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Damage-associated microglia (DAM) profiles observed in Alzheimer’s disease (AD)-related 

mouse models reflect an activation state that could modulate AD risk or progression. To learn 

whether human AD microglia (HAM) display a similar profile, we develop a method for purifying 

cell types from frozen cerebrocortical tissues for RNA-seq analysis, allowing better transcriptome 

coverage than typical single-nucleus RNA-seq approaches. The HAM profile we observe bears 

little resemblance to the DAM profile. Instead, HAM display an enhanced human aging profile, in 

addition to other disease-related changes such as APOE upregulation. Analyses of whole-tissue 

RNA-seq and single-cell/nucleus RNA-seq datasets corroborate our findings and suggest that the 

lack of DAM response in human microglia occurs specifically in AD tissues, not other 

neurodegenerative settings. These results, which can be browsed at http://research-pub.gene.com/

BrainMyeloidLandscape, provide a genome-wide picture of microglial activation in human AD 

and highlight considerable differences between mouse models and human disease.

In Brief

Gene expression analysis of human AD microglia has been limited by technical challenges. 

Srinivasan et al. use RNA-seq to profile FACS-purified microglia from frozen AD and control 

brains, revealing that human AD microglia exhibit accelerated aging, as well as age-independent 

changes, like upregulation of APOE.

Graphical Abstract
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INTRODUCTION

Human genetic studies have identified microglia, the brain’s resident myeloid cells, as a key 

cell type governing the risk of Alzheimer’s disease (AD) (Bellenguez et al., 2020;Hansen et 

al., 2018). Gene expression profiles in microglia from mouse models of AD are highly 

characterized and reflect specific myeloid cell activation states that could modulate AD risk 

or progression (Deczkowska et al., 2018; Friedman et al., 2018; Holtman et al., 2015; Keren-

Shaul et al., 2017; Krasemann et al., 2017; Orre et al., 2014; Srinivasan et al., 2016; Wang et 

al., 2015). Although some groups have produced expression profiles for microglia from 

human brain tissues (Del-Aguila et al., 2019; Galatro et al., 2017; Gosselin et al., 2017; Jä 

kel et al., 2019; Masuda et al., 2019; Mathys et al., 2019; Olah et al., 2018; Zhang et al., 

2016), the clarity with which we view microglial transcriptional states in mouse models of 

AD has not yet been realized for human AD tissues because of limited availability of fresh 

tissue samples and/or technological hurdles in recovering genome-wide transcriptomic data 

with cell-type resolution from frozen samples.

Here we employ a method for isolating multiple cell types from frozen, post-mortem human 

brain tissues, with the goal of profiling gene expression in microglia and other cell types 

from AD versus control tissues using RNA sequencing (RNA-seq). The method we 

developed allows the collection of desired cell types by the tens (or hundreds) of thousands 

from each tissue sample, provides rich gene expression profiles to enable genome-wide 

analyses of differential expression (DE), and allows the selection of sample cohorts that 

include a suitably large number of AD and control subjects with desired histopathological or 

clinical characteristics. A notable caveat of our method is the low quality of the RNA after 

its purification from the collected cell types because of unavoidable aspects of preparing 

fixed cell suspensions from frozen and thawed post-mortem tissue samples. Despite this 

caveat, we succeeded in using frozen specimens of human frontal cortex to characterize a 

human Alzheimer’s microglia (HAM) profile, which bore almost no resemblance to the 

damage-associated microglia (DAM) profile defined in mouse AD models. We validated our 

overall findings by qRT-PCR using separate preparations of microglia sorted from temporal 

cortex and using whole-tissue RNA-seq datasets from both frontal and temporal cortices. 

Extensive comparisons with other microglial RNA-seq datasets revealed that a distinct 

component of the HAM profile reflected an enhanced human aging phenotype. Finally, 

comparisons with recently published human microglia single-cell RNA sequencing (scRNA-

seq) or single-nucleus RNA sequencing (snRNA-seq) datasets suggested that DAM gene 

induction was more evident in two other neurodegenerative settings. Thus, the relative lack 

of DAM gene induction in human microglia was a peculiar feature of human AD tissues and 

may be a specific feature of AD pathogenesis.

RESULTS

Defining the HAM Gene Expression Profile Using Frozen Tissues

We began with frozen samples of frontal cortex, which is affected by tau pathology in the 

later stages of disease (Braak stages V and VI) that roughly coincide with onset and 

progression of dementia. Tissue samples were excised from the superior frontal gyrus 

(SFG), which has been linked with visuospatial cognition both in AD and in lesion studies 
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(du Boisgueheneuc et al., 2006; Valdé s Herná ndez et al., 2018). To maximize the likelihood 

of observing differences between AD and control, we selected only AD specimens with high 

scores for amyloid and tau neuropathology in frontal cortex, and we selected only control 

specimens with negligible amounts of these pathologies in this region (see sample metadata 

in Data S2). AD and control groups had roughly matching distributions of age, sex, and 

post-mortem interval (PMI).

For dissociating and sorting cell types from frozen human brain tissues, we adapted a 

method that we reported for fresh mouse brains involving brief enzymatic treatment at 4°C, 

mechanical dissociation, fixation in 50% ethanol, immunolabeling, and fluorescence-

activated cell sorting (FACS) followed by RNA purification and sequencing (Srinivasan et 

al., 2016). Although the fixation adversely affects RNA integrity (RIN), it also permeabilizes 

the cells and enables labeling of intracellular markers for sorting. Labeling nuclei with DAPI 

helps ensure that only singlet cell bodies are collected, because doublets with a higher DAPI 

signal and cell fragments that lack nuclei are easily excluded. Using this method, we 

established a FACS gating strategy for collecting NeuN+ neurons, GFAP+ astrocytes, CD31+ 

endothelial cells, and CD11b+ microglia/myeloid cells (hereafter referred to simply as 

microglia) from thawed, dissociated SFG specimens (Figures 1A and S1). qRT-PCR for 

specific cell-type markers validated the specificity of the collected populations and was 

successful for nearly all RNA samples (data not shown). However, the RIN of the collected 

populations was poor, with Bioanalyzer RIN scores in the range of 1–3. Attempts to obtain 

better-quality RNA samples using alternative conditions for tissue digestion and cell fixation 

(see STAR Methods) were unsuccessful and usually counterproductive. We presume that 

damage from the freeze-thaw process led to cellular disintegration when cells remained 

unfixed for too long or were incubated at 37°C. Only brief dissociation at 4°C and fixation 

immediately thereafter permitted cell populations to suitably endure the subsequent 

immunolabeling and FACS procedures. We completed this process for 22 AD and 21 control 

SFG tissues.

We next prepared cDNA libraries using a kit with random primers, because the RNA was 

highly fragmented. After preparing and sequencing the libraries, we examined the RNA-seq 

data to determine whether our method had generated usable expression profiles. Although 

several unacceptable RNA profiles had to be discarded (see Figure S2, Data S1, and STAR 

Methods), we obtained 113 cell-type-specific expression profiles, including microglia cell 

profiles from 15 control and 10 AD subjects (Figures 1B and 1C; Data S2). Cell-type-

specific marker expression suggested that the RNA-seq profiles we retained represented the 

intended cell populations with reasonable fidelity (Figure 1D). Comparisons with recently 

published datasets indicated that our bulk-sorted microglia profiles from frozen tissues 

displayed coverage of the transcriptome similar to that of bulk-sorted microglia from fresh 

post-mortem tissues (Galatro et al., 2017; Gosselin et al., 2017) and better coverage than 

snRNA-seq profiles (combining all microglial nuclei from a given patient into a pseudobulk 

profile) obtained from frozen tissues (Mathys et al., 2019)(Figure 1E).

We examined the expression of twenty-five genes known or postulated to be associated with 

AD risk or progression (Hollingworth et al., 2011; Huang et al., 2017; Lambert et al., 2013; 

Naj et al., 2011; Novikova et al., 2019; Ramanan et al., 2015; Rathore et al., 2018; Sims et 
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al., 2017). Similar to our analysis of a published human RNA-seq dataset that profiled cell 

types purified from freshly resected brain tissue (Hansen et al., 2018; Zhang et al., 2016), 

most AD risk genes in our cell types purified from frozen brain tissues showed preferential 

expression in microglia compared with other brain cell types (Figure 2A). We also examined 

whether any of these genes displayed altered expression levels in AD versus control cells, 

and we observed that APOE, ABCA7, GPR141, PTK2B, SPI1, and ZYX appeared 

upregulated in AD microglia, whereas MEF2C appeared downregulated (unadjusted p < 

0.05) (Figure 2B). Using these criteria, we also observed downregulation of CD2AP and 

SORL1 in AD neurons and of CR1 in AD endothelial cells (Figure 2B).

Genome-wide analysis of DE using DESeq2 identified 45 genes increased and 21 genes 

decreased in AD microglia relative to controls (Figure 3A; for genome-wide expression 

values and DE statistics, see Data S2 and S3 for individual samples and group summaries, 

respectively). Of the changes in AD risk genes mentioned earlier, only APOE upregulation 

in microglia remained significant after correction for genome-wide testing (fold change = 

4.1, adjusted p = 0.0004). We tested for contributions of age, sex, PMI, and APOE genotype 

to the DE profile, but none of these covariates accounted for the DE observed between AD 

and control groups (although a small number of other genes unrelated to AD status showed 

DE with age, sex, PMI, or APOE genotype) (see Data S4 and STAR Methods). We refer to 

the pattern of DE as the HAM profile.

Validation of the HAM Profile in Multiple Cortical Regions and Datasets

We next tested whether the HAM profile detected in AD microglia from frontal cortex could 

be validated in microglia from temporal cortex, which is affected earlier in disease and may 

contain more downstream events by the time of death (Braak and Braak, 1991). Our 

temporal cortex samples were excised from the fusiform gyrus (FuG), which is important for 

object and face recognition (Chang et al., 2016), using many of the same subjects as the SFG 

tissues and totaling 25 AD and 21 control tissues. We generated another set of sorted-cell 

RNA samples using the method described earlier and performed qRT-PCR instead of RNA-

seq to quantify transcript abundance for genes of interest, including a subset of DE genes 

from the SFG HAM profile (marked in Figure 3A). Despite the different disease contexts of 

FuG and SFG tissues, the direction of effect for AD versus control across RNA samples 

from CD11b+ cells was replicated for nearly every DE gene tested (Figures 3B and S3B). 

Using these 22 genes to assign a DE score to each sample revealed a clear difference in FuG 

microglia between AD and control groups, reproducing the signal observed in the SFG 

RNA-seq data (Figure 3C). Moreover, for subjects with both SFG RNA-seq and FuG PCR 

data available, the microglia DE scores were correlated between the two regions (Figure 

S3A). These findings alleviated potential concern about expression artifacts being 

introduced during RNA-seq library preparation.

A second way to validate the HAM profile was to examine whole-tissue RNA datasets from 

AD and control patients. Despite their limitations (Srinivasan et al., 2016), such datasets 

allow the evaluation of larger cohorts. We examined three studies: our previously published 

cohort of FuG samples (GEO: GSE95587), a newly generated FuG cohort (GEO: 

GSE125583) (see Figure S4A for reproducibility of whole-tissue DE profiles between FuG 
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cohorts), and the Religious Orders Study and Rush Memory and Aging Project (ROSMAP) 

cohort (De Jager et al., 2018) from the dorsolateral prefrontal cortex. We used myeloid 

balancing (Friedman et al., 2018) to control for differences in myeloid cell abundance 

between control and AD tissues (Figure S4B), and exclusion of neuronal-enriched genes to 

mitigate the confounding effects of neuronal loss, before calculating gene set scores. In all 

three whole-tissue datasets, the HAM-Up gene set was significantly increased (Figure 3D); 

this was most apparent in later Braak stages, which also showed decreased expression of our 

HAM-Down gene set (Figure S4C). (The Braak stage analyses did not include the corrective 

measures for altered cellular makeup of AD tissues, because it was impractical to reduce the 

sample size.) These analyses provide additional evidence that our DE findings in AD 

microglia sorted from SFG and FuG tissues are not simply a peculiar feature of the small 

number of subjects (10 AD and 15 control) analyzed in our SFG RNA-seq dataset and that 

they do not result from biases in sampling of microglial subpopulations following tissue 

dissociation and FACS; they are instead real gene expression changes seen in both temporal 

and frontal cortical tissue.

Having detected the elevated HAM signature in AD whole-tissue RNA, we next wanted to 

see how its detection compared with that of known microglial expression modules recently 

identified in mouse models. We reported that expression signals for some of these modules, 

including the neurodegeneration-related (DAM) module and a lipopolysaccharide (LPS)-

specific gene set, were slightly elevated in whole-tissue RNA profiles from AD brains 

(Friedman et al., 2018). We observed that the HAM-Up gene set was more robustly elevated 

in AD whole-tissue RNA than either of the mouse-derived gene sets (Figures 3D and S4C), 

underscoring the relevance of the DE results we observed in our sorted SFG microglia.

The HAM Profile Is Unlike Known Mouse Microglial Activation States

We next used gene set score analysis to look for overlap in DE patterns between our AD 

versus control human microglia profiles and DE patterns observed in mouse microglia. First, 

we tested whether modulation of the mouse-derived gene modules we defined in a previous 

meta-analysis (Friedman et al., 2018) might be more apparent in our sorted microglia 

profiles than in the whole-tissue profiles described earlier, but any such AD-related changes 

were again subtle if present—especially compared with the HAM-Up and HAM-Down gene 

sets (Figure 4A). For example, expression of the mouse neurodegeneration-related/DAM 

module was slightly increased in AD microglia, just reaching significance (p = 0.045). 

However, of more than 100 genes in the module, only APOE was significantly increased in 

SFG microglia from AD patients (fold change = 4.1, p = 0.0004), and most other genes 

showed no clear trends in either direction (Figure S5A; Table S1). Similarly, although we 

observed a subtle increase in expression for the monocyte/ neutrophil module in AD 

microglia (Figure 4A), no individual genes in the module showed DE with genome-wide 

significance (Table S1). The microglia and brain myeloid gene modules that define resting 

or homeostatic microglia and are downregulated in response to virtually any perturbation in 

mice (Friedman et al., 2018) showed no hint of downregulation in AD microglia (Figure 

4A). Of more than 150 genes in these modules, only SERPINF1 (fold change = 0.35, p = 

0.0062) showed the significant reduction predicted by mouse data (Figures S5B and S5C; 

Table S1).
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We also cross-checked specific mouse studies for potential relationships between our HAM 

profiles and DE genes associated with PS2APP or 5xFAD β-amyloid model microglia, Tau-

P301S frontotemporal dementia (FTD) model microglia, microglia following LPS or 

lymphocytic choriomeningitis virus (LCMV) injection, old versus young mouse microglia, 

cerebellar versus cortical microglia, perivascular macrophages (PVMs) relative to 

parenchymal microglia, or infiltrating macrophages versus brain-resident microglia. We 

tested each study’s set of DE genes for AD-enriched microglial expression in our SFG 

RNA-seq profiles. The mouse microglia aging profile, the PS2APP profile, and the PVM 

profile each showed statistically significant enrichment in AD versus control microglia 

(Figure 4B). However, as with the modular gene sets described earlier, such correlations 

were extremely subtle when viewed at the level of individual genes (Figure S5D).

Conversely, we looked at whether the DE genes identified in HAM (besides APOE, a well-

known DAM gene) showed consistent trends in mouse models of neurodegeneration 

(Friedman et al., 2018; Orre et al., 2014; Wang et al., 2015), infection (Erny et al., 2015; 

Srinivasan et al., 2016), and aging (Grabert et al., 2016). Of the HAM-Up genes, only 

PLXNC1, CD44, SMIM3, and ADAM8 were frequently though modestly increased in 

neurodegenerative mouse models (Figure S6). Of the HAM-Down genes, only SERPINF1 
showed consistent reduction in these models.

Altogether, the comparisons of AD microglia profiles with diverse mouse microglia profiles 

indicated that the HAM profile bore little resemblance to the DAM profile observed in 

mouse models of neurodegeneration or to other mouse microglia activation profiles. We next 

turned our attention to comparisons with published human microglia expression profiles.

AD Microglia Display an Enhanced Human Aging Phenotype

Galatro et al. (2017) determined age-related changes in human microglial gene expression 

by sequencing RNA of microglia freshly sorted from post-mortem subjects spanning an age 

range of over six decades. In contrast to the preceding comparisons with mouse microglial 

datasets, the relationship between the HAM profile and the age-related DE in human 

microglia was striking. Most genes with higher expression in microglia from older subjects, 

including IL15 and the candidate AD risk genes MS4A6A, MS4A4A, NME8, and GPR141, 

trended toward elevated expression in AD relative to control microglia; conversely, genes 

with lower expression in microglia from older subjects, like CECR2, tended to be reduced in 

AD microglia (Figures 5A and 6A). This did not result from differences in age between our 

AD and control subjects (Figure 5B).

We examined whether the age-related DE genes from Galatro et al. (2017) also showed a 

relationship with age in our dataset. Despite our dataset only including 15 control profiles, 

mostly from older subjects, we observed a clear tendency for genes whose expression 

changed with age in Galatro et al. (2017)’s dataset to show the same direction of age-related 

change among our control microglia samples (Figure 5C), validating our SFG RNA-seq 

profiles.

We used the age-related changes from Galatro et al. (2017)’s dataset to assign age-related 

DE scores to each of our SFG microglia profiles. When these scores were plotted against the 
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subjects’ ages, we observed a positive correlation within both control and AD subject groups 

(Figure 5D), and the age-related DE scores for AD microglia as a group were significantly 

higher than the scores for the control group (Figure 5E). However, most AD-related DE 

genes from our dataset, including APOE and LSR, showed no relationship with age in 

microglia (Figures 5A and 6A). These data indicated that the HAM profile in AD microglia 

reflected a mixture of an enhanced aging process and an age-independent, disease-related 

activation process.

We analyzed another human dataset, from Gosselin et al. (2017), of microglia expression 

profiles obtained from fresh surgical tissue (all from subjects < 20 years old) and blood 

monocytes from the same subjects. DE genes between monocytes and microglia correlated 

reasonably well between human and mouse (Lavin et al., 2014) datasets (Figure 6B). 

Comparing the two human datasets, we saw some correlation between age-associated and 

microglia/monocyte DE: many genes with higher expression in younger subjects in Galatro 

et al. (2017)’s dataset, like CECR2, were microglia enriched in Gosselin et al. (2017)’s 

dataset; conversely, many genes with elevated expression in older subjects, like IL15, were 

monocyte enriched (Figures 6A and 6C). Viewing a heatmap of DE genes from the HAM 

profile across the three datasets, we saw that most HAM genes exhibiting age-related DE in 

the Galatro et al. (2017) study showed corresponding expression changes in monocytes 

relative to microglia (Figure 6D). These comparisons may suggest that some age-related 

changes in microglial gene expression could result from an increased presence of brain-

infiltrating peripheral monocytes/macrophages in aged subjects and that infiltration by these 

cells is enhanced in AD. Alternatively, these changes could simply reflect microglial 

transcriptional modulation toward a state that bears some resemblance to monocyte profiles 

as subjects age, with that aspect more pronounced in AD subjects.

HAM, DAM, and Aging Comparisons in Human AD, Xenograft AD, and Human MS Tissues

Finally, we analyzed four recent datasets for evidence of HAM, DAM, or age-related 

activation states in human microglia scRNA-seq or snRNA-seq profiles obtained from AD 

tissues (syn18485175 at synapse.org) (Mathys et al., 2019), multiple sclerosis (MS) lesions 

(GEO: GSE124335 and GSE118257) (Jäkel et al., 2019; Masuda et al., 2019), and cells 

xenotransplanted into the mouse 5xFAD model (GEO: GSE133433) (Hasselmann et al., 

2019). (See Data S4, panels 2 and 3, for t-distributed stochastic neighbor embedding [tSNE] 

plots, definition of myeloid cell clusters, and coloring by gene set scores.) For each subject, 

we aggregated cells from the microglial cluster into a single pseudo-bulk expression profile 

(see STAR Methods) and then scored the pseudobulk profiles for expression of the mouse 

DAM (neurodegeneration-related module; Friedman et al., 2018) gene set, our HAM-Up and 

HAM-Down gene sets, the human Aging-Up and Aging-Down gene sets (Galatro et al., 

2017), and the mouse resting or homeostatic microglia module (Friedman et al., 2018) 

(Figure 7). We excluded APOE from the HAM-Up and DAM gene sets for these analyses so 

that the signal strengths for each gene set could be compared using only distinct features.

We detected increased expression of the HAM-Up gene set in microglial nuclei from tissues 

with high AD pathology (Figure 7). This increase was more substantial than the increased 

expression of the DAM gene set, which was marginal, thus corroborating our analyses in 
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whole-tissue RNA profiles (Figure 3D) and SFG-sorted microglia profiles (Figure 4A). As a 

point of reference, sorted mouse microglia from the PS2APP and Tau-P301S models showed 

strong DAM induction and no changes in the HAM-Up gene set. The microglial nuclei from 

high AD pathology tissues also showed increased expression of the Aging-Up gene set. We 

did not detect reduced expression of the HAM-Down or Aging-Down gene sets in AD 

microglial nuclei, perhaps because most of these genes already have low expression and thus 

are poorly represented in the snRNA-seq data due to extensive gene dropout (Figure S7A), 

making their further downregulation in AD difficult to detect using this approach. Overall, 

our analysis of the snRNA-seq dataset confirmed that the DE we observed in our sorted 

CD11b+ cell population from AD tissues occurred within the microglial compartment, not in 

minor populations of co-purifying CD11b+ cells.

Interestingly, induction of DAM genes was stronger in human xenotransplanted microglia 

(xMG) in 5xFAD mouse brains, and in microglia from MS lesions, than it was in AD 

microglia (Figure 7). Thus, human microglia are capable of responding in a DAM-like 

manner, but for some reason this response is blunted in AD patients (at least in the disease 

stages we examined). For instance, GPNMB upregulation was robust in xMG and MS cells, 

but in AD microglia, it was meager or absent (Figure S7B). All components of the HAM 

profile—elevated HAM-Up and Aging-Up scores and reduced HAM-Down and Aging-

Down scores— were clearly represented in microglia from MS lesions, usually with larger 

effect sizes and lower p values than the DAM scores in the same cells (Figure 7). In contrast, 

human xMG from 5xFAD mouse brains displayed similar extents of induction for HAM-Up 

and DAM gene sets, although no changes were observed in the Aging-Up and Aging-Down 

gene sets (Figure 7). This suggests that the enhanced aging profiles we observed in AD 

microglia are not a direct response to amyloid pathology.

Surprisingly, expression of the resting microglia module defined in mouse microglia was not 

reduced in microglia from AD tissues (it increased in the snRNA-seq dataset) or even in 

human xMG from 5xFAD mouse brains. In contrast,it was strongly reduced in microglia 

from MS lesions, being reduced to a similar or even greater extent than in mouse microglia 

from the Tau-P301S or PS2APP models, respectively (Figure 7). Considering the 

perforations in blood-brain-barrier integrity known to occur in MS, the apparent reduction in 

homeostatic gene expression observed in microglia from MS lesions may reflect infiltration 

of peripheral myeloid cells in which expression of this module is already low.

To further understand these consistent trends in gene set scores, we examined gene-by-gene 

concordance between the AD datasets. Differences in fold-change profiles in xMG and 

HAM were perhaps not surprising given the differences in context (top and bottom panels of 

Figure S7A). However, many genes detected as DE in our study did not replicate in the 

snRNA-seq profiles (middle panel), perhaps because of low detection in that study (gray) but 

also demonstrating that more studies are needed to elucidate the microglial response in 

HAM. Despite this, we identified several genes consistently upregulated across multiple 

datasets (see examples in Figure S7B).
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DISCUSSION

Here we have addressed the question of whether expression profiles from mouse AD models 

reflect activation states observed in HAM by employing a method for prospective isolation 

of defined cell types from frozen brain tissues that allowed us to survey ~100,000 microglial 

cells per tissue sample by RNA-seq. Unlike recent efforts to profile bulk-sorted microglia 

from freshly obtained AD tissue samples (Olah et al., 2018) or to profile microglia and other 

cell types from frozen tissue samples using snRNA-seq (Mathys et al., 2019), our approach 

allowed us to sample a suitably large number of tissues with known histopathological 

characteristics while obtaining broad coverage of the transcriptome. Though not affording 

single-cell resolution, this enabled more identification of DE genes and facilitated more 

substantive cross-comparisons with other datasets than the other methods.

The DE profile we observed in HAM (the HAM profile) was almost entirely distinct from 

the DAM profile defined in mouse models. Initially, we could not exclude that our 

experimental methods for tissue dissociation, labeling, and sorting precluded the detection of 

human microglia with DAM-like activation, but further analyses alleviated this concern. 

First, the HAM signal was clearly stronger than the DAM signal in AD whole-tissue RNA 

profiles. Second, the HAM signal was stronger than the DAM signal in snRNA-seq profiles 

from both AD tissues and MS lesions. Third, we did not observe instances of DAM+ nuclei 

clustering separately from HAM+ nuclei in the snRNA-seq datasets; instead, these datasets 

revealed that to whatever extent the DAM signal was induced, it occurred in the same nuclei 

in which the HAM signal was detected (see Data S4, panel 2). That the DAM activation state

—generally considered protective in mouse neurodegeneration models—was more readily 

observed in microglia from MS lesions and in xMG from 5xFAD mouse brains suggests that 

its relative lack of induction in AD microglia may be a unique aspect of late-onset AD.

Despite the dissimilarity between DAM and HAM signatures, one qualitative similarity 

emerges. Just as DAM genes induced in neurodegenerative mouse models overlap with those 

induced by natural aging (Friedman et al., 2018; Holtman et al., 2015), so do many HAM 

genes induced in human AD tissues (Figure 5A), though the genes involved are distinct 

between species (Galatro etal.,2017).Another emergingthemeinmousemodel literature is the 

involvement of some DAM genes (such as Apoe, Ch25h, Lpl, Ctsb,and Atp6v0d2)in lipid 

andlysosomalbiology and theinduc-tion of DAM gene expression by lipid pathologies such 

as demyelination (Nugent et al., 2020; Poliani et al., 2015) and atherosclerosis (Cochain et 

al., 2018; Kim et al., 2018). In our data, in addition to APOE, we found that the lipoprotein 

receptor LSR and the lysosomal enzyme ARSA—a gene in which homozygous mutations 

cause metachromatic leukodystrophy (Cesani et al., 2016)—were elevated in HAM. 

Therefore, another possible simi-

laritybetweenDAMandHAMprofilescouldbetheinvolvementof lipid/lysosomal biology-

associated genes.Several genesassoci-ated with AD incidence (APOE, CLU, ABCA7, 

SORL1, INPP5D, and PLCG2)(Jansen et al., 2019; Kunkle et al., 2019; Marioni et al., 2018) 

also function in lipid transport or signaling.

Why are the HAM and DAM gene signatures so different? One explanation could be 

intrinsic differences in human versus mouse innate immune responses, but the activation of 
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many DAM genes in MS lesions and in xMG from 5xFAD mouse brains suggests this is not 

the only reason. Another explanation could be the different stages of disease being analyzed, 

with mouse β-amyloid models perhaps representing early-stage AD with amyloid deposits 

present but preceding neurodegeneration. However, if this were the main reason, we might 

expect to see mouse DAM genes elevated in tissues in early Braak stages and decreased in 

tissues in later Braak stages, but we have not observed such trends in whole-tissue RNA 

profiles. A third explanation for the dissimilarity could be that the DAM activation state in 

b-amyloid models is a protective response by healthy microglia (Keren-Shaul et al., 2017), 

whereas genetic and histological findings suggest that human AD involves impairments in 

microglial activation (Hansen et al., 2018; Streit et al., 2009). Additional profiles with 

increased cellular resolution for various AD stages and brain regions, different 

neurodegenerative diseases, and additional disease models that incorporate human 

microglial cells will shed further light on how the HAM profile relates to mechanisms of AD 

protection or pathogenesis.

STAR★METHODS

RESOURCE AVAILABILITY

Lead Contact—Further information and requests for resources should be directed to and 

will be fulfilled by the Lead Contact, Brad Friedman (friedman.brad@gene.com).

Materials Availability—This study did not generate new unique reagents.

Data and Code Availability—All new RNA-Seq data described in this study are 

available from the GEO/SRA repository: GSE125050 (sorted cell RNA-Seq from AD and 

control SFG) and GSE125583 (bulk tissue RNA expression from FuG of AD and Control 

subjects). This study did not generate any new software; questions about data analysis 

should be directed to the Lead Contact, Brad Friedman (friedman.brad@gene.com).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Frozen superior frontal gyrus and fusiform gyrus tissue blocks and pathology/clinical 

reports, including age, sex, diagnosis, and Braak stage, were obtained from the Banner Sun 

Health Research Institute Brain and Body Donation Program in accordance with institutional 

review boards and policies at both Genentech and Banner Sun Health Research Institute. All 

samples obtained from Banner Sun Health Research Institute were stored at 80 C until the 

time of processing.

All subjects had been characterized clinically and neuropathologically by the Arizona Study 

of Aging and Neurodegenerative Disease/Brain and Body Donation Program (Beach et al., 

2015). All AD subjects were clinically diagnosed with AD in life and brains were 

neuropathologically confirmed to have "frequent" CERAD neuritic plaque densities (Mirra 

et al., 1991) and Braak score V or VI ( Braak and Braak, 1991). Controls did not have 

dementia, AD or other neurological disease diagnoses in life.

For sorted cell cohort (GSE125050), controls had either "zero" or "sparse" CERAD neuritic 

plaque densities, and mostly had Braak scores ranging from 0 to III (median II). One control 
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subject was designated Braak stage IV due to slight tau pathology in the amygdala, and one 

control subject was diagnosed post-mortem with "argyrophilic grain disease."

All Subjects Subjects with QC-passing Myeloid Profiles

Control AD p* Control AD p*

N 21 21 15 10

Male 13 (62%) 10 (48%) 0.536 10 (67%) 5 (50%) 0.442

ApoE4+ 0 (0%) 9 (43%) 0.00132 0 (0%) 6 (60%) 0.00119

Age 80 (71 –88) 79 (72–84) 0.943 83 (67–89.5) 78.5 (72.8–83.2) 0.938

PMI 3 (2.5–3.25) 3 (2.33–3.08) 0.519 3 (2.75–3.2) 2.92 (2.2–3) 0.619

Last MMSE 28.5 (27.8–29) 1 (0–4) 6.52E-27 28.5 (27.8–29.2) 0.5 (0–5.5) 5.39E-11

*
p values for Sex (Male) and ApoE4 status from Fisher’s Exact Test, others from Student’s t test. Median and interquartile 

range shown for Age/Post-mortem interval (PMI)/Last Mini-Mental State Exam (MMSE).

Linear model testing as well as visual exploration revealed no significant correlation 

between PMI and any of the other variables (diagnosis, see also Figure S2C PMI panel; sex; 

ApoE4 status; age; or Last MMSE).

Whole tissue studies cohorts were as follows:

GSE95587 (previously published) GSE125583 (new subjects in this study)

Control AD P* Control AD P*

N 33 84 42 158

Male 23 (70%) 42 (50%) 0.0644 19 (45%) 86 (55%) 0.3

ApoE4+ 8 (24%) 38 (45%) 0.0574 5 (12%) 85 (54%) 5.29E-07

Age 82 (80–90) 87 (81–91) 0.471 89 (84.2–91) 84 (77–88) 7.45E-06

Last MMSE 29 (28–29) 17 (7–22) 2.10E-23 28.5 (27–30) 14 (6–21) 1.06E-47

*
P values for Sex (Male) and ApoE4 status from Fisher’s Exact Test, others from Student’s t test. Median and interquartile 

range shown for Age and Last MMSE.

Although age was not well controlled in the new cohort, the direction of difference was anti-

conservative, with the AD cases on average about a half decade younger.

METHOD DETAILS

Tissue processing, library preparation, and RNA-Seq for whole tissue RNA 
studies—For whole tissue RNA studies (GSE125583), frozen tissue was sectioned in 

approximately 8 slices 40 mm thick and stored at 80 C. Tissue was homogenized in 1 mL 
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QIAzol with 5 mm stainless steel beads using a Tissuelyzer (20 Hz for 4 min). After 

homogenization, 200 μL of choloroform were added to the cleared lysate (1 min at 12,000 

rcf. at 4°C), vigorously shook and incubated at room temperature 2–3 min. Samples were 

centrifuged for 15 min at 12,000 rcf. at 4°C and the upper aqueous phase was transferred to 

a new tube. RNA was extracted using QIAGEN miRNeasy mini columns, yielding samples 

with RNA integrity (RIN) scores averaging 6.5. Standard polyA-selected Illumina RNA-Seq 

analysis was performed as described (Srinivasan et al., 2016) on samples with RNA integrity 

(RIN) scores at least 5 and post-mortem intervals (PMIs) no greater than 5 hr. Of 289 total 

samples, 89 were from subjects that had already been profiled in our previous study, 

GSE95587. These are available in GSE125583 and marked therein as duplicated in 

GSE95587. These samples, which came from new fusiform gyrus tissue blocks, showed 

very similar sample-by-sample DE profiles as the corresponding samples from the same 

subjects in GSE95587 (Figure S4A), but were omitted in all other analyses associated with 

this manuscript to avoid overlap between the two datasets (see Figures 3D, S4B, and S4C; 

Data S2 and S3; and website).

Tissue processing, library preparation, and RNA-Seq for sorted cell studies—
For sorted cell studies, frozen samples were opened on dry ice and a 100–200 mg portion 

was excised. The excised portion was thawed in ice-cold Hibernate A and minced on a cold 

block with a pre-chilled razor. Minced SFG samples included both gray and white matter, 

while only gray matter from FuG was used for mincing since gray matter atrophy was 

pronounced in FuG from AD subjects and we did not want differences between AD and 

control microglia to be dominated by potential differences between white matter and gray 

matter microglia. (For sixteen SFG samples, excess minced tissue fragments were refrozen 

and stored for a later attempt to repeat the entire sorting and RNA-Seq procedure from the 

same brain region—see QC section below.)

Minced tissue was transferred to a 2 mL round-bottom tube with cold 1.6 mL of Accutase 

and incubated 20–30 minutes on a rotator at 4°C, mechanically dissociated/triturated by 

pipetting, centrifuged, resuspended, and ethanol-fixed for 10 minutes on ice as previously 

described (Srinivasan et al., 2016). Cells were washed briefly and incubated with anti-

CD11b APC (Millipore MABF366), anti-GFAP PE (BD PharMingen 561483), anti-NeuN 

AlexaFluor488 (Millipore MAB377X), anti-CD31 PE-Cy7 (BD PharMingen 563651), and 

Human Fc Block (BD PharMingen 564220) for 20 minutes at 4°C with sample rotation. 

Cells were centrifuged at 2,000 rcf. for 2 minutes and briefly washed prior to DAPI (1 

mg/ml stock) being added at 1:1,000 followed by FACS sorting on ARIA sorters. Only 

DAPI+ singlet cell bodies were collected, and each cell population of interest was gated to 

be negative for all the other antibody marker channels. Samples were generally processed in 

pairs, with one AD and one control sample. While each human sample was unique and 

gating was occasionally fine-tuned, samples generally separated based on the same broad 

FACS gates. (We did not attempt to distinguish CD45low parenchymal microglia from 

CD45high peripheral/perivascular macrophages primarily for biological reasons since we 

did not want to exclude activated microglia which often display elevated CD45 reactivity, 

but also for technical reasons since we have not found a CD45 stain compatible with ethanol 

fixation.)
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Typical cell numbers collected were 100K CD11b+ cells, 40K GFAP+ cells, 10K CD31+ 

cells, and 400K NeuN+ cells. FACS-isolated cell populations were spun at 5,000 rcf. for 5 

minutes and resuspended in 0.35 mL Buffer RLT from QIAGEN RNeasy Micro kit. Lysed 

samples were stored at 80 C until all samples for a given brain region were sorted. Each cell 

type was then processed for RNA purification as a single batch. Typical RNA yields were 1 

μg for neurons, 25 ng for microglia and astrocytes, and 5 ng for endothelial cells. RNA 

integrity (RIN) and concentration were determined by 2100 Bioanalyzer (Agilent 

Technologies). RIN scores for all cell types were typically between 1 and 3. Total RNA 

extracted from sorted cell populations was subjected to Fluidigm qPCR assay which yielded 

reliable cell-specific gene expression data, despite poor RNA quality resulting from post-

mortem status, freeze/thaw process and fixation. In addition to the methods for dissociation 

and immunolabeling described above, we also attempted dissociation techniques involving 

trypsin or papain at 37 C, psychrophilic proteases at 4°C, longer Accutase treatment periods, 

automated mechanical dissociation instead of pipetting, other fixatives besides ethanol, 

labeling and sorting of non-fixed cells for cell types with surface markers (CD11b and 

CD31), and antibodies for alternative cell type markers. None of these attempts were as 

good as the method described above in terms of cell yield and RNA recovery.

Given the highly fragmented condition of our sorted cell RNA preps, we chose the NuGEN 

Ovation RNA-Seq System V2 kit for cDNA synthesis since it uses random oligos for cDNA 

priming. We knew this would result in high percentages of intronic and non-coding RNA 

reads, but our priority was to sample across all exons instead of having an extreme 30 bias 

and reduced complexity in our library. (Only exonic reads were counted toward nRPKM 

values.) Generated cDNA was sheared to 150–200bp size using LE220 ultrasonicator 

(Covaris). Following shearing, the size of cDNA was determined by Bioanalyzer DNA 1000 

Kit (Agilent) and quantity was determined by Qubit dsDNA BR Assay (Life Technologies). 

Sheared cDNA was subjected to library generation, starting at end repair step, using 

Illumina’s TruSeq RNA Sample Preparation Kit v2 (Illumina). Size of the libraries was 

confirmed using 4200 TapeStation and High Sensitivity D1K screen tape (Agilent 

Technologies) and their concentration was determined using KAPA Library Quantification 

kits. The libraries were multiplexed within cell types and then sequenced on Illumina 

HiSeq2500 (Illumina) to generate 50M of single end 50bp reads.

QUANTIFICATION AND STATISTICAL ANALYSIS

RNA-Seq data processing and QC for whole tissue samples and bulk cell type 
samples—Sorted cell and whole tissue RNA-Seq data were analyzed using the GSNAP 

aligner and HTSeqGenie as described (Friedman et al., 2018), except as follows. For 

Gosselin et al. (2017) (phs001373.v1.p1, human monocytes and microglia) we did not have 

access to the raw FASTQ files, so we used the author-provided tables of counts and TPM 

values. For ROSMAP-DLPFC we downloaded the file 

ROSMAP_RNAseq_FPKM_gene_plots_1_to_6_normalized.tsv from the synapse.org 

website, in order to take advantage of the batch normalization that the authors already 

applied. We did not use the samples from batches 7 and 8 since, despite restricting to the 

batch-normalized values, we still saw very strong clustering of these two batches separately 

from the first 6 on PCA. “Pass” or “Fail” status for our sorted cell RNA-Seq profiles was 
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determined primarily using tSNE analysis (perplexity = 14, theta = 0.4) colored by cell type 

to visualize how profiles clustered (Figure S2A). tSNE clustering of profiles was generally 

confirmed by sample similarity heatmaps (not shown). Interpretation of tSNE clusters was 

informed by gene versus sample heatmaps (similar to the heatmap in Figure S2B but with 

unbiased hierarchical clustering of the 500 most variable genes, and blinded to AD 

diagnosis), which enabled us to see which tSNE clusters contained libraries with neat cell 

type-specific expression profiles and which clusters contained libraries with degenerate 

features including reduced specificity of cell type expression markers (see Figure S2B). 

Compared to "Pass" libraries, "Fail" libraries generally showed higher percentages of 

intergenic reads and lower percentages of exonic and intronic reads (see Figure S2C). We 

discarded 1/43 neuron libraries, 19/38 astrocyte libraries, 14/41 endothelial cell libraries, 

and 18/43 microglia libraries from original frozen tissues, and 16/16 microglia libraries from 

twice frozen tissues (which underscored the liabilities of the freeze-thaw process).

Principal Component Analysis (Figure 1C) was performed on Z-score normalized matrix of 

1000 most variable genes by IQR using the R function prcomp().

Differential expression (DE) analysis for bulk-sorted cells—DE between AD and 

controls for this study’s sorted cell populations was first attempted using voom+limma, 

which identified only 12 DE genes (adjusted p ≤ 0.05) in myeloid cells and none in the other 

cell types. We then used DESeq2 instead (adjusted p ≤ 0.05), but we used the DESeq2-

provided Cook’s distances to filter out genes likely driven by outlier samples. Any gene for 

which the Cook’s distance was greater than the α = 0.01 critical value of the F distribution 

was omitted from our DE genes lists. The Cook’s distance filter eliminated 6/10 neuronal 

DE genes, 9/75 myeloid DE genes, and 382/517 endothelial DE genes from consideration, 

leaving 4 DE genes in neurons, 66 in myeloid cells, and 135 in endothelial cells. The 

absence of any voom+limma hits for neurons and endothelial cells, the high fraction of 

DESeq2 hits driven by outliers in these two cell types, and the lack of other human AD 

datasets available at the time for cross-comparison led us to set these cell types aside (taking 

a conservative position) and focus on the whether the changes in myeloid cells could be 

validated. In the myeloid cells, 11/12 DE genes identified by voom+limma were also 

identified by DESeq2, with CD44 being the only exception (p = 0.113 in DESeq2). We 

included CD44 in our panel of genes tested by qPCR in FuG myeloid cell sorts, and it was 

again increased in the AD samples (unadjusted p = 0.041), so we consider its DE to be 

genuine though we did not include it in our HAM-Up gene set analyses, other than 

visualizing it in Figure S6A.

Our analysis of Galatro et al. (2017) was performed using DESeq2 (adjusted P value ≤ 0.05, 

maximum Cook’s P value ≥ 0.01). For Galatro et al. (2017) the ages of the subjects were 

taken from their supplemental table rather than GEO (these differed only for the sample 

GSM2631906), and the DE analysis was simply the linear model ~Age, only using the 

samples with tissue = "Microglia." For Gosselin et al. (2017), DE between microglia and 

monocytes was performed using DESeq2 using only the samples with Cultur-eStatus = 

"ExVivo."
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Single-cell/nucleus RNA-Seq analysis—For Mathys et al. (2019) (syn18485175, 

human AD snRNA-Seq), count tables provided on synapse.org website were used as input. 

Gene symbols, or, if necessary, aliases, were used to map onto our internal gene annotation, 

based on Ensembl. NIA Reagan scores (for low, intermediate and high pathology) were 

obtained from Rush University via synapse.org. Analysis in this manuscript was limited to 

cells with the authors’ provided broad.cell.type = "Mic," although only the subset of these 

cells that we believe represent parenchymal microglia were used for the pseudobulk (see 

Data S4, panel 2). Total transcript number normalization was performed, dividing each gene 

expression value for a cell by a factor proportional to the total number of transcripts in that 

cell.

For Masuda etal. (2019) (GEO: GSE124335, scRNA-Seq ofCD45+ cells from fresh surgical 

resections of MS and controlpatients), we downloaded each of the 32 gene quantification 

files from the GSE124335 GEO record (file names like GSM3529822_MS_case1_ 

3.coutt.csv.gz). These files each contained 192 columns corresponding to the cells of one 

batch, and one row per gene. The gene symbols were mapped onto IDs as described above. 

After this step cells with less than 800 total transcripts or greater than 30% mitochondrial 

transcripts were discarded, resulting in 1,738 QC-passing cells for analysis. Total transcript 

number normalization was performed as describe above.

For Jäkel et al. (2019) (GEO: GSE118257, snRNA-Seq of post-mortem MS and control 

brains) and Hasselmann et al. (2019) (GEO: GSE133433, scRNA-Seq of xMG in 5xFAD 

and non-diseased mouse brains), the single-nucleus/cell count tables were similarly 

downloaded from GEO and processed as above. For Jä kel et al. (2019) only nuclei with at 

least 400 total UMIs were taken for analysis, and for Hasselmann et al. (2019) only cells 

with log10(total UMIs) R 3.25 and at most 5% mitochondrial transcripts were taken.

R/Seurat was used to calculate PCA, tSNE coordinates and Louvain clustering for all of 

these studies. Cell IDs, tSNE coordinates, Seurat clusters, and interpretations of Seurat 

clusters for each cell visualized in Data S4, panels 2 and 3, and individual cell-level results 

in Data S5 (CSV file).

Pseudo-bulk analysis of sc/snRNA-Seq datasets—Pseudo-bulk datasets were 

derived from single-cell/single-nucleus datasets first by aggregating the cells of each sample 

of the same cell type. So, for n samples and m cell types there were nm total possible 

pseudo-bulks (that is, aggregates of cells of a single type from a single sample). If fewer 

than 10 cells of a particular type were present in a given sample then they were discarded, so 

the actual total number of pseudo-bulks was typically less than nm. A single "raw count" 

expression profile was created for each pseudobulk simply by adding the total number of 

UMIs for each gene across all the cells. This gave a gene-by-pseudobulk count matrix which 

was then normalized to a normalizedCount statistic using the estimateSizeFactors function 

from DESeq2, used for calculating gene set scores and visualizing gene expression, and for 

normalization factors for differential expression analysis. DE was performed on pseudobulk 

data-sets using voom+limma methods for bulk RNA-Seq.
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To put this into more formal notation, let nij be the raw UMI number of gene i in cell j. Let sj 

and cj indicate the sample and cell type, respectively, of cell j.

Then the pseudobulks are the set of pairs (s;c) of samples s and cell types c for which there 

are at least 10 cells j with (sj;cj) = (s;c). The pseudobulk count matrix B, with rows indexed 

by genes and columns indexed by pseudobulks (that is, (s; c) pairs) is defined as

Bi, sc = ∑
j: Sj, Cj = S, C

nij

The matrix B is then analyzed using the standard methods of bulk RNA-Seq.

Other covariates: Post-mortem interval, sex, APOE genotype—Differential 

expression analysis (Data S4, panel 1) revealed that the expression of about 80 genes was 

significantly increased in microglia from subjects with larger post-mortem interval (PMI). 

This seemed to be largely driven by elevated mitochondrial gene expression in a subset of 

the samples with large PMI. However, the distribution of PMI in our AD and control 

samples was similar (Figure S2C; Data S4, panel 1A, inset), there was no overlap between 

the AD-related DE genes and the PMI-associated genes, and adding PMI to our statistical 

model for AD-associated DE gave very similar results. Therefore, we did not include PMI in 

subsequent analyses. Sex-associated DE in microglia was almost entirely restricted to X and 

Y chromosome genes. For APOE genotype, we only detected one DE gene, ACY3, in AD 

microglia between APOE-e4 carriers versus non-carriers. It showed variable expression 

levels in the Controls (all non-carriers), so it may be a false positive.

Fluidigm qPCR analysis—qPCR data were collected as described (Srinivasan et al., 

2016). Then, for each assay target, the maximum Ct of quality > 0 was calculated. The Ct 

value maxCt+0.5 was assigned to each assay that had Ct larger than this value (including 

999). All assays were performed in duplicate and the average of these two Ct values was 

kept, except for twelve sample/assay pairs for which the difference was more than 2.82 

(corresponding to a standard deviation of 2), which were discarded. ΔCt normalization was 

performed using global median (the median Ct value for all assays for a given sample) and 

differential expression between AD and control was performed using limma.

Gene set analysis—Gene Sets can be found in Data S3, as follows:

• Figures 1B and S2B: Cell type marker genes in column O "Barres Human cell 

Types."

• Figure 3D: "HAM-Up"/"HAM-Down" are the DE genes from this study, noted in 

column N. "DAM" are disease/damage-associated microglia genes, called 

"Neurodegeneration-Related" in column Q "Myeloid Activation (Coarse)." 

"LPS-Specific" genes are significantly induced in myeloid cells by LPS but not 

significantly changed in myeloid cells in response to LCMV, b-amyloid, Tau 

pathology, or SOD1G93A, in column R "Immune-Specific."
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• Figure 4A and Table S1: Mouse-derived gene sets (left panel) in column Q 

"Myeloid Activation (Coarse)" except for "LPS-Specific" in column R "Immune-

Specific." BrainMyeloid gene set contains the orthologs of the union of gene 

modules 2, 3, 5, 7 and 9 from previous publication (Friedman et al., 2018) 

(column T of that manuscript’s Data S4). These are genes elevated in microglia 

relative to infiltrating and peripheral macrophages but not so much relative to 

perivascular macrophages.

• Figure 4B: DE gene sets taken from our previous manuscript (Friedman et al., 

2018)

• Figure 7: "GalatroAging-Down" and "GalatroAging-Up" are the genes DE with 

age (depicted in Figures 5A and 5C), with DE stats and adjusted p < 0.05 in 

columns CU-CW. "Resting Microglia" refers to the Microglia module genes 

annotated in column Q. Other gene sets described above, with APOE removed as 

indicated.

• Figure S4C: Same gene sets as Figure 3D, plus neuron and myeloid markers 

from Figure 1B

• Figures S5A–S5C: Same gene sets as Figure 4A

• Data S4, panels 2 and 3: Gene sets not described above are included in column P 

"ABA Mouse Cell types," column S "scRNA-Seq Characterization," and column 

T "FerritinCluster."

Gene set scores (Figures 3D, 4A, 7, S4B, and S4C; Data S4, panels 2 and 3) were calculated 

as described (Friedman et al., 2018). Briefly, gene expression values were first log-

transformed and stabilized as Log2(nRPKM+1), or, for ROSMAP-DLPFC, 

Log2(normalized RSEM+1). Then the average log-scale expression values of the controls 

were subtracted out for each dataset to yield control-centered gene expression values. The 

gene set score for a sample was then calculated as the average over all genes in the set of the 

control-centered gene expression values. For DE scores (Figures 3C, 4B, 5D, 5E, S3A, and 

S4A) a similar method was used, but with a signed average: up genes were weighted by +1 

and down genes by −1 to capture comparisons of both up and down genes in a single score.

In cases where gene set scores were presented in the same figure or analysis in a manner that 

suggested or required cross-project comparisons (Figures 3C, 3D, 7, S3A, and S4; Data S4, 

panels 2 and 3), gene sets were limited to those genes present in all studies compared.

Myeloid balancing (Figures 3D and S4B) of whole tissue RNA profiles was performed as 

described (Friedman et al., 2018). Briefly, for each dataset, samples were split into 20 bins 

of similar myeloid gene set scores. In each bin, control or AD samples were randomly 

discarded as needed to reduce differences in the ratio of AD to control samples across bins.

ADDITIONAL RESOURCES

Brain Myeloid Landscape 2 Website: http://research-pub.gene.com/BrainMyeloidLandscape. 

This website updates our previously released resource at the same URL with the datasets 

described in this manuscript. Users can enter genes of interest and quickly see their 
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differential expression across all of these brain myeloid-related datasets, as well as 

expression within the samples in each individual dataset.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Transcriptomic data from FACS-sorted microglia from frozen AD and control 

samples

• APOE and other differentially expressed genes define the human Alzheimer’s 

microglia state

• Scant overlap with mouse models but strong enrichment of age-related 

changes

• Web resource to browse data: http://research-pub.gene.com/

BrainMyeloidLandscape
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Figure 1. Expression Profiling of Human Cell Populations Sorted from Frozen, Post-Mortem 
SFG
(A) Experimental overview. See Figure S1 for the FACS gating scheme.

(B) Expression of known cell-type markers, derived from previously published human cell 

data from fresh brains (Zhang et al., 2016), in QC-passing expression profiles indicates high 

cell-type purity. Each gene was Z score normalized across all profiles of all cell types. See 

Figure S2 for QC analyses.

(C) Principal-component analysis using most variable genes reveals separation of four cell 

types. The juxtaposition of astrocyte and endothelial cell profiles, and the modest detection 
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of astrocyte markers in endothelial cell samples (see D), may have resulted from astrocytic 

endfeet (which contain mRNAs; Boulay et al., 2017) remaining associated with endothelial 

cell bodies.

(D) Expression levels ± SEM of selected cell-type markers.

(E) Distributions of gene counts in various human microglial gene expression datasets. Each 

boxplot shows the indicated (10th,25th,50th,75th, and 90th) quantile across all genes, of raw 

gene counts for each sample of bulk-sorted microglia or, for syn18485175, for each sample’s 

pseudobulk microglia.
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Figure 2. Sorted Cells from Frozen Human SFG Specimens Exhibit Preferential Expression of 
Many AD Risk Genes in Microglia
(A) Heatmap of Z scores for each AD risk gene’s normalized reads per kilobase gene model 

per million total reads (nRPKM) expression value in each sample, with a sample’s Z score 

for a given gene representing its distance in standard deviations from the mean expression 

value across all samples for that gene. Gene selection was informed by genome-wide 

association study (GWAS) reports (Hollingworth et al., 2011; Lambert et al., 2013; Naj et 

al., 2011; Ramanan et al., 2015; Sims et al., 2017) and specific efforts to identify causal 

genes in GWAS-identified loci ( Huanget al., 2017; Novikova et al., 2019; Rathore et al., 

2018).

(B) Expression values are plotted for each AD risk gene in each cell type sorted from frozen 

SFG of controls (Ctl) or AD patients. Bars and lines represent mean expression ± SEM, with 

asterisks marking DE in AD versus control cells based on unadjusted DESeq2 p values (*p < 

0.05, **p < 0.01, ***p < 0.001).
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Figure 3. Human Microglia Exhibit an AD-Associated DE Profile in Both Frontal and Temporal 
Cortices
(A) Heatmap of AD DE genes (rows; DESeq2 adjusted p ≤ 0.05 and maximum Cook’s p ≥ 

0.01) in control and AD SFG-derived microglia expression profiles (columns, sorted by AD-

associated DE). “Panel B genes” indicates genes that were subsequently assayed by qPCR in 

microglia sorted from FuG tissues, with colors from (B).

(B) 4-way comparison of AD-associated DE in SFG microglia measured by RNA-seq (x 

axis) with DE in FuG microglia measured by qPCR (y axis). Each point represents one gene 

colored by whether the adjusted p value was ≤ 0.05 in one or both DE analyses (red for SFG 
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RNA-seq, green for FuG qPCR, or blue for both). Corresponding numbers of DE genes are 

shown near the borders of the plot. For example, the red 11 on the right reflects the number 

of genes that were significantly up in SFG and trended up but did not meet significance in 

FuG, whereas the blue 3 at the top right indicates the number of genes significantly upin 

both regions. Genes were selected manually for validation, consisting of about 1/3 of the DE 

genes from the RNA-seq study and several other cell-type markers and genes of interest. 

Diagonal line: y = x. (See Figure S3A for subject-wise SFG-FuG microglia DE correlations, 

Figure S3B for selected qPCR data plots, and Data S2 columns EK–GH for qPCR 

expression statistics for all 39 genes in the panel.)

(C) SFG microglia DE is reproduced in FuG microglia. DE scores (see STAR Methods) are 

shown for each SFG and FuG microglia sample, using the 22 SFG DE genes that were 

included in the qPCR panel. For FuG microglia samples, open circles indicate that a QC-

passing SFG RNA-seq microglia profile was not available from that subject. p value, t test.

(D) Detection of upregulated HAM profile genes is recapitulated in myeloid-balanced whole 

AD tissues from frontal and temporal cortical regions and is more robust than DAM changes 

predicted by mouse microglia profiles. Each study was separately myeloid balanced to 

create a subset of whole-tissue samples with similar myeloid gene set scores, and neuronal 

genes were removed from each gene set. (See Figure S4C for division by Braak stage with 

all samples and all genes included.) Each panel shows gene set scores for the indicated gene 

sets for each of the myeloid-balanced AD or control samples. Δ, mean log2 fold change; p 

value, t test.
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Figure 4. DE Genes in Mouse Microglia Studies Are Mostly Unchanged in HAM
(A) Distribution of scores for mouse- and human-derived gene sets in SFG microglia 

profiles indicates that mouse-derived microglia gene modules undergo little or no change in 

AD microglia. The DAM gene set was called "neurodegeneration-related" in the previous 

manuscript. p, (unadjusted) t test; Δ, log2 fold changes in score; *p ≤ 0.05. (See Figures 

S5A–S5C for heatmaps of individual genes from DAM, microglia, and BrainMyeloid 

modules.)

(B) DE gene set scores, similar to (A) but with DE genes from specific mouse datasets 

instead of from meta-analysis-derived gene modules. In this case, the scores are DE scores, 

meaning that they used signed means rather than means (with the sign indicating the 

direction of DE) so that up- and downregulated genes can be considered together. PVMs 

relative to parenchymal microglia; age, 22 months relative to young (≤12 month) microglia; 

cerebellum relative to cortical microglia; infiltrating macrophages (induced by irradiation) 

relative to tissue-resident microglia. p, (unadjusted) t test; Δ, log2 fold changes in score; *p 

≤ 0.05. (For the three comparisons that reached significance, see Figure S5D for 4-way plots 

of individual gene fold changes in the respective mouse study compared to fold changes in 

AD versus control SFG microglia. See also Figure S6 for analysis of whether DE genes 

from the HAM profile are altered in mouse microglia in models of neurodegeneration or 

other activating conditions.)
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Figure 5. AD-Associated HAM Profile Overlaps Substantially with Age-Related DE Patterns in 
Human Microglia
(A) 4-way DE plot (analogous to Figure 3B) shows age-related DE from Galatro et al. 

(2017) on the x axis and AD-related DE on the y axis. Color indicates p ≤ 0.05 significance 

with aging only (red), with AD only (green), or with both (blue). Most red genes, DE with 

age, trended in a consistent direction with AD versus control microglia (bottom-left and top-

right quadrants), indicating that AD microglia exhibit enhanced aging. The green genes, 

including APOE, indicate an AD-related signature that is distinct from DE of normal aging.

(B) Distribution of subject ages in both studies.

(C) Previously reported DE pattern in normal, aged human microglia is recapitulated in 

control subjects of this study. The 4-way plot shows age-related DE from Galatro et al. 

(2017)’s dataset on the x axis, as in (A), and age-related DE from this study’s control SFG 

microglia profiles on the y axis. Genes in red met an adjusted p ≤ 0.05 cutoff in Galatro et al. 

(2017); other genes are shown as a smoothed density in shades of gray. No DE genes from 

Galatro et al. (2017) met the p ≤ 0.05 cutoff for age-related DE in our dataset, but most 

trended in a consistent direction (bottom-left and top-right quadrants). The lack of statistical 

significance and muted fold changes in our study may resultfromfar fewersamples and our 

samples coming mainly from subjects.

(D) Aging DE score was calculated for each SFG microglia sample in our study—a signed 

average of the age-related DE genes from Galatro et al. (2017). Regression lines show the 

increasing trend of this score in both diagnosis groups with age, as well as the elevated score 

in the AD group relative to controls of similar ages.

(E) Aging DE score is elevated in AD microglia relative to controls. y coordinates as in (D); 

p value, t test.
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Figure 6. Monocyte-Enriched Genes May Contribute to Both Late Aging and AD Microglial 
Signatures
(A) Example gene expression plots. Each point shows the expression of the indicated gene in 

a single sample in one of the three studies. In the middle column (Galatro et al., 2017), the 

dashed line indicates the best linear fit.

(B) Monocyte DE profiles relative to microglia are similar in human and mouse studies. The 

4-way plot is similar to Figure 3B but with DE genes between monocyte and microglia 

profiles shown with human and mouse studies on the x and y axes, respectively.

(C) Many DE changes elevated or depleted in aged human microglia (x axis) are also 

elevated or depleted, respectively, in blood monocytes relative to microglia (y axis). The 4-
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way plot shows DE genes with p ≤ 0.05 in the aging study colored red, DE genes with p ≤ 

0.05 and fold change ≥ 8 between monocytes and microglia colored green, and DE genes 

that meet both criteria colored blue.

(D) Heatmap of DE genes from the HAM profile in three datasets. Gene ordering was based 

on the direction of change in this study and then by effect size (fold change per decade) in 

aging. The subset of HAM-Down genes that show reduced expression in aged microglia 

generally shows higher expression in microglia than in monocytes. The subset of HAM-Up 

genes that show increased expression in aged microglia generally shows higher expression in 

monocytes than in microglia.
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Figure 7. HAM Signature Is Elevated in Multiple Neurodegenerative Settings, whereas DAM 
Response Is Weaker in AD Microglia
Control-centered scores (log2 scale) for the indicated gene sets were calculated for each 

sample in the indicated datasets. For snRNA-seq datasets (Mathys et al., 2019, frozen AD 

tissues, syn18485175; Jä kel et al., 2019, frozen MS tissues, GEO: GSE118257) and 

scRNA-seq datasets (Masuda et al., 2019, freshly resected MS lesions, GEO: GSE124335; 

Hasselmann et al., 2019, human induced pluripotent stem cell [iPSC]-derived xMG into 

5xFAD mouse brains, GEO: GSE133433), each datapoint represents a pseudobulk microglia 

profile from pooling individual nuclei/cells from a given subject. (See Data S4, panels 2 and 
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3, for definitions of microglia clusters used to generate pseudobulk profiles from sn/scRNA-

seq datasets.) Other datasets are bulk-sorted brain myeloid cells from frozen AD tissues (this 

study, GEO: GSE125050) or fresh mouse model tissues (PS2APP b-amyloid and PS19 Tau-

P301S models, GEO: GSE89482 and GSE93180). D, log2 fold change of group means; p 

values from t test. For syn18485175, t test and D were between low- and high-pathology 

groups. The p value was omitted for GEO: GSE118257, because only one control sample 

was available (see STAR Methods). See STAR Methods (Gene Set Analysis section) for 

gene lists and Figure S7 for depictions of individual DE genes across studies.
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

anti-CD11b APC Millipore MABF366; RRID:AB_2857951

anti-GFAR PE BD PharMingen 561483; RRID:AB_10689630

anti-NeuN AlexaFluor488 Millipore MAB377X; RRID:AB_2149209

anti-CD31 PE-Cy7 BD PharMingen 563651; RRID:AB_2738348

Chemicals, Peptides, and Recombinant Proteins

Human Fc Block BD PharMingen 564220

Deposited Data

Sorted-cell RNA-Seq Data from AD and Control SFG GEO GSE125050

Bulk Tissue RNA-Seq Data from AD and Control FuG GEO GSE125583
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