Table 1.
Duration | Logistic regression | Gradient boosting machine | Deep learning | Random forest | ||||
|
AUCa (range) | RMSEb | AUC (range) | RMSE | AUC (range) | RMSE | AUC (range) | RMSE |
3 years | 0.7401 (0.7262-0.7541) | 0.1203 | 0.7927 (0.7803-0.8051) | 0.1197 | 0.7769 (0.7639-0.7899) | 0.1244 | 0.7868 (0.7742-0.7993) | 0.1198 |
5 years | 0.7192 (0.7084-0.7301) | 0.1633 | 0.7769 (0.7673-0.7864) | 0.1620 | 0.7610 (0.7566-0.7762) | 0.1667 | 0.7769 (0.7612-0.7804) | 0.1622 |
7 years | 0.6990 (0.6901-0.7077) | 0.2087 | 0.7589 (0.751-0.7668) | 0.2063 | 0.7526 (0.7446-0.7606) | 0.2099 | 0.7531 (0.7452-0.761) | 0.2066 |
10 years | 0.6885 (0.6801-0.6961) | 0.2318 | 0.7491 (0.7426-0.7570 ) | 0.2314 | 0.7374 (0.7339-0.7486) | 0.2435 | 0.7439 (0.7365-0.7510) | 0.2318 |
aAUC: area under the receiver operating characteristic curve.
bRMSE: root mean squared error.