Skip to main content
. 2020 Aug 12;7(4):044501. doi: 10.1117/1.JMI.7.4.044501

Table 5.

Comparison with other studies that use multimodal data.

Study Method Data source Brain region Objective Performance
This study 3D-CNN multimodal Baseline MRI + Whole brain Predicting fast decliners AUC: 0.70
Baseline MMSE + Acc: 63.3%
Demographic data + Sens: 60.8%
Baseline scalar volume Spec: 65.2%
Lee et al.4 Recurrent NN multimodal Baseline MRI + Regional hippocampus MCI-to-AD conversion AUC: 0.86
Demographic data + Acc: 81%
Long. CSF biomarkers + Sens: 84%
Long. cognitive performance + Spec: 80%
Lin et al.28 2.5D-CNN multimodal PCA + Lasso + NN Baseline MRI + Regional hippocampus MCI-to-AD conversion AUC: 0.86
325 free surfer feature Acc: 79.9%
Sens:84.0%
Spec:74.8%
Lu et al.37 Multimodal multiscale NN MRI + FDG-PET Whole brain Stable MCI versus progressive MCI Acc: 82.9%
Long. time-points Sens:79.7%
Spec:83.8%
Esmaeilzadeh et al.14 Multimodal MRI + Whole brain AD-NC-MCI classification Acc: 94.1%
Age + Gender Sens:94%
Sens:91%
Moradi et al.8 Random forest multimodal Baseline MRI + Age Whole brain MCI-to-AD conversion AUC: 0.9
Baseline cognitive measurements + Acc: 82%
(RAVLT + ADAS-cog) Sens: 87%
(MMSE + CRD-SB + FAQ) Spec:74%
Spasov et al.35 3D-CNN multimodal MRI + Whole brain MCI-to-AD conversion AUC: 0.925
Demographic data + Acc: 86%
Neuropsychological data + Sens: 87.5%
APOe4 genetic data Spec:85%

ML, machine learning; 2-D: two-dimension, 3-D: three-dimension; NN, neural network; CNN, convolutional neural network; R-CNN, recurrent convolutional neural network; Acc, accuracy; Sens, sensitivity; Spec, specificity; AUC, area under curve; CSF, cerebrospinal fluid; Long, longitudinal; RAVLT, Rey’s auditory verbal learning test; ADAS-cog, Alzheimer’s disease assessment scale cognitive subtest; MMSE, mini-mental state examination; CDR-SB, clinical dementia rating sum of boxes; FAQ, functional activities questionnaire.