
14,000 samples, out of which, 1000 and 2000 samples
were randomly selected for validation and test, respectively.
A sample synthetic image from this dataset is shown in
Fig. 6a.

NanEye phantom placenta dataset

Images were captured from the NanEye camera that was
integrated in the distal tip of the newly developed flex-
ible scope [1]. An in silico model has been created by
submerging a silicon placenta (Fig. 7) into a water tank.
The tank was painted black and covered with an opaque
lid producing an environment devoid of external light. The
environment was then illuminated by a light source via
the optical fiber embedded in the flexible scope. Over-
all, this closely mimicked the view during actual TTTS.
As shown in Fig. 7, a 6-DoF electromagnetic tracking
sensor (NDI, Waterloo [16]) is attached to the instru-
ment tip. From the pose information and knowledge of
the location of the in silico model, ground truth data were
derived.
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Fig. 7 Silicon placenta phantom in water tank used to generate datasets
with NanEye, rod-lens and fiber-bundle scopes

To train the network, enough variations in NanEye
images and more specifically variations in relative orien-
tations must be used. Figure 5 shows that for freehand
motion the relevant space is sampled uniformly. To over-
come poor sampling data-augmentation was applied by
rotating the image, i.e., the origin of frame {C}, around
its center, incrementally by 5. The corresponding values of
[x_component, y_component] were obtained by comput-
ing the rotated projection of Pz along the image frame. A
dataset of 11,000 samples was created out of which 500 and
1000 samples were taken for validation and test, respectively.
A sample of such image can be seen in Fig. 6b. As NanEye
being the image source from the proposed actuated flexible
instrument, the model trained on this dataset will be used
as the feedback sensor for the autonomous distal tip con-
troller.

Rod-lens and fiber-bundle phantom placenta datasets

Although a chip-on-tip camera is used in the present pro-
totype, a fiber-bundle may be considered in the future.
Figure 3b shows an instrument currently used in clinic. Typ-
ically, surgeons change between straight and curved scopes
during an intervention. Hence, introducing image samples
from a rod-lens scope and a fiber-bundle scope is also impor-
tant. Two datasets were generated using a commercially
available straight (rod-lens) and curved (fiber-bundle) scope.
These datasetswere generated and augmented using the same
approach and phantom as in “NanEye Phantom Placenta
Dataset” section. Aftermerging, a single, henceforth referred
to as RL-FB (rod-lens and fiber-bundle) dataset, was created.
This dataset contains 23,400 samples. Sample images from
the associated fiber-bundle and rod-lens scopes are visible in
Fig. 6c, d.

Real data

Four fetoscopic videos of real interventions, representative
for the viewing conditions when operating with a laser, were

recorded in the operating room (OR). From these, 50 frames
were hand-picked such as to represent: a wide range of
relative inclinations and distances between the camera and
the placental surface; natural noise in the images such as
turbidity of the amniotic fluid, floating particles, and differ-
ent zooming and lighting conditions. Four images can be
seen in Fig. 6e–h. The ground truth for this data is unfor-
tunately not available. The hypothesis is that, by including
a small amount of these images during training, the net-
work gets familiarized with real in vivo data examples and
may hence perform better on such data, while the accu-
racy of inference is realized by the larger number of labeled
examples. We do not expect that these in vivo images need
too accurate labeling. Crude hand-labeling, e.g., by compar-
ing the light pattern with the labeled images, is expected
to be a pragmatic but acceptable way to move forward.
Subsequently, each image frame was manually labeled by
comparison with an image of known labels. The comparison
was made based on the illumination pattern resemblance.
This produces a dataset with samples sparsely situated in the
output space. The distribution of the data was augmented
using the same approach as in “NanEye Phantom Placenta
Dataset” section, by rotating the images and calculating the
corresponding values of the rotating Pz projection. This
dataset is henceforth referred to as the OR dataset. 40 images
were used to create a training dataset (2880 samples), and
10 images were used to create the test dataset (720 sam-
ples).

The networkmodel

For this application, we propose a simple network, shown
in Fig. 8, with 4 convolutional layers and 3 fully connected
(FC) layers. The network architecture and hyperparameters
were chosen based on inspiration from literature [17], and
an iterative performance evaluation with the simulated train-
ing dataset. The performance on 3-channel color images was
evaluated, but it was found that the network was able to learn
also from a single channel grayscale image scaled down to
200× 200 pixels. This gave an advantage in the training and
inference speed. By adopting a Stride 2 for maxpooling in
layers 3 and 4, the filters were found to identify bigger fea-
tures in earlier layers. As output layer, a FC layer of two
units was used. As we are focusing on the regression of con-
tinuous output values, no softmax operation was applied to
the last layer. Layers 3 to 6 have a dropout of 20% for reg-
ularization. A Leaky ReLU activation function is used for
all the layers because it was shown to be more effective
for image processing applications than a normal ReLU [23]
.
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Fig. 8 A schematic diagram of the employed CNN featuring 4 convolutional and 3 fully connected layers

Fig. 9 Shared control scheme
for autonomous distal placenta
alignment

Shared control operation

The proposed shared control approach allows autonomous
control of the flexible distal tip while having the grossmotion
under human control. Figure 9 shows the control scheme to
steer the distal tip. The CNN is included in the return channel
of the feedback controller. The CNN estimates the inclina-
tion from the fetoscopic images. The estimated parameters
(xm, ym) are compared to the desired values (for perpendic-
ular inclination these are [0, 0]). Via the inverse kinematics
block allows computing the desired joint values (R1d , R2d)
for given inclination errors (xe, ye) and for a given pose
WTE of the instrument’s straight section. The joint errors
are amplified via a PID to compute the steering commands
(R1cmd, R2cmd) that are sent to the two actuators of the
instrument. As the distal tip moves, placental images are
updated. Then, the loop is closed again. Note that whenever
the handle pose changes, WTE changes and steering com-
mands are updated.

A single subject participated in the experiments with basic
prior experience of the procedure in order to assess the
difference of techniques without any bias.Three different
configurations were tested. The task was executed with a
normal straight scope, with a manually controllable bend-
able scope (using the lever) and with the above proposed
shared control scheme. Each configuration was performed 5
times. The orientation of the scope relative to the ablation
site was measured, and the deviation from perpendicularity
was computed.

Fig. 10 Experimental setup with motion tracking and mixed reality
simulator. The placenta photograph with landmarks marked with letters

Experiments

Experimental setup

A mixed reality setup, shown in Fig. 10, is used for vali-
dating the shared control scheme [10]. The setup consists
out of an endoscope, a box mimicking the body wall and
a virtual reality simulator. The endoscope handle contains
a lever that controls the bending of the flexible distal tip.
This can be used for manual operation and is by-passed in
shared control operation. A rigid straight metal tube with
an electromagnetic (EM) sensor (NDI, Aurora) at the tip
represents the instrument shaft. A magnetic field genera-
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tor is placed behind an acrylic box. The motion tracking
system captures wTE in real-time and sends this to the vir-
tual reality simulator at 40 Hz. Also the flexible segment is
represented virtually. The position of the camera and light
source at the flexible tip ETC are computed from the lever
pose and/or from the control command. The box mimics the
uterine cavity. The upper surface, which ismade out ofmesh-
infused silicon, mimics the body wall. The resistance that is
felt corresponds closely to reality. The placenta, its inclina-
tion and the illumination are rendered virtually inside the
box.

Experimental protocol

An experimental task is designed to mimic the basic skills
required for TTTS laser coagulation. The goal is to locate
landmarks (marked by letters) on the surface of the pla-
centa in a given sequence. For each landmark, the subject
is asked to hold the laser target, visualized as a green dot
in the center of this mark. He/she should maintain, in line
with the clinical practice, the laser at an optimal distance
of 10–20 mm from the surface. Then, the landmark is to be
coagulated by pushing a foot pedal and triggering the laser.
Figure 10 shows the placenta image that was used for the
experiments.

Results

The network was trained with a learning rate of 0.0001 and
a batch size of 100. The Naneye dataset was trained sepa-
rately due to reasons that the chip-on-tip image is square,
while the RL-FB and in vivo datasets have a circular field
of view. The simulation dataset served to design the model
and for tuning the hyperparameters. This trained model
was then used to initialize the weights for the other net-
works. The Adam optimizer was used for training [11].
From observing the performance on the validation dur-
ing training, we found that the network stops learning
after 50 epochs. On average, inference takes 4 ms with
one GPU. Inference can thus be done in real-time at 250
Hz.

The accuracy is calculated by converting the predic-
tions to angles. If both angles are within the acceptable
range of ± 5◦, the predictions are deemed accurate. Table 1
summarizes the performance of the network on different
training datasets. The third column shows the performance
of the test dataset based on the corresponding training
dataset, e.g., the test performance in simulation for a net-
work trained on simulation data only (first row), the test
performance on NanEye based on network trained on Nan-
Eye data (second row) and so on. In an ideal scenario, a
single network should be robust enough to predict accu-

Table 1 Performance of the network trained on different datasets

Training
dataset

Epochs Accuracy on test
dataset (%)

Accuracy on in vivo
test dataset (%)

Simulation 100 87 11

NanEye 80 81 NA

RL-FB 80 89 4

OR + RL-FB 80 85 60

Performance is measured on test datasets of the corresponding training
datasets (column 3) and then on the in vivo test dataset (column 4)

rately on unseen data from any type of imaging source
and in-utero conditions. The fourth column of Table 1
shows how these networks perform on the real in vivo test
dataset.

Figure 11 shows the heat map of the Combined error
distributed over the surface of the placenta image. This error
is

Combined error = arccos(WZC · WZP ), (3)

the angle between the normal vector to the placental surface
Pz and the vector Cz , without being dissolved into x and y
components. The coordinates of the distal tip with respect to
the virtual image plane were recorded along with the com-
bined error. This Fig. 11 shows clearly which regions of the
placental surface are more prone to perpendicularity errors
during operation. In the laser ablation therapy, the surgeon
not only aims to accurately ablate the target, but also navi-
gates over the placental surface to locate more targets. The
surgeon may also has to ablate in a line along the placental
equator (Solomon’s technique [20]) which requires navi-
gation while maintaining a perpendicular angle. Figure 11
shows these errors while ablation and navigation over the
placenta surface.

Discussion

Table 1 shows the performance of the network inferences.
The network has 87% accuracy for the simulated dataset and
81% accuracy for the NanEye dataset. It means that 87% of
the images aremost likely to bewithin the acceptable range of
prediction error in case of virtual imaging source. This is an
acceptable rate of error for a real-time control running at 250
Hz (4 ms inference time). Similarly, for instruments employ-
ing NanEye image sensor, with proper filtering of inference
data, real-time control can be achieved. It is worth noticing
that the performance of the network on unseen in vivo sam-
ples increased from 4 to 60% by just adding a relatively small
amount of samples in the training dataset. This will be very
useful if it is decided, in future, to use fiber-bundle as an
imaging source in shared-controlled flexible instruments. In
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Fig. 11 Error of laser firing angle over the placental surface. a Straight scope without flexible tip, b rigid scope curved at a permanent angle, c
flexible tip with autonomous R2, manual R1, d flexible tip with manual control, e flexible tip with automatic control

Table 2 RMS and standard deviation of combined error from experiments in virtual reality simulator with straight rigid scope, flexible tip with
manual control and flexible tip with autonomous control

Exp Straight scope Flexible tip-manual Flexible tip-automatic

RMS Err
(degrees)

Total
RMS Err

Total
STD Err

RMS Err
(degrees)

Total
RMS Err

Total
STD Err

RMS
Err (degrees)

Total
RMS Err

Total
STD Err

1 40.28 39.81 7.61 14.26 13.66 9.15 6.52 5.93 3.76

2 36.79 16.54 5.61

3 43.22 13.98 7.34

4 41.53 11.27 5.68

5 37.23 12.25 4.50

future work, it would also be useful to add confidence mea-
sure of the model estimates as a parameter to be used for
stable and reliable control.

Figure 11 shows some interesting results by showing the
heatmap of combined error over the surface of the virtual pla-
centa, giving precise locations of areas with a higher degree
of error, which, in turn, are difficult to reach areas. Table 2
shows the RMS and the standard deviations of the combined
error. Figure 4a is the case with a straight scope, without any
flexible distal tip. The combined error for this configuration
is reaching values of more than 30◦ which is understandable
given the placenta plane is placed at 45◦ w.r.t to the entry
point. Figure 4d is the error map for the manual operation of
the instrument with the flexible distal tip. It is evident that the
errors have significantly reduced by just adding the flexible
tip at the same instrument for the same placenta orientation.
From Table 2, a slight increase in standard deviation in the
case of the manual flexible tip is observed. It may be inferred
as an indication that this configuration is slightly more diffi-
cult for the user as compared to a rigid straight instrument.
Figure 4e shows the best performing configuration in terms
of combined errors in difficult to reach areas. This is due to
the autonomous control of the distal flexible tip using the
trained CNN for pose estimation. Table 2 shows very low
values of standard deviation for automatic control indicating
stability and also the RMS of combined error is significantly
lower than the manual control of the same instrument.

Conclusion

This work proposed a new shared-control approach for
fetoscopic applications whereby a distal bendable tip is con-
trolled autonomously via a CNN that estimates the relative
orientation of the placental surface. The feasibility of pla-
centa pose estimation through a CNN was demonstrated
experimentally on a setup that mimics the real motion of an
instrument or at least in a manner as it is expected to behave
during the laser coagulation procedure. It was shown that
autonomous distal tip alignment helped keeping the distal tip
within an acceptable error range of 5◦ for the designed tasks.
The results with the autonomous controller were found to be
superior to those of manual control. It was further found that
adding a limited set of crudely labeled in vivo samples (OR
dataset) to the training dataset (OR+RL-FB) improved the
performance significantly compared to networks that were
only trained on the RL-FB dataset. The instrument worked
well within acceptable performance ranges. The instrument’s
response was fast. The flexible tip adapted autonomously
when operated in a shared control fashion.

Some errors were found at the center of the placental sur-
face. It is believed that these errors are caused by the user
moving away from the surface to obtain a larger overview
upon the surface for better navigation. In principle these
errors are not problematic as they typically do not take place
during ablation. Note that this effect is reduced with the
autonomous control. Latency of data acquisition and the poor
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quality of images in the instrument with chip-on-tip camera
may cause challenges for real-time control. These challenges
can be reduced by adding 2 optical fibers, instead of just
one, for increased illumination. Also, using a fiber-bundle as
image conduit for and external high resolution camera will
improve quality of the acquired data.
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