Skip to main content
. 2020 Jul 28;8(7):e16850. doi: 10.2196/16850

Table 1.

Comparison of model performance between logistic regression and machine-learning models.

Duration Logistic regression Gradient boosting machine Deep learning Random forest

AUCa (range) RMSEb AUC (range) RMSE AUC (range) RMSE AUC (range) RMSE
3 years 0.7401 (0.7262-0.7541) 0.1203 0.7927 (0.7803-0.8051) 0.1197 0.7769 (0.7639-0.7899) 0.1244 0.7868 (0.7742-0.7993) 0.1198
5 years 0.7192 (0.7084-0.7301) 0.1633 0.7769 (0.7673-0.7864) 0.1620 0.7610 (0.7566-0.7762) 0.1667 0.7769 (0.7612-0.7804) 0.1622
7 years 0.6990 (0.6901-0.7077) 0.2087 0.7589 (0.751-0.7668) 0.2063 0.7526 (0.7446-0.7606) 0.2099 0.7531 (0.7452-0.761) 0.2066
10 years 0.6885 (0.6801-0.6961) 0.2318 0.7491 (0.7426-0.7570 ) 0.2314 0.7374 (0.7339-0.7486) 0.2435 0.7439 (0.7365-0.7510) 0.2318

aAUC: area under the receiver operating characteristic curve.

bRMSE: root mean squared error.