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Abstract
Key message  The expectation and variance of the estimator of the maximized index selection response allow the 
breeders to construct confidence intervals and to complete the analysis of a selection process.
Abstract  The maximized selection response and the correlation of the linear selection index (LSI) with the net genetic merit 
are the main criterion to compare the efficiency of any LSI. The estimator of the maximized selection response is the square 
root of the variance of the estimated LSI values multiplied by the selection intensity. The expectation and variance of this esti-
mator allow the breeder to construct confidence intervals and determine the appropriate sample size to complete the analysis 
of a selection process. Assuming that the estimated LSI values have normal distribution, we obtained those two parameters 
as follows. First, with the Fourier transform, we found the distribution of the variance of the estimated LSI values, which 
was a Gamma distribution; therefore, the expectation and variance of this distribution were the expectation and variance 
of the variance of the estimated LSI values. Second, with these results, we obtained the expectation and the variance of the 
estimator of the selection response using the Delta method. We validated the theoretical results in the phenotypic selection 
context using real and simulated dataset. With the simulated dataset, we compared the LSI efficiency when the genotypic 
covariance matrix is known versus when this matrix is estimated; the differences were not significant. We concluded that 
our results are valid for any LSI with normal distribution and that the method described in this work is useful for finding the 
expectation and variance of the estimator of any LSI response in the phenotypic or genomic selection context.

Introduction

The maximized selection response and the correlation of the 
linear selection index (LSI) with the net genetic merit are 
the main criterion to compare the efficiency of any LSI. The 
selection response is the expectation of the net genetic merit 
of the selected individuals when the mean of the original 
population is zero, whereas the net genetic merit is a linear 
combination of the true unobservable breeding values of 
traits weighted by their respective economic values (Smith 
1936; Cochran 1951). The LSI theory is divided into two 

main parts: (1) the unconstrained LSI (Smith 1936) and (2) 
the constrained LSI (Kempthorne and Nordskog 1959; Mal-
lard 1972). The constrained LSI imposes restrictions on the 
expected genetic gain (or multitrait selection response) of 
some traits to make some of them change their expected 
genetic gain values based on a predetermined level, while 
the rest of them remain without restrictions. This index is 
the most general LSI, and it includes the unconstrained LSI 
as a particular case.

The unconstrained and constrained LSI can be a linear 
combination of phenotypic values (Smith 1936; Mallard 
1972), genomic estimated breeding values (GEBV) (Ceron-
Rojas et al. 2015; Cerón-Rojas and Crossa 2019), or pheno-
typic values and GEBV (Dekkers 2007) jointly. It can also be 
a linear combination of phenotypic values and marker scores 
(Lande and Thompson 1990). Thus, there are three main 
kinds of LSI: phenotypic, genomic and marker. The main 
advantage of the LSI based on GEBV over the other indi-
ces lies in the possibility of reducing the intervals between 
selection cycles by more than two-thirds.
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The aims of any LSI are to predict the net genetic merit 
values of the candidates for selection, select parents for the 
next generation and maximize the selection response. When 
the phenotypic and genotypic variance and covariance are 
known, the maximized selection response is optimum and 
the LSI is the best linear predictor of the net genetic merit; 
in addition, the correlation between the net genetic merit 
and the LSI is maximized, and the mean prediction error is 
minimized.

The estimator of the maximized selection response is the 
square root of the variance of the estimated LSI values mul-
tiplied by the selection intensity. In this case, the phenotypic 
and genotypic variances and covariance are estimated and 
the expectation and variance of the estimator of the maxi-
mized selection response are unknown. Then, methods to 
find the expectation and variance of the estimator of the 
maximized LSI selection response are of interest to the 
breeder because they are important to complete the analysis 
of a selection process and because they allow the breeder to 
construct confidence intervals and determine the appropriate 
sample size for each selection cycle in a selection program.

The unconstrained and constrained linear phenotypic 
selection index (LPSI and CLPSI, respectively) theory was 
developed under the assumptions that the genotypic values 
that make up the net genetic merit are composed entirely 
of the additive effects of genes and that the LPSI (CLPSI) 
and the net genetic merit have bivariate normal distribu-
tion (Smith 1936, Kempthorne and Nordkog 1959; Mallard 
1972). The major advantage of these indices is that they 
assign higher weights to traits whose differences are genetic. 
Their disadvantages are that they require large amounts of 
information, economic weights are difficult to assign and 
the sampling error could be large. Ceron-Rojas et al. (2015) 
and Cerón-Rojas and Crossa (2019) extended the LPSI and 
CLPSI theory to the genomic selection context and devel-
oped an unconstrained and a constrained linear genomic 
selection index (LGSI and CLGSI, respectively).

In the LPSI context, Tallis (1960) derived a large sample 
variance of LPSI weights for individually selecting any num-
ber of traits and the estimated LPSI selection response when 
phenotypic and genetic parameters are estimated in a half-sib 
analysis; however, the expressions are complicated and do not 
allow identifying situations where selection indices are likely 
to be inefficient. Williams (1962a) obtained an exact formula 
for the sampling variance of the index weights but for only two 
traits of a specific experimental design. Harris (1964) utilized 
the Delta method to determine the sampling properties of the 
index; however, the results are confusing and the author did not 
present a simple and general formula to find the expectation 
and variance of the estimator of the LPSI selection response. 
Hayes and Hill (1980) proposed a transformation of the trait 
variables used for constructing genetic selection indices, such 
that the sampling properties of the LPSI weights can be easily 

computed using a general formula; however, the formula 
depends on the transformation of the trait variables, which 
negatively affects the estimated LPSI selection response.

Assuming that the estimated LPSI and CLPSI values have 
normal distribution (we corroborated the normality assump-
tion using graphical methods and normality tests), we pre-
sent a simple and general formula to find the expectation and 
variance of the estimator of the maximized LPSI and CLPSI 
selection response, which we obtained in two steps. First, we 
obtained the distribution of the variance of the estimated LPSI 
and CLPSI values using the Fourier transform (Springer 1979, 
Chapters 2 and 9). Their distribution was a Gamma distribu-
tion, and therefore, the expectation and variance of this dis-
tribution were the expectation and variance of the variance of 
the estimated LPSI and CLPSI values.

In the second step, using the results obtained in the first 
step, we found the expectation and the variance of the estima-
tor of the maximized LPSI and CLPSI selection responses 
using the Delta method. We validated the theoretical results 
using real and simulated dataset. In addition, with the simu-
lated dataset, we compared the LPSI and CLPSI parameters 
when the genotypic covariance matrix is known versus when 
this matrix is estimated by restricted maximum likelihood 
(REML). We did this because while the sampling properties 
of the estimator of the phenotypic covariance matrix are well 
known (Rencher and Schaalje 2008), the sampling properties 
of the estimator of the genotypic covariance matrix are not 
well known. The results indicated that the differences are not 
significant. We concluded that our method is useful to find the 
expectation and variance of the estimator of the maximized 
selection response for any LSI with normal distribution.

Materials and methods

The net genetic merit and the LPSI

The individual net genetic merit is

where �� = [ g1 g2 ... gt ] and �� = [w1 w2 ... wt ] ( t = 
number of traits) are vectors of true unobservable breeding 
values and known economic values, respectively. The indi-
vidual linear phenotypic selection index (LPSI) is

where �� = [ b1 b2 ... bt ] is the LPSI vector of coefficients, 
and �� = [ y1 y2 ... yt ] is the vector of the traits of interest. 
The variances of H and I are �2

H
= ���� and �2

I
= ���� , 

respectively, where � and � are t × t covariance matrices of 
genotypic (g) and trait phenotypic values ( � ), respectively.

(1)H = ���,

(2)I = ���,
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The LPSI selection response

The LPSI selection response ( R ) is the expectation of H (Eq. 1) 
for a proportion p of individuals selected and can be written as

where k = z(u)

p
 is the intensity of selection, z(u) = exp{−0.5u2}√

2�
 

is the height of the ordinate of the normal curve and u =
I−�I

�I
 

is the truncation point, whereas �I and �I =
√
���� are the 

mean and standard deviations of the variance of I (Eq. 2); 
�H =

√
���� is the standard deviation of the variance H 

and � =
����√

����
√
����

 is the correlation between H and the 

LPSI, whereas �HI = ���� is the covariance between H and 
I.

The genetic gain in Eq. (3) will be larger as p becomes 
smaller—i.e., as the selection intensity becomes more intense. 
Equation (3) is the same for all LSI; the only change is the type 
of information (phenotypic or genomic) and restrictions used 
when the index vector of coefficients is obtained to predict H 
and to maximize Eq. (3).

The maximized LPSI selection response 
and coefficient of correlation

The maximized LPSI selection response and the correlation 
of the LPSI with the net genetic merit are

respectively, where � = �−1�� (Cerón-Rojas and Crossa 
2018, Chapter 2). Equation (4a) predicts the mean improve-
ment in H due to indirect selection on I and is proportional 
to the standard deviation of the LPSI variance ( �I ) and the 
selection intensity k . Whereas in Eq. (3) R can take any 
value, in Eq. (4a) Rmax gives the maximum value of Eq. (3). 
This is the main difference between the two equations.

The expected genetic gain per trait

The main objective of the CLPSI is to maximize Eq. (3) under 
some restrictions imposed on the expected genetic gain per 
trait ( � ), which can be written as

We defined all the terms in Eq.  (5) earlier. The type 
of restriction imposed on Eq. (5) can be a null restriction 

(3)R = k�H�HI ,

(4a)Rmax = k
√
���� = k�I ,

(4b)�max =

√
����√
����

,

(5)� = k
��√
����

.

(RLPSI) or a predetermined constraint (CLPSI). Thus, let 
�� = [ d1 d2 ⋯ dr ] be a vector of r constraints and assume 
that �q is the population mean of the qth trait ( q = 1, 2,⋯ , r , 
and r is the number of constraints) before selection. The 
CLPSI changes �q to �q + dq , where dq is a predetermined 
change in �q imposed by the breeder. When � is a null vector, 
we have a null restricted LPSI (RLPSI), which is a particular 
case of the CLPSI. The restriction effects will be observed 
on the CLPSI expected genetic gains per trait (Eq. 5), where 
each restricted trait will have an expected genetic gain 
according to the �� = [ d1 d2 ⋯ dr ] values imposed by the 
breeder.

Equation (5) is the same for all LSI; the only change is the 
type of information (phenotypic or genomic) and restrictions 
used when the LSI vectors of coefficients are obtained to 
predict H and to maximize Eq. (3).

The CLPSI vector of coefficients

Let ��

=

⎡⎢⎢⎢⎣

dr
0

⋮

0

0

dr
⋮

0

…

…

⋱

…

0

0

⋮

dr

−d1
−d2
⋮

−dr−1

⎤⎥⎥⎥⎦
 be a Mallard (1972) 

matrix (r − 1) × r of predetermined proportional gains, 
where dq ( q = 1, 2… ,r ) is the qth element of vector 
�� = [ d1 d2 ⋯ dr ] , and let �′ be a matrix of 1′s and 0′s, 
where 1 indicates that the traits are restricted and 0 that the 
traits are not restricted (Kempthorne and Nordskog 1959). 
To obtain the CLPSI vector of coefficients, we minimized 
the mean-squared difference between I and H , E[(H − I)2] , 
with respect to � under the restriction ������ = � , where � 
is the covariance matrix of genotypic values.

The CLPSI vector of coefficients is

w h e r e  � = [�t −�]  ,  � = �−1�(���
−1
�)−1��  , 

�� = ����� , �t  is an identity matrix of size t × t 
and � = �−1�� . When � is a null vector, � = � , 
� = �−1��(����

−1
��)−1��� , and the CLPSI is the 

RLPSI. When � = � and �′ is a null matrix, � = � . Thus, 
the CLPSI is the most general linear phenotypic selection 
index and includes the LPSI and the RLPSI as particular 
cases.

The maximized CLPSI selection response 
and coefficient of correlation

The maximized CLPSI selection response and the correla-
tion of the LPSI with the net genetic merit are

(6)� = ��,

(7a)RmaxC = k
√
���� = k�IC ,
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respectively, where k is the selection intensity. Under r 
restrictions, Eq. (7a) predicts the mean improvement in H 
due to indirect selection on IC = ���.

Estimators of the LPSI and CLPSI vector 
of coefficients

We denote the restricted maximum likelihood (REML) esti-
mators of matrices � and � as �̂ and �̂ , respectively (Cerón-
Rojas and Crossa 2018, Chapter 2), from where the LPSI 
and CLPSI vectors of coefficients ( � = �−1�� and � = �� ) 
can be estimated, respectively, as

where  �̂ = [�t − �̂] ,  𝐐̂ = 𝐏̂−1𝐌̂(𝐌̂�𝐏̂
−1
𝐌̂)−1𝐌̂�  and 

𝐌̂� = 𝐃�𝐔�𝐂̂.

Estimators of LPSI and CLPSI

By Eq. (8), the estimators of LPSI ( I = ��� ) and CLPSI 
( IC = ��� ) are

(7b)�maxC =

√
����√
����

,

(8)𝐛̂ = 𝐏̂−1𝐂̂𝐰 and 𝛃̂ = 𝐊̂𝐛̂,

respectively. The Î and ÎC values (Eq. 9) are used to rank and 
select genotypes in the population. In this work, we assumed 
that the Î and ÎC values have normal distributions (Fig. 1).

Estimator of the LPSI and CLPSI variances

The estimator of the variance of the LPSI ( �2
I
= ���� ) is

where m̂ =
1

n

∑n

j=1
Îj is the arithmetic means of the Î values. 

In a similar manner, the estimator of the variance of the 
CLPSI ( �2

IC
= ���� ) is

where 𝜇̂ =
1

n

∑n

j=1
ÎCj

 is the arithmetic means of the ÎC val-
ues. In both equations, n is the size of the population in each 
selection cycle.

It is possible to estimate �2
I
= ���� as 𝜎̂2

I
= 𝐛�𝐏̂𝐛̂ , and 

�2
IC
= ���� as 𝜎̂2

IC
= 𝛃�𝐏̂𝛃̂ ; however, in this work, we found 

(9)Î = 𝐛�𝐲 and ÎC = 𝛃�𝐲,

(10)S2
I
=

1

n − 1

n∑
j=1

(Îj − m̂)2,

(11)S2
IC
=

1

n − 1

n∑
j=1

(ÎCj
− 𝜇̂)2,

Fig. 1   Histograms and quantile–quantile plots of the estimated LPSI (Fig. 1a, d, respectively) and CLPSI (Fig. 1b, c, respectively) values for a 
real dataset with four traits and 247 genotypes
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that the estimated values of 𝜎̂2
I
 and 𝜎̂2

IC
 are the same as those 

of Eqs. (10) and (11), respectively. We estimated �2
I
= ���� 

and �2
IC
= ���� with S2

I
 and S2

IC
 , respectively, because when 

Î and ÎC have normal distribution, it is easier to find the 
distribution of the S2

I
 and S2

IC
 values (Appendices A–D) than 

the distribution of the 𝜎̂2
I
= 𝐛�𝐏̂𝐛̂ and 𝜎̂2

IC
= 𝛃�𝐏̂𝛃̂ values. The 

expectation and variance of S2
I
 and S2

IC
 are useful to find the 

expectation and variance of the estimator of the maximized 
selection responses of both indices.

Estimators of the maximized selection 
responses

By Eqs. (10) and (11), the estimators of the maximized LPSI 
and CLPSI selection responses are

and

respectively.

Testing the normality assumption to the estimated 
LPSI and CLPSI values

For the real dataset, we corroborated the normality assump-
tion to the estimated LPSI and CLPSI values using graphical 
methods (histograms and normal quantile–quantile plots) 
and analytical test procedures (the Shapiro–Wilk and Kol-
mogorov–Smirnov normality tests), while for the simulated 
dataset, we used only analytical test procedures.

If the estimated LPSI and CLPSI values have normal dis-
tribution, the histograms of the values of both indices should 
not show a strong negative or positive skew in the LPSI and 
CLPSI values seen in the histogram (Fig. 1a, b). In a similar 
manner, if the estimated LPSI and CLPSI values are normally 
distributed, the LPSI and CLPSI values should form a straight 
line in the quantile–quantile plots (Fig. 1c, d). If there are 
departures from normality, the LPSI and CLPSI values should 
show up as various kinds of nonlinearity, e.g., S-shaped or 
banana-shaped in the quantile–quantile plots (Crawley 2015).

We tested the null hypothesis that the estimated LPSI 
and CLPSI values have normal distribution using the Sha-
piro–Wilk and Kolmogorov–Smirnov normality tests. The 
statistical value of the Shapiro–Wilk test should be close to 
1.0 to accept the null hypothesis, while the statistical value 
of the Kolmogorov–Smirnov test should be close to 0.0 to 
accept the null hypothesis (Crawley 2015).

(12)R̂max = k

√
S2
I

(13)R̂maxC = k

√
S2
IC
,

Estimator of the maximized LPSI and CLPSI selection 
responses using � versus �̂.

Based on the Cauchy–Schwarz inequality, in Appen-
dix A (Eqs.  A1–A3), we describe an upper bound-
ary for the maximized LPSI and CLPSI selection 
responses. By Eq. (A2), k

√
�′�� is the maximum pos-

sible value of the maximized LPSI selection response 
( Rmax = k

√
���� = k

√
����−1�� ); i.e., Rmax ≤ k

√
�′�� . 

In a similar manner, by Eq. (A3), k
√
�′�� is the maximum 

possible value of the maximized CLPSI selection response 
( RmaxC = k

√
���� ), i.e., RmaxC ≤ k

√
�′��.

In the simulated datasets, the true genotypic covariance 
matrix � is known. Thus, in this case, it is possible to esti-
mate the LPSI vector of coefficients as �̂ = �̂−1�̂� , where 
�̂ is the REML of � , and as �̃ = �̂−1�� , where � is known. 
In the CLPSI context, we would have 𝛃̂ = 𝐊̂𝐛̂ (Eq. 8) and 
𝛃̃ = 𝐊̃𝐛̃ , where �̃ = [�t − �̃] , 𝐐̃ = 𝐏̂−1𝐌̃(𝐌̃�𝐏̂

−1
𝐌̃)−1𝐌̃� 

and 𝐌̃� = 𝐃�𝐔�𝐂 . In both cases, the only difference 
among the estimator of the indices vectors of coefficients 
is matrix � . With these results, we can compare the maxi-
mized LPSI selection response when this is estimated as 

R̂max = k

√
𝐰�𝐂̂𝐏̂

−1
𝐂̂𝐰  and as R̃max = k

√
𝐰�𝐂𝐏̂

−1
𝐂𝐰  , 

where the only difference is matrices �̂ and � . If �̂ is a 
good estimate of � , we would expect that R̂max and R̃max be 
equivalent, and we would assume that �̂ is a good estimator 
of � . The same is true for the CLPSI.

Variance and confidence interval for the LPSI 
and CLPSI correlation coefficients using � and �̂.

In Appendix A (Eqs. A4 and A5), we describe the standard 
deviation of the variance of �max (Eq. 4b) and �maxC(Eq. 7b) 
and one form to construct an approximated 100(1 − � )% 
confidence interval for �max and �maxC . In the simulated data-
set selection context, for the REML estimate �̂ , the esti-
mated LPSI and CLPSI correlation coefficients ( �max and 

�maxC , respectively) are r̂max =

√
𝐛�𝐏̂𝐛̂√
𝐰�𝐂̂𝐰

 and r̂maxC =

√
𝛃̂�𝐏̂𝛃̂√
𝐰�𝐂̂𝐰

 , 

respectively, whereas for matrix � , those estimates are 

𝜌̃max =

√
𝐛�𝐏̂𝐛̃√
𝐰�𝐂𝐰

 and 𝜌̃maxC =

√
𝛃̃�𝐏̂𝛃̃√
𝐰�𝐂𝐰

 , respectively, where 

�̃ = �̂−1�� and 𝛃̃ = 𝐊̃𝐛̃ . The only difference of those esti-
mates is matrices �̂ and � . If �̂ is a good estimate of � , we 
would expect that r̂max and 𝜌̃max , and r̂maxC and 𝜌̃maxC , be 
equivalent. In such a case, we would assume that �̂ is a good 
estimator of � . Therefore, we compared these parameters in 
a similar manner as we did for the estimators of the maxi-
mized LPSI and CLPSI selection responses in the last 
subsection.
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Real data

To validate the theoretical results of the expectation and 
variance of the estimator of the maximized LPSI and CLPSI 
selection response, we used a real maize (Zea mays L.) F2 
population with 247 genotypes and four phenotypic traits: 
grain yield (GY, t/ha), plant height (PHT, cm), ear height 
(EHT, cm) and anthesis days (AD, d), where we assumed that 
the breeding objective was to increase GY while decreasing 
PHT, EHT and AD. The vector of economic weights for 
GY, PHT, EHT and AD was ��

= [ 5 −0.3 −0.3 −1 ] for 
both indices. Beyene et al. (2015) described this dataset and 
denoted it as JMpop1 DTMA Mexico optimum environment.

We estimated � and � by REML, and we denoted such 
estimates as �̂ and �̂ , i.e.,

�̂ =

⎡
⎢⎢⎢⎣

1.40 4.69 3.25 0.12

4.69 130.57 68.39 0.80

3.25 68.39 68.22 −0.72

0.12 0.80 −0.72 1.44

⎤
⎥⎥⎥⎦

 a n d 

�̂ =

⎡⎢⎢⎢⎣

0.94 3.76 2.62 0.29

3.76 72.24 43.81 1.99

2.61 43.81 35.60 0.31

0.29 1.99 0.31 0.90

⎤⎥⎥⎥⎦
 . For illustration purposes 

only, in the CLPSI context, we restricted traits GY, PHT and 
EHT with vector �� = [ 0.5 −1.0 −0.5 ] and matrices 

�� =

⎡⎢⎢⎣

1 0 0 0

0 1 0 0

0 0 1 0

⎤⎥⎥⎦
 and �� =

[
−0.5 0 −0.5

0 −0.5 1.0

]
 , when we 

made selection. For both indices, the total proportion of 
retained value for this dataset was p = 0.10 ( k = 1.755).

Simulated datasets

The datasets were simulated by Ceron-Rojas et al. (2015) 
with QU-GENE software (Podlich and Cooper 1998) using 
2500 molecular markers and 315 quantitative trait loci 
(QTLs) for eight phenotypic selection cycles (C0 to C7), 
each with four traits ( T1 , T2 , T3 and T4 ), 500 genotypes and 
four replicates for each genotype. The authors distributed 
the markers uniformly across ten chromosomes and the 
QTLs randomly across the ten chromosomes to simulate 
maize (Zea mays L.) populations. A different number of 
QTLs affected each of the four traits: 300, 100, 60, and 40, 
respectively. The common QTLs affecting the traits gener-
ated genotypic correlations of − 0.5, 0.4, 0.3, − 0.3, − 0.2, 
and 0.1 between T1 and T2 , T1 and T3 , T1 and T4 , T2 and T3 , T2 
and T4 , T3 and T4 , respectively. The economic weights for T1 , 
T2 , T3 and T4 were 1, − 1, 1 and 1, respectively.

We used seven phenotypic selection cycles (C1 to C7) 
with p = 0.10 ( k = 1.755 ) in each cycle. We selected all four 
traits in each selection cycle. For illustration purposes only, 
in the CLPSI context, we restricted traits T1 , T2 and T3 with 

vector �� = [ 5 − 2 3 ] and matrices �� =

⎡⎢⎢⎣

1 0 0 0

0 1 0 0

0 0 1 0

⎤⎥⎥⎦
 and 

�� =

[
3 0 −5

0 3 2

]
 when we made selection. We estimated � 

and � by REML, and we denoted such estimates as �̂ and �̂ . 
In addition, we use this dataset to compare the results of the 
maximized LPSI and CLPSI response (and correlation with 
the net genetic merit), when matrix � is known and when 
this matrix is estimated ( ̂�).

Real and simulated data availability

The real and simulated datasets are available in the Appli-
cation of a Genomic Selection Index to Real and Simu-
lated Data repository, at https​://hdl.handl​e.net/11529​
/10199​, where the folder of the real dataset is denoted as 
DATA_SET-3, whereas the folder of the simulated dataset 
is denoted as PSI_Phenotypes-05.

Results

Theoretical results

Distribution, expectation and variance of S2
I
 and S2

IC
.

In Appendix B, we gave a brief description of the Fourier 
transform theory (Eqs. A6 to A8) used to find the distribu-
tion of S2

I
 and S2

IC
 . Based on the Springer (1979, Chapter 9) 

results, in Appendix C (Eqs. A9–A11), we present the math-
ematical process used to obtain the distribution of the S2

I
 and 

S2
IC

 values, and we showed that the distribution of S2
I
 and S2

IC
 

is a Gamma distribution ( r , � ), where r = n−2

2
 is the shape 

parameter and � =
n−1

2�2
 is the rate parameter (Stuart and Ord 

1987). The distribution of S2
I
 and S2

IC
 is essentially scaled 

Chi-squares ( r = n−2

2
 , a Chi-square with n − 2 degree of 

freedom and a scale of � =
n−1

2�2
 ). This is expected from their 

form as sums of squares of normally distributed data.
As shown in Appendix D (Eqs. A12–A15), the expecta-

tion and variance of S2
I
 and S2

IC
 were the expectation of the 

Gamma distribution ( r , � ). They are useful to obtain the 
expectation and variance of the estimator of the maximized 
LPSI (Eq. 12) and the maximized CLPSI (Eq. 13) selection 
responses. In r and � , n is the size of the population in each 
selection cycle and �2 is a parameter that denotes the 
unknown and fixed variance of I = ��� ( �2

I
= ���� ) or the 

unknown and fixed variance of IC = ��� ( �2
IC
= ����).

https://hdl.handle.net/11529/10199
https://hdl.handle.net/11529/10199
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Expectation and variance of R̂
max

= k

√
S
2

I
 

and R̂
max C

= k

√
S
2

IC
.

In Appendix E (Eqs. A16 and A17), we give a brief descrip-
tion of the Delta method, which we used to determine the 
expectations and the variance of R̂max = k

√
S2
I
 and 

R̂maxC = k
√

S2
IC

 . In this subsection, we present the expecta-
tions and variances only in terms of R̂max ; however, the 
results can be applied to any linear selection index with nor-
mal distribution.

Let Y = k
√
S2 = R̂ , where k (the selection intensity) is a 

fixed constant, � = E(S2) = �2
I
 and Var(S2) = 2(�2

I
)2

n−1
 (Appen-

dix D, Eqs. A14 and A15, respectively). According to the 
Delta method, the expectation, variance and standard devia-
tion of R̂max are:

respectively, where �
I
=
√
���� and �2

I
= ���� are the 

unknown and fixed standard deviation and variance of 
I = ��� . The results of Eqs. (14) to (16) are the same for the 
CLPSI, changing �2

I
= ���� by �2

IC
= ���� . In Eq. (14), the 

term k�I

4(n−1)
 is the bias of the estimator R̂max and the symbol 

“ ≈ ” denotes an approximation. Equation (14) indicates that 
in the asymptotic context, R̂max is an unbiased estimator of 
Rmax = k

√
���� , whereas Eq. (15) indicates that the vari-

ance of R̂max tends to zero when n increases. That is, when 
the number of genotypes ( n ) increases in the training popula-
tion, the particular realizations of R̂max will be concentrated 
around the Rmax value. The same is true for the R̂maxC values 
of the CLPSI and RmaxC = k

√
����.

We can estimate Eqs. (14), (15) and (16) as

(14)E(R̂max) ≈ k𝜎I −
k𝜎I

4(n − 1)
,

(15)Var(R̂max) ≈
k2𝜎2

I

2(n − 1)
,

(16)SD(R̂max) ≈
k𝜎I√

2(n − 1)
,

(17)Ê(R̂max) = kSI −
kSI

4(n − 1)
,

(18)V̂ar(R̂max) =
k2S2

I

2(n − 1)
,

(19)SD̂(R̂max) =
kSI√

2(n − 1)
,

respectively, where S
I
 and S2

I
 are the standard deviation and 

variance of the Î = 𝐛�𝐲 values in each selection cycle. The 
same is true for S2

IC
 associated with the estimator of the maxi-

mized CLPSI selection response R̂maxC.

Desirable properties of the estimator of the maximized 
selection responses

An estimator should be unbiased, i.e., the expectation of the 
estimator should be equal to the parameter [ E(R̂max) = Rmax ], 
and the variance of the error of estimation [ Var(Rmax − R̂max) ] 
a n d  t h e  m e a n - s q u a r e d  e r r o r  ( M S E ,  i . e . 
Var(R̂max) + [biasR̂max]

2 ) should be minimum (Montgomery 
and Ruger 2003, Chapter  7). According to Eq.  (14), 
E(R̂max) = Rmax in the asymptotic context, and by Eq. (15), 
Var(Rmax − R̂max) = Var(R̂max) ≈

k2𝜎2
I

2(n−1)
 . In addition, because 

k�I

4(n−1)
 i s  t h e  b i a s  o f  R̂max   , 

MSE = Var(R̂max) + [biasR̂max]
2 ≈

k2𝜎2
I

2(n−1)
+

k2𝜎2
I

16(n−1)2
 .  We 

would expect that when the population size ( n ) is large, 
Var(R̂max) and MSE will be minimal. Eqs. (17) to (19) are 
useful to estimate Var(R̂max) , 

k�I

4(n−1)
 , and MSE.

A large‑sample confidence interval for E(R̂
max

).

By the central limit theorem (Rencher 2002, Chapter 4), 
when the sample size n is large (e.g., n > 40 ), the estimated 
expectation Ê(R̂max) and the estimated standard devia-
tion SD̂(R̂max) allow constructing confidence intervals for 
E(R̂max) . A confidence interval (CI) shows the likely range in 
which the E(R̂max) value would fall if the sampling exercise 
were to be repeated (Crawley 2015, Chapter 4). A large-
sample confidence interval for E(R̂max) is

where Ê(R̂max) and SD̂(R̂max) were defined earlier, Z�∕2 is 
the upper 100 � /2 percentage point of the standard normal 
distribution, and 0 ≤ � ≤ 1 is the level of confidence. Thus, 
if for E(R̂max) we want to establish a 100(1 − �)% = 95% 
CI, in addition to SD̂(R̂max) , we need to obtain (from the 
standard normal distribution) the value of Z�∕2 associated 
with �

2
=

0.05

2
= 0.025 , i.e., Z�∕2 = 1.96 . Equation (20) holds, 

regardless of the shape of the population distribution (Mont-
gomery and Ruger 2003, Chapter 8).

Choice of sample size

By Eq. (20), the length or precision of the 100(1 − �)% CI 
for E(R̂max) is 2Z𝛼∕2SD̂(R̂max) , whereas the error is 
𝜀 =

|||Ê(R̂max) − E(R̂max)
||| , where |◦| denotes the absolute 

value of the difference Ê(R̂max) − E(R̂max) . In using Ê(R̂max) 

(20)Ê(R̂max) ± Z𝛼∕2SD̂(R̂max),
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to estimate E(R̂max) , the error � is less than or equal to 
SD̂(R̂max) with confidence 100(1 − �)% . We can choose n 
so that we are 100(1 − �)% confident that the error in esti-
mating E(R̂max) is less than a specified bound on the error 
� as follows

If the right-hand side of Eq. (21) is not an integer, it 
must be rounded off. This will ensure that the level of 
confidence does not fall below 100(1 − �)% (Montgomery 
and Ruger 2003, Chapter 8). Equation (21) indicates that 
the lower the � value, the higher the n size.

Real data numerical results

Normality test for the estimated LPSI and CLPSI values

For the estimated LPSI values, the Shapiro–Wilk and 
Kolmogorov–Smirnov test values were 0.985 and 0.075, 
respectively, while for the estimated CLPSI values, those 
test values were 0.989 and 0.080, respectively. Thus, we 
assumed that the estimated indices values approach the 
normal distribution.

Histograms and quantile–quantile plots for the estimated 
LPSI and CLPSI values

With the estimated LPSI and CLPSI values, we con-
structed histograms (Fig. 1a, b) and quantile–quantile 
plots (Fig. 1c, d). The histograms of Fig. 1a, b of both 
indices do not show a strong negative or positive skew, 
while in Fig. 1c, d, the estimated LPSI and CLPSI values 
form a straight line in the quantile–quantile plots. Thus, 
the estimated LPSI and CLPS values approach the normal 
distribution.

Estimate of the maximized LPSI and CLPSI selection 
responses

For a selection intensity of 10% (k = 1.755), the estimate of 
the maximized LPSI response was 5.87, whereas the esti-
mate of the maximized CLPSI selection response was 5.74. 
That is, the estimated selection responses of both indices 
were very similar. This means that the CLPSI constraint 
mainly affected the CLPSI expected genetic gains per trait.

(21)n =

[
Z𝛼∕2SD̂(R̂max)

𝜀

]2

.

Estimated bias, standard deviation and expectation 
of the estimator of the maximized LPSI and CLPSI selection 
responses

The bias of the estimator of the maximized LPSI and 
CLPSI selection responses was equal to 0.006. That is, 
the estimated bias was the same for both indices. In a 
similar manner, the standard deviation of the estimator 
of the maximized LPSI and CLPSI selection responses 
was 0.26, whereas the expectations of the estimator of 
the maximized LPSI and CLPSI selection responses were 
5.86 and 5.73. These last two values were very similar to 
the estimated values of the maximized LPSI and CLPSI 
responses (5.87 and 5.74, respectively). The 95% confi-
dence intervals for the E(R̂max) of the estimated LPSI and 
CLPSI selection responses were, respectively, (5.35, 6.37) 
and (5.22, 6.24).

Numerical results of the simulated data

For seven simulated selection cycles, in Table 1, we present 
the Shapiro–Wilk and Kolmogorov–Smirnov statistical test 
values, the estimated standard deviation, bias, the estimated 
mean-squared error ( MSÊ ), the estimated maximized selec-
tion response ( R̂max ), its estimated expectation [ E(R̂max) ], 
and 95% confidence interval for the E(R̂max) of the LPSI and 
CLPSI, respectively.

Normality test for the estimated LPSI and CLPSI values

The averages of the Shapiro–Wilk and Kolmogo-
rov–Smirnov normality test values for the seven simulated 
selection cycles associated with the estimated LPSI values 
were 0.997 and 0.032, respectively, whereas those values 
associated with the estimated CLPSI values were 0.997 
and 0.028 (Table 1), respectively; thus, we assumed that 
the estimated values of both indices approach the normal 
distribution.

Estimated standard deviation, bias and MSE 
of the estimator of the maximized LPSI and CLPSI selection 
responses

The averages of the estimated standard deviation of the 
estimator of the maximized LPSI and CLPSI selection 
responses were 0.46 and 0.42, respectively, whereas the 
average of the estimated bias for both indices was equal 
to 0.007. In addition, the averages of the estimated MSE 
of the estimator of the maximized LPSI and CLPSI selec-
tion responses were 0.21 and 0.17, respectively (Table 1). 
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This means that the estimators of the maximized LPSI and 
CLPSI selection responses were good.

Estimates of the maximized LPSI and CLPSI selection 
responses, expectation and confidence intervals

For a selection intensity of 10% (k = 1.755), the averages 
of the estimates of the maximized LPSI and CLPSI selec-
tion response values were 14.19 and 13.14, respectively 
(Table 1). Thus, since the estimated responses of both 
indices were very similar, the CLPSI constraint mainly 
affected the CLPSI expected genetic gains per trait.

The averages of the estimated values of the expecta-
tions of the estimator of the maximized LPSI and CLPSI 
selection responses were 14.18 and 13.13. These last two 
values were very similar to the estimated values of the 
maximized LPSI and CLPSI responses (14.19 and 13.14, 
respectively). In addition, the averages of the estimated 
values of the 95% confidence intervals for the expectations 
of the estimator of the maximized LPSI and CLPSI selec-
tion responses were (13.30, 15.07) and (12.32, 13.94).

Estimator of the maximized LPSI and CLPSI selection 
responses using �

For seven simulated selection cycles, in Table 2, we pre-
sent the estimated LPSI and CLPSI standard deviation, 
bias, mean-squared error, maximized selection response, 
expectation, 95% confidence interval for E(R̂max) and 
E(R̂maxC) and response upper bound when the genotypic 
covariance matrix � is known. When we compared those 
parameters with those obtained with �̂ (Table 1), we can 
see that the results were basically the same. That is, the 
estimated LPSI and CLPSI parameters were very similar 
when we used �̂ and � . This means that the REML esti-
mate �̂ is a good estimator of � , at least for this simulated 
dataset. Finally, note that the average values of the upper 
boundary for R ( k

√
�′�� ) and RC ( k

√
�′�� ) presented 

in Table 2 were higher than estimated maximized LPSI 
and CLPSI selection responses for �̂ and � , as we would 
expect.

Table 1   Shapiro–Wilk and Kolmogorov–Smirnov (SW and KS, 
respectively) statistical test values; estimated unconstrained and 
constrained linear phenotypic selection indices (LPSI and CLPSI, 
respectively) standard deviation (SD), bias, mean-squared error 

(MSE), maximized selection response ( ̂R
max

 and R̂
maxC

 ), expectation 
[ ̂E(R̂

max
) and Ê(R̂

maxC
) ], and 95% confidence interval (CI, LCL lower 

confidence limit, UCL upper confidence limit) for seven simulated 
selection cycles when the genotypic covariance matrix was estimated

Statistical test Estimated LPSI parameters 95% CI

Cycle SW KS SD Bias MSE R̂
max

Ê(R̂
max

) LCL UCL

1 0.996 0.035 0.57 0.009 0.32 17.81 17.80 16.68 18.92
2 0.995 0.042 0.50 0.008 0.25 15.69 15.68 14.70 16.66
3 0.997 0.024 0.45 0.007 0.20 14.21 14.21 13.33 15.09
4 0.998 0.037 0.46 0.007 0.21 14.34 14.34 13.44 15.24
5 0.997 0.024 0.44 0.007 0.19 13.64 13.63 12.77 14.49
6 0.996 0.027 0.39 0.006 0.15 12.04 12.03 11.27 12.79
7 0.996 0.035 0.36 0.006 0.13 11.61 11.60 10.89 12.31
Average 0.997 0.032 0.46 0.007 0.21 14.19 14.18 13.30 15.07

Statistical test Estimated CLPSI parameters 95% CI

Cycle SW KS SD Bias MSE R̂
maxC

Ê(R̂
maxC

) LCL UCL

1 0.998 0.024 0.50 0.008 0.25 15.79 15.78 14.80 16.76
2 0.996 0.032 0.47 0.008 0.22 14.98 14.97 14.05 15.89
3 0.998 0.024 0.42 0.007 0.18 13.58 13.57 12.75 14.39
4 0.998 0.038 0.39 0.006 0.15 12.36 12.36 11.60 13.12
5 0.996 0.025 0.40 0.006 0.16 12.80 12.79 12.01 13.57
6 0.995 0.025 0.36 0.006 0.13 11.23 11.23 10.52 11.94
7 0.995 0.031 0.36 0.006 0.13 11.23 11.23 10.52 11.94
Average 0.997 0.028 0.42 0.007 0.17 13.14 13.13 12.32 13.94
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Variance and confidence interval for the LPSI and CLPSI 
correlations using � and �̂

Using the known ( � ) and estimated ( ̂� ) genotypic covari-
ance matrix, in Table 3, we present the estimated LPSI and 
CLPSI correlation coefficients when the genotypic covari-
ance matrix is known ( ̃𝜌max and 𝜌̃maxC ) and estimated ( ̂rmax 
and r̂maxC ), standard deviation ( SD𝜌̃max

 , SD𝜌̃maxC
 , SDr̂max

 and 
SDr̂maxC

 ), and 95% confidence intervals for the true unknown 
correlation ( �max and �maxC ) for seven simulated selection 
cycles. For both indices, the estimated parameters were very 
similar when we used �̂ and � . This means that the REML 
estimate �̂ was a good estimator of � , at least for this simu-
lated dataset.

Discussion

The multivariate normality assumption

The study of quantitative traits (QTs) in plants and animals 
is based on the mean and variance of QT phenotypic values. 
Quantitative traits are phenotypic expressions of plant and 
animal characteristics that show continuous variability and 
are the result of many gene effects interacting among them 

and with the environment (Cerón-Rojas and Crossa 2018, 
Chapter 2). That is, QTs are the result of unobservable gene 
effects distributed across plant or animal genomes, which 
interact among themselves and with the environment to 
produce the observable characteristic plant and animal phe-
notypes. The traits that concern plant and animal breeders 
the most are QTs. They are particularly difficult to analyze 
because heritable variations of QTs are masked by larger 
nonheritable variations that make it difficult to determine 
the genotypic values of individual plants or animals (Smith 
1936). However, since QTs usually have normal distribu-
tion, it is possible to apply normal distribution theory when 
analyzing this type of data.

In the context of plant and animal breeding, the most 
important distribution theory associated with the QTs is the 
multivariate normality distribution, which had been the basis 
for developing the LSI theory. Under the multivariate normal 
distribution assumption, means, variances and covariances 
completely describe the index and trait values. In addition, 
if the trait values are not correlated, they are independent; 
linear combinations of traits are normal; and even when the 
trait phenotypic values do not have normal distribution, this 
distribution serves as a useful approximation, especially in 
inferences involving sample mean vectors, which, by the 
central limit theorem, have multivariate normal distribution 

Table 2   Estimates of the unconstrained and constrained linear phe-
notypic selection indices (LPSI and CLPSI, respectively) standard 
deviation (SD), bias, mean-squared error (MSE), maximized selec-
tion response ( ̃R

max
 and R̂

maxC
 ), expectation [ ̃E(R̃

max
) and Ẽ(R̃

maxC
) ], 

95% confidence interval (CI, LCL lower confidence limit, UCL upper 
confidence limit) for E(R̃

max
) and response upper bound ( R

max
 and 

R
maxC

 ), for seven simulated selection cycles when the genotypic 
covariance matrix is known

Estimated LPSI parameters when the genotypic covariance matrix is known Upper bound

Cycle SD bias MSE R̃
max

Ẽ(R̃
max

) LCL UCL R
max

1 0.556 0.009 0.309 17.559 17.550 16.469 18.648 19.63
2 0.480 0.008 0.231 15.179 15.172 14.238 16.121 17.56
3 0.451 0.007 0.204 14.261 14.254 13.376 15.146 16.49
4 0.437 0.007 0.191 13.797 13.790 12.941 14.653 16.32
5 0.435 0.007 0.189 13.742 13.735 12.889 14.594 15.99
6 0.392 0.006 0.154 12.387 12.381 11.619 13.156 14.69
7 0.409 0.006 0.168 12.935 12.928 12.132 13.737 14.90
Average 0.452 0.007 0.206 14.266 14.259 13.381 15.151 16.511

Estimated CLPSI parameters when the genotypic covariance matrix is known Upper bound

Cycle SD bias MSE R̃
maxC

Ẽ(R̃
maxC

) LCL UCL R
maxC

1 0.497 0.008 0.247 15.700 15.692 14.726 16.674 17.47
2 0.456 0.007 0.208 14.391 14.384 13.499 15.284 16.24
3 0.420 0.007 0.176 13.266 13.259 12.443 14.089 15.15
4 0.387 0.006 0.150 12.215 12.209 11.457 12.973 13.95
5 0.395 0.006 0.156 12.466 12.460 11.692 13.239 14.28
6 0.362 0.006 0.131 11.443 11.437 10.733 12.153 13.11
7 0.361 0.006 0.130 11.404 11.399 10.697 12.112 13.14
Average 0.411 0.007 0.171 12.984 12.977 12.178 13.789 14.763
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(Rencher 2002, Chapter 4). By this reasoning, a fundamental 
assumption in this work was that the trait values have multi-
variate normal distribution and that the net genetic merit and 
the index values have bivariate normal distribution. Under 
the latter assumption, the regression of the net genetic merit 
on any linear function of the phenotypic values is linear 
(Kempthorne and Nordskog 1959).

Based on the normality assumption of the estimated LPSI 
and CLPSI values, we obtained the expectation and variance 
of the estimator of the maximized LPSI and CLPSI selection 
responses. The histograms, quantile–quantile plots and the 
Shapiro–Wilk and Kolmogorov–Smirnov normality tests of 
the estimated LPSI and CLPSI values indicated that these 
values approached the normal distribution. Thus, our results 
were valid under the normality assumption of the estimated 
LPSI and CLPSI values.

The expectation and variance of S2
I
 and S2

IC

The expectation and variance of S2
I
 and S2

IC
 were the basis for 

obtaining the expectation and variance of the estimator of 
the maximized LPSI and CLPSI selection responses. 

According to Montgomery and Ruger (2003, Chapter 7), the 
expectations of S2

I
 and S2

IC
 are unbiased. In addition, using 

the maximum likelihood estimator of the variance of the 
estimated LPSI and CLPSI values ( S2

I
= n−1

∑n

j=1
(Îj − m̂)2 

and S2
IC
= n−1

∑n

j=1
(ÎCj

− 𝜇̂)2 , respectively), it can be shown 
that Eq. (A15) (Appendix D) can be written as 2(�

2
I
)2

n
 (Stuart 

and Ord 1987, Chapter 10). These results were similar to our 
result and did not affect the expectation and variance of esti-
mated maximized LPSI and CLPSI selection responses 
because, to obtain those expectation and variance, we 
assumed that E(S2

I
) = �2

I
.

Using the Delta method, Lynch and Walsh (1998, Appen-
dix 1) showed that 2(S

2
I
)2

n+2
 is an unbiased estimator the variance 

of S2
I
 (Eq. A15, Appendix D) when this is obtained as 2(�

2
I
)2

n
 . 

By the Lynch and Walsh (1998, Appendix 1) results, the bias 
of the expectation of the estimator of the maximized selec-
tion response can be written as k�I

4(n+2)
 and its estimates as 

kS

4(n+2)
 . In a similar manner, the variance of the estimator of 

the maximized selection response can be written as k2�2
I

2(n+2)
 and 

its estimates as k2S2

2(n+2)
 . We would expect that the difference 

between the results we obtained with our equations and 

Table 3   Estimated unconstrained and constrained linear phenotypic 
selection indices (LPSI and CLPSI, respectively) correlation coef-
ficients when the genotypic covariance matrix is known ( ̃𝜌

max
 and 

𝜌̃
maxC

 ) and estimated ( ̂r
max

 and r̂
maxC

 ); standard deviation ( SD𝜌̃
max

 , 

SD𝜌̃
maxC

 , SD
r̂
max

 and SD
r̂
maxC

 ) and 95% confidence interval (CI, LCL 
lower confidence limit, UCL upper confidence limit) for the true 
unknown correlation ( �

max
 and �

maxC
 ) for seven simulated selection 

cycles

LPSI correlation coefficient

Genotypic covariance matrix known Estimated Genotypic covariance matrix

Cycle 𝜌̃
max

SD𝜌̃
max

LCL UCL r̂
max

SD
r̂
max

LCL UCL

1 0.894 0.009 0.875 0.911 0.906 0.008 0.875 0.911
2 0.864 0.011 0.840 0.885 0.883 0.010 0.840 0.885
3 0.865 0.011 0.841 0.885 0.866 0.011 0.841 0.885
4 0.845 0.013 0.818 0.869 0.863 0.011 0.818 0.869
5 0.859 0.012 0.834 0.881 0.855 0.012 0.834 0.881
6 0.843 0.013 0.816 0.867 0.830 0.014 0.816 0.867
7 0.868 0.011 0.845 0.888 0.832 0.014 0.845 0.888
Average 0.863 0.011 0.839 0.884 0.862 0.011 0.839 0.884

CLPSI correlation coefficient

Genotypic covariance matrix known Estimated genotypic covariance matrix

Cycle 𝜌̃
maxC

SD𝜌̃
maxC

LCL UCL r̂
maxC

SD
r̂
maxC

LCL UCL

1 0.800 0.016 0.766 0.829 0.803 0.016 0.769 0.832
2 0.819 0.015 0.788 0.846 0.842 0.013 0.815 0.866
3 0.804 0.016 0.771 0.833 0.827 0.014 0.797 0.853
4 0.748 0.020 0.707 0.785 0.744 0.020 0.702 0.781
5 0.779 0.018 0.742 0.812 0.803 0.016 0.769 0.832
6 0.779 0.018 0.742 0.811 0.775 0.018 0.738 0.808
7 0.765 0.019 0.727 0.800 0.805 0.016 0.772 0.834
Average 0.785 0.017 0.749 0.817 0.800 0.016 0.766 0.829
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those that are possible to obtain with the Lynch and Walsh 
(1998, Appendix 1) results would be minimal.

Let MSE1 be the mean-squared error of the estimator of 
the variance of the selection response when we use Eq. 
(A15, Appendix D), and let MSE2 be the mean-squared error 
of the estimator of the variance of the selection response 
when we use 2(S

2
I
)2

n+2
 to estimate Var(R̂) (Eq. 15). Montgomery 

and Ruger (2003, Chapter 7) have indicated that a good cri-
terion for comparing the relative efficiency of two different 
estimators is the ratio MSE1

MSE2

 . In the present case, this ratio is 
equal to MSE1

MSE2

=
(n+2)2[8(n−1)+1]

(n−1)2[8(n+2)+1]
 , which is independent of S2

I
 , 

and when n is large, it is close to 1.0, as we would expect. 
Thus, we would expect that both approaches would be 
similar.

The standard deviation of S2
I
 and S2

IC
.

Due to Jensen’s inequality, E(SI) = E[(S2
I
)1∕2] < [E(S2

I
)]1∕2 = 𝜎I 

(Patel and Read 1996, Chapter 5). This means that the stand-
ard deviation of the variance of the estimated values of the 
LPSI and CLPSI ( SI and SIC , respectively) subestimates 
�I =

√
���� and �IC =

√
����.

An unbiased estimator of �I ( �IC ) is SI∕c(n)[i.e., E(SI ) = c(n)�I ], 
where c(n) =

√
2

n−1

Γ(n∕2)

Γ
(

n−1

2

) ≈ 1 −
1

4n
−

7

32n2
−

19

128n3
 is a factor 

of correction (Johnson et al. 1994, Chapter 13; Montgomery 
and Ruger 2003, Chapter 7). However, when we used c(n) to 
correct SI (data no presented), we did not find that c(n) 
affects the expectation and variance of the estimated selec-
tion response. Johnson et al. (1994, Chapter 13) found that, 
in practice, c(n) only affects SI when n ≤ 10 . Thus, when 
n = 247 (real data) or n = 500 (simulated data), the results 
shall not be affected by c(n).

Note that c(n)�I is the expectation of a Nakagami-m dis-
tribution (Ramos et al. 2015). Patel and Read (1996, Chap-
ter 5) indicated that such result is valid only when E(SI) is 
obtained with respect to the origin of the distribution of SI , 
but when this expectation is obtained with respect to the 
average value of SI , there is no concise expression for E(SI) . 
These authors presented equations for the expectation and 
variance of SI that are very similar to those presented in 
Eqs. (14) and (15) of this work. That is, the Patel and Read 
(1996) results were in agreement with our results.

The constrained LPSI (CLPSI)

The CLPSI solved the LPSI equations subject to the restric-
tion that the covariance between the CLPSI and some linear 
combinations of the genotypes involved be equal to a vector 
of predetermined proportional gains (or constraints) imposed 
by the breeder. These constraints are similar to the null 
restriction imposed by the restricted LPSI (RLPSI), which 

imposes restrictions equal to zero on the expected genetic 
advances of some traits, while the expected genetic advances 
of other traits increased (or decreased) without imposing 
any restrictions. The RLPSI solves the usual LPSI equations 
subject to the restriction that the covariance between the 
LPSI and some linear functions of the genotypes involved 
be equal to zero, thus preventing selection on the index from 
causing any genetic change in the expected genetic advance 
of the restricted traits (Cunningham et al. 1970). Although 
both constraints are similar, their effects on the maximized 
selection response and expected genetic gain per trait, and 
coefficient of correlation, are different.

The RLPSI uses a projector matrix to project the LPSI 
vector of coefficients into a space smaller than the original 
space of the LPSI vector of coefficients. The reduction of the 
space into which the RLPSI matrix projects the LPSI vector 
of coefficients is equal to the number of zeros that appears in 
the expected genetic gain per trait, and the selection response 
and correlation coefficient decrease as the number of restric-
tions increases (Cerón-Rojas and Crossa, 2018, Chapter 3). 
Nevertheless, the CLPSI constraints affect only the expected 
genetic gain pert trait, not the maximized CLPSI selection 
response (Cerón-Rojas and Crossa 2019). In addition, the 
maximized CLPSI correlation coefficient is only affected 
when the number of constraints is equal to or higher than 
three, but even in this last case, such affectation could be 
not significant, as we saw in this work. Thus, the CLPSI is 
a good predictor of the net genetic merit and breeder could 
use it with confidence.

The estimated LPSI and CLPSI parameters 
when the genotypic covariance matrix is known 
and estimated

While the sampling properties of the estimator of the phe-
notypic covariance matrix are well known (Rencher and 
Schaalje 2008), the sampling properties of the estimator 
of the genotypic covariance matrix are not well known. By 
this reason, in this work, we estimated and compared the 
LPSI and CLPSI parameters when the genotypic covariance 
matrix is known and estimated. The results indicated that the 
differences were not significant; thus, when the phenotypic 
and genotypic covariance matrices are estimated by REML, 
breeder could use LPSI and CLPSI with confidence.

Other LSIs associated with the LPSI and CLPSI

The LPSI and the CLPSI are optimal LSIs when the phe-
notypic ( � ) and the genotypic ( � ) covariance matrices 
are known. In practice, however, it is necessary to esti-
mate such matrices. When the estimator of the phenotypic 
covariance matrix ( ̂� ) is not positive definite (all eigenval-
ues positive) or the estimator of the genotypic covariance 
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matrices ( �̂ ) is not positive semidefinite (no negative 
eigenvalues), the estimator of the LPSI and CLPSI vector 
of coefficients could be biased when the sample size is 
low. For this reason, Williams (1962b) proposed using the 
base linear phenotypic selection index ( IB = ��� ) which 
could be a better predictor of H = ��� than the estimated 
LPSI Î = 𝐛�𝐲 if indeed the vector of economic values � is 
known. If vector � values is known, then IB has certain 
advantages because of its simplicity and its freedom from 
parameter estimation errors. Williams (1962b) pointed out 
that the IB is superior to Î  unless a large amount of data 
is available for estimating � and � ; however, the avail-
ability of accurate and fast algorithms for estimating � 
and � by REML, such as those implemented in RIndSel 
(Cerón-Rojas and Crossa 2018, Chapter 11), makes Î  a 
good option to make selection. RIndSel (R software to 
analyze Selection Indices) is a graphical unit interface that 
uses selection index theory to select individual candidates 
as parents for the next selection cycle in the phenotypic 
and genomic selection context.

There are some problems associated with IB . For exam-
ple, what is its selection response when no data are avail-
able for estimating � and � ? IB is a better selection index 
than the LPSI only if the correlation between IB and the 
net genetic merit is higher than that between the LPSI and 
the net genetic merit (Hazel 1943). But if estimations of � 
and � are not available, how can we obtain the correlation 
between the base index and the net genetic merit? Wil-
liams (1962a) pointed out that the correlation between IB 
and H can be written as �B =

√
����

����
 and indicated that the 

ratio �B∕� ( � is the correlation between the LPSI and H ; 
see Eqs. 3 and 4b) can be used to compare LPSI efficiency 
vs. IB efficiency; however, in the latter case, we at least 
need to know the estimates of � and � , i.e., �̂ and �̂ . For 
this reason, we think that breeders should use the LPSI 
when the population size is sufficiently large.

An index similar to the CLPSI described in this work is 
the desired gains linear phenotypic selection index (Pesek 
and Baker 1969). The most important aspect of this last 
index is that it does not require economic weights. The 
main problem of this index is that it does not maximize the 
correlation between I and H ( � ) nor the selection response 
because the covariance between I and H ( Cov(H, I) = ���� ) 
is not defined, given that �′�� requires the economic weight 
vector �′ and that index does not use economic weights (Itoh 
and Yamada 1986, 1988). Another problem with this index 
is that it is not associated with H ; then, it is not a predic-
tor of H and the � and the selection response could not be 
maximum. For this reason, we think that breeders should use 
the CLPSI described in this work when making selection.

Conclusions

We described a method to obtain the expectation and vari-
ance of the estimator of the maximized selection response 
for unconstrained and constrained linear phenotypic selec-
tion indices. The estimator of the maximized selection 
response was the square root of the variance of the esti-
mated LSI values multiplied by the selection intensity. The 
expectation and variance allow the breeder to construct con-
fidence intervals and determine the appropriate sample size 
to complete the analysis of a selection process. We validated 
the theoretical results in the phenotypic selection context 
using real and simulated datasets. We concluded that our 
results are valid for any LSI with normal distribution and 
that the method described in this work is useful for finding 
the expectation and variance of the estimator of any LSI 
response in the phenotypic or genomic selection context.
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Appendix A

Upper boundary for the maximized LPSI and CLPSI 
selection response

By the Cauchy–Schwarz inequality (Sorensen and Gianola 
2002, Chapter 2), the relationship among the variance of 
H = ��� and I = ��� ( �′�� and �′�� , respectively), and 
the covariance ( �′�� ), is (����)2 ≤ (����)(����) . But 
because the LPSI vector of coefficients is � = �−1�� , that 
relationship can be written as

The maximized LPSI selection response is 
Rmax = k

√
���� = k

√
����−1�� ; thus, the upper bound-

ary for Rmax is k
√
�′�� , i.e.,

Equation (A2) indicates that if � = � , then � = � and 
Rmax = k

√
���� . This is the maximum possible value of 

Rmax . Cerón-Rojas and Crossa (2019) showed that the upper 
boundary for the maximized CLPSI selection response is

w h e r e  � = �T�   ,  �T = [�t −�T ]  a n d 
�T = ��(�������)−1�����.

Variance and confidence intervals for �
max

As H = ��� and I = ��� have bivariate normal distribution, 
the standard deviation of the variance of �max is

while an approximated 100(1 − � )% confidence interval for 
�max is

where tanh(◦) is the hyperbolic tangent function and 
v = tanh−1(r̂max) its inverse, whereas r̂max is an estimate of 
�max , Z�∕2 is the upper 100 � /2 percentage point of the stand-
ard normal distribution, and 0 ≤ � ≤ 1 is the level of confi-
dence (Rencher and Schaalje 2008, Chapter 10). Results of 
Eqs. (A4) and (A5) are also valid for the CLPSI.

(A1)����
−1
�� ≤ ����.

(A2)Rmax = k

√
����−1�� ≤ k

√
����.

(A3)k
√
�′��,

(A4)
(1 − �2

max
)√

n
,

(A5)tanh

�
v −

Z�∕2√
n − 3

�
≤ �max ≤ tanh

�
v +

Z�∕2√
n − 3

�
,

Appendix B

Fourier transform ( Ft[fX(x)] ) of fX(x)

The basis for analyzing distributions of sums of continuous 
random variables that take on both positive and negative 
values is the Fourier transform, which allows deriving the 
probability density function of their sums. In this appendix, 
we give a brief review of the Fourier transform theory.

Let fX(x) , −∞ < x < ∞ , a single-valued real function 
such that the integral

converges for some real value of t  , where i =
√
−1 and |◦| 

denote the absolute value; then, fX(x) is said to be Fourier 
transformable, and

is the Fourier transform of fX(x) (Springer 1979, Chapter 2). 
Equation (A7) is also called the characteristic function of the 
random variable X and can be denoted as �X(t) = E(eitX) . 
This is the expectation of a complex function, and since 
||eitx|| = |cos tX + i sin tX| = 1 , Equation (A7) always exists. 
Furthermore, when t = 0 , �X(0) = 1 and ||�X(t)

|| ≤ 1 (Soong 
2004, Chapter 4).

For Ft[fX(x)] , there is a corresponding inverse transform, 
which can be written as

Equation (A8) shows that knowledge of the Fourier trans-
form, or characteristic function (Eq. A7) specifies the distri-
bution of X. Furthermore, fX(x) is uniquely determined from 
Eq. (A8); that is, no two distinct density functions can have 
the same characteristic function (Springer 1979, Chapter 2; 
Soong 2004, Chapter 4).

Appendix C

Distribution of S2
I
 and S2

IC

In this appendix, under the assumption that the estimated 
LPSI and CLPSI values are normally distributed, we used 
the Fourier transform to obtain the distribution of S2

I
 and S2

IC
 

(Eqs. 10 and 11, respectively).

(A6)∫
∞

−∞

||fX(x)||eitxdx

(A7)Ft[fX(x)] = ∫
∞

−∞

eitxfX(x)dx

(A8)fX(x) =
1

2� ∫
∞

−∞

e−itxFt[fX(x)]dt.
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Suppose that Î1,Î2 …, În is a random sample of size n of 
estimated index values (LPSI or CLPSI) and that 

∑n

j=1
Îj = 0 . 

Let S2 = 1

n−1

∑n

j=1
Î2
j
 be an estimator of the variance ( �2 ) of 

the index (in the LPSI context �2 = ���� , whereas in the 
CLPSI context, �2 = ���� ). That is, we are assuming that in 
each selection cycle, the estimated index values are a ran-
dom sample of the distribution of all possible estimated 
index values.

To simplify notation, let Î1 = X1 , Î2 = X2 …, În = Xn and 
suppose that we obtain the sample n of estimated index 
v a l u e s  f r o m  t h e  n o r m a l  d i s t r i b u t i o n 
fX(x) =

1

�
√
2�

exp
�
−

x2

2�2

�
 , −∞ < x < ∞ . Let N = n − 1 

( n = number of index values in each selection cycle) and 
U =

∑n

i=1
X2
i
= NS2  ,  subject  to 

∑n

j=1
Xi = 0 ,  where 

S2 =
1

n−1

∑n

j=1
X2
j
 is an estimator of the variance ( �2 ) of the 

LSI. By Eq. (A7), the Fourier transform of gU(u) is

which is the characteristic function of a Chi-square distri-
bution with N  -1 degrees of freedom (or n − 2 degrees of 
freedom because N = n − 1 ). In addition, by Eq. (A8)

is the inverse transform of the Fourier transform of Eq. (A9) 
(Springer 1979, Chapter 9).

Let hS2(s2) be the density function of S2 . It follows from 
Eq. (A10) and the relationships U =

n∑
i=1

X2
i
= NS2 and 

du = NdS2 (where du and dS2 are differentials) that

is the distribution function of S2 (Springer 1979, Chapter 9), 
where for r = N−1

2
,Γ(r) = ∫ ∞

0
e−zzr−1dz is the Gamma func-

tion (Stuart and Ord 1987, Chapter 5). Let V = S2 , � =
N

2�2
 

and r = N−1

2
 ; then, Eq. (A11) can be written as

which is a Gamma distribution ( r , � ), where for 0 < v < ∞ , 
r > 0 is the shape parameter, � is the rate parameter and 
Γ(r) = ∫ ∞

0
e−zzr−1dz is defined earlier.

(A9)

Ft[gU(u)] =

�
∫

∞

−∞

1

�
√
2�

exp

�
−

x2

2�2

+ itx2
�
dx

�N−1

= [1 − 2it]−
N−1

2

(A10)

gU(u) =
1

2� ∫
∞

−∞

e−itu

(1 − 2it)(N−1)∕2
dt =

u(N−3)∕2e−(u∕2�
2)

(2�2)(N−1)∕2Γ[(N − 1)∕2]

(A11)hS2(s
2) =

(
N

2�2

)(N−1)∕2 (s2)(N−3)∕2e−(Ns
2∕2�2)

Γ[(N − 1)∕2]

(A12)hV (v) =
�rvr−1e−�v

Γ(r)
,

Appendix D

The expectation and variance of S2
I
 and S2

IC

The character is t ic  funct ion of  Eq.  (A12)  is 
�(t) =

(
1 −

it

�

)−r

 , and the expectation and variance of 
V = S2 are

respectively (Stuart and Ord 1987, Chapter 5).
In the LPSI context, let �2 = ���� be the unknown variance 

of the LPSI; then, by Eq. (A13), the expectation and variance 
of S2 are

and

, respectively. In Eqs. (A14) and (A15), the symbol “ ≈ ” indi-
cates an approximation. Equation (A14) indicates that S2 is 
an asymptotic unbiased estimator of �2 = ���� , whereas Eq. 
(A15) indicates that Var(S2) tends to zero when n increases. 
Equations (A14) and (A15) are valid for CLPSI.

Appendix E

The Delta method

We determined the expectation and the variance of the estima-
tor of the maximized LPSI and CLPS the selection responses 
using the Delta method (Lynch and Walsh 1998, Appendix 1; 
Sorensen and Gianola 2002, Chapter 2; Cerón-Rojas and 
Sahagún-Castellanos 2007, Appendix B). To find the expec-
tation and variance of the estimator of the of the maximized 
LPSI and CLPSI selection response, we need to expand the 
function Y = f (X) as a Taylor series around the expectation 
of the estimator of the maximized LPSI and CLPS selection 
response and then find the expectation and variance of the 
expansion of Y = f (X) . The first and second derivatives of the 
function are sufficient to obtain results that are very close to 
the expected results.

Suppose that X is a random variable with mean �(E(X) = � ) 
and that Y = f (X) is a function of X ; then, approximations of 
the expectation and variance of Y are obtained as

(A13)
r

�
and

r

�2
,

(A14)E(S2) =
r

�
=

n − 2

n − 1
�2 ≈ �2

(A15)Var(S2) =
r

�2
=

2(n − 2)

(n − 1)2
(�2)2 ≈

2(�2)2

n − 1
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and

respectively, where d
dX
f (X)

|||X=� and 1
2

d2

dX2
f (X)

|||X=� are the first 
and second derivatives of f (X) with respect to X evaluated 
at � , and Var(X) is the variance of X.
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