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Summary

Reinforcement learning allows organisms to predict future outcomes and to update their beliefs 

about value in the world. The dorsal-lateral prefrontal cortex (dlPFC) integrates information 

carried by reward circuits, which can be used to infer the current state of the world under 

uncertainty. Here, we explored the dlPFC computations related to updating current beliefs during 

stochastic reversal learning. We recorded the activity of populations up to 1000 neurons, 

simultaneously, in two male macaques, while they executed a two-armed bandit reversal learning 

task. Behavioral analyses using a Bayesian framework showed that animals inferred reversals and 

switched their choice preference rapidly, rather than slowly updating choice values, consistent with 

state inference. Furthermore, dlPFC neural populations accurately encoded choice preference 

switches. These results suggest that prefrontal neurons dynamically encode decisions associated 

with Bayesian subjective values, highlighting the role of the PFC in representing a belief about the 

current state of the world.
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Introduction

The ability to learn from experience and adapt flexibly to environmental changes is critical 

for survival. Reversal Learning tasks have often been used to study behavioral flexibility 

(Butter, 1969; Costa et al., 2015; Dias et al., 1996; Farashahi et al., 2017; Groman et al., 

2019; Iversen and Mishkin, 1970; Rudebeck et al., 2013; Schoenbaum et al., 2003). In these 

tasks, the associations between two choices and their reward outcomes are initially learned 

over a series of trials, and then reversed. For example, in a two-armed bandit reversal 
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learning task, rewards are stochastically associated with two images. Choosing one image 

may lead to a reward more often (e.g. a circle-70%) than choosing the other image (e.g. a 

square-30%). After subjects have learned the initial association and consistently select the 

circle, the choice-outcome mapping is reversed at one trial, and the square becomes the more 

frequently rewarded option. One must switch from selecting the circle to selecting the 

square. The ability of animals to adapt their behavior after the reversal is used as a measure 

of behavioral flexibility.

Many behavioral strategies and neural systems may be used to learn and update choice-

reward mappings on these tasks including working memory (Collins and Frank, 2012), 

model-free reinforcement learning (RL) (Sutton and Barto, 1998), adaptive model-free RL 

(Farashahi et al., 2017; Pearce and Hall, 1980) and model-based Bayesian strategies (Costa 

et al., 2015). In deterministic environments where choices consistently lead to the same 

outcome, working memory can be effective since the outcome on the last trial dictates the 

best choice in the current trial. However, to learn efficiently when outcomes are stochastic, 

information must be integrated over many trials, beyond the limits of working memory. 

Model-free RL, including Rescorla-Wagner (RW) and temporal-difference RL, can integrate 

outcomes over long periods of time (Averbeck, 2017; Averbeck and Costa, 2017) using the 

difference between predicted and received outcomes (i.e. reward prediction error-RPE) to 

incrementally update choice-outcome mappings (Rescorla and Wagner, 1972; Sutton, 1988). 

After a reversal, when the previously rewarded option is no longer rewarded, its value would 

gradually decrease over a series of trials.

In contrast to model-free RL algorithms, animals may use Bayesian or state inference 

strategies to infer reversals (Costa et al., 2015; Jang et al., 2015; Wilson et al., 2014). 

Bayesian models of reversal learning have knowledge of the structure of the task. They 

assume that one of the cues is initially more frequently rewarded and that there is a reversal 
in the choice-outcome mapping, after which the other cue is more frequently rewarded. The 

goal of the algorithm is to determine which cue is initially best, and then to detect the 

reversal. Inferring the reversal is equivalent to latent state inference (Schuck et al., 2016; 

Starkweather et al., 2017; Starkweather et al., 2018), and in reversal learning the current 

state indicates which cue is currently best (Wilson et al., 2014). Bayesian strategies can 

efficiently detect reversals, because they model correctly the switches in choice-outcome 

mappings that happen across single trials (Wilson et al., 2010). Model-free RL algorithms 

implicitly assume that values change incrementally across trials, an incorrect assumption for 

reversal learning, where values change abruptly.

Increasing evidence show that, with enough experience, animals can use Bayesian or state-

inference strategies to solve reversal learning tasks (Costa et al., 2015; Gallistel et al., 2001; 

Hampton et al., 2006; Jang et al., 2015; Wilson et al., 2014). Furthermore, there is evidence 

that prefrontal cortex (PFC) regions may be important for representing, or inferring, current 

state in other tasks (Durstewitz et al., 2010; Sarafyazd and Jazayeri, 2019; Schuck et al., 

2016; Starkweather et al., 2018). Here we examine neural population signals related to state 

switching processes in dorsal-lateral PFC, while monkeys performed a reversal learning task 

(Rothenhoefer et al., 2017). Neural population activity was recorded with 8 Utah arrays 

implanted bilaterally (4 in each hemisphere) in area 46 (Mitz et al., 2017). We found that 
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monkeys adopted a Bayesian strategy to infer reversals. Furthermore, there was a clear 

signal in PFC indicating the trial in which the animals switched their choice preference 

following a reversal. High channel-count recording data (up to 1000 simultaneously 

recorded neurons) allowed us to infer behavioral state switches in single trials.

Results

Monkeys reverse their choices abruptly rather than gradually

We trained 2 macaques to perform a two-armed bandit reversal learning task (Fig. 1A, see 

Methods). The task is organized in blocks of 80 trials. On each trial, monkeys fixated 

centrally for a variable time (400-800ms), then two target images were simultaneously 

presented to the left and right of the fixation point, prompting them to choose one. Animals 

had to make a saccade towards the chosen target and hold for 500ms. Reward was delivered 

stochastically. One of the two options had a higher reward probability than the other (p=0.7 

vs p=0.3) and the monkeys had to discover which option was the best by trial-and-error. The 

reward probability mapping in each block was defined in one of two possible ways: in WHAT 

blocks, reward probabilities were associated to the images, independent of their location 

(left/right from the fixation point). Conversely, in WHERE blocks, either the left or right target 

had the high reward probability, independent of the specific image presented at that location. 

Block type was randomized and not cued, thus, monkeys had to discover if image or location 

determined reward delivery. Within each block, the reward mappings were switched across 

options at a random trial within a switch window (trials 30-50) dividing the block into two 

phases: a) the initial acquisition phase in which the animals learned the block type and the 

best option, and b) the reversal phase in which they had to switch their choice preference to 

maximize reward. The monkeys completed between 1840-1920 valid trials per session. We 

show results from 8 sessions, 4 per animal.

We first examined the behavioral data. Given the stochasticity of the reward delivery, 

estimates of the reversal trial may not match the programmed switch trial. To account for 

this, we fit two Bayesian change-point models. First, we fit a Bayesian Ideal Observer (IO) 

model to estimate the posterior probability distribution across trials that the reward mapping 

had reversed, p(reversal∣Model=IO). The p(reversal∣Model=IO) distribution was on average 

in agreement with the programmed reversal, peaking at the center of the switch window 

(Fig. 1C). Second, we fit a Bayesian model of the monkey choice behavior (BHV) to 

estimate the posterior probability distribution across trials that the animal switched its choice 

preference, p(reversal∣M=BHV), independently of when the actual reversal in the choice-

outcome mapping occurred (Fig. 1C). From the IO and BHV model distributions we 

computed point estimates of the trial at which either the choice-outcome mapping or the 

animal’s choice preference reversed, by calculating the expected value of the corresponding 

p(reversal∣M). When we aligned the BHV reversal distributions to the estimated trial on 

which the behavioral reversal occurred, and then averaged, it could be seen that the BHV 

reversal distributions were narrow, focused around the reversal point (Fig. 1D). This 

suggests that reversals were well-defined. The broader distributions seen in Fig. 1C follow 

from averaging narrow distributions that peak on different trials.
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Next, we aligned the choice data using the IO reversal point (Fig. 1F). At the beginning of 

the block, monkeys quickly inferred which option was optimal and chose it more often. 

After the reward probability mapping switched they reversed their choice behavior. With this 

alignment, the animals appeared to slowly change preference to the best post-reversal 

option. However, if we align the choices to the BHV reversal point, it is evident that 

monkeys changed their choice preferences abruptly (Fig. 1G). The apparent slow change 

when aligned to the IO reversal point (Fig. 1F) is due to averaging rapid changes that occur 

on different trials relative to the IO reversal. We compared the reversal point estimates 

between the BHV and the IO models. Typically, the animals reversed their choices a few 

trials after the IO (Fig. 1E), but in several blocks the animals reversed before the IO model, 

i.e. before the evidence would suggest that the reward mapping had switched. This is 

inconsistent with a gradual updating process, since it can only be explained if the animals 

have an expectation that a switch in the reward mapping will occur at some point.

We also fit Rescorla-Wagner (RW) reinforcement learning models to the choice behavior 

and overlaid the average choice probabilities from the model on the choice data. While RW 

models approximated the data well for the acquisition phase (Fig. 1F-H) and most of the 

reversal phase for the IO aligned data (Fig. 1F), the RL model reversed preference much 

more slowly than the animals. This could be seen when the data was aligned around the 

BHV reversal trial (Fig. 1G). The RW rule may be too restrictive, because learning might be 

enhanced around the reversal. To account for this, we fitted a Pearce-Hall (PH) model, that 

allows the learning rate to vary when reward prediction errors are larger. The PH model 

predictions were similar to those of the RW model (Fig. 1H). Both models failed to fit 

properly the observed behavior in the first few trials after the behavioral reversal point. 

Critically, the association parameter of the PH model showed only a small increase around 

the reversal point (Fig S1), which likely follows from the fact that animals reversed quickly 

after the contingencies switched (Fig. 1E). We compared the fit of the RW, PH and Bayesian 

models around the reversal point (trials 20-60). The Bayesian model predicted reversals 

better than the RW (mean log BF=97, SEM=32, t7=3.25, p=0.014) and the PH (log BF=123, 

SEM=31.4, t7=4.20, p=0.004) models across sessions. Thus, the Bayesian model accounted 

better for choice behavior after a reversal in the reward mapping. These findings are 

consistent with the animals using Bayesian state inference to reverse their choice behavior.

Neurons in the Prefrontal Cortex show activity associated with task parameters

We hypothesized that PFC neurons would display activity associated with the process of 

switching preferences after reversals in our task. To test this hypothesis, we recorded the 

extracellular activity of neural populations in the dlPFC (size range: 573-1023 neurons, 

median: 706.5) using 8 multielectrode arrays (Fig. 1B) while the monkeys performed the 

task. The recorded neurons were evenly distributed across left and right hemispheres (47.21 

± 5.32% / 52.79 ± 5.31%, mean±SD).

The task robustly engaged a large fraction of the recorded neurons. We observed a broad 

diversity of activity profiles, including differential responses to image and location chosen 

(e.g. Fig. 2A,B). Within this diversity, many units exhibited responses associated with the 

chosen option in both WHAT and WHERE blocks. We ran ANOVAS on spike counts from a 

Bartolo and Averbeck Page 4

Neuron. Author manuscript; available in PMC 2021 June 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



sliding window that was moved across trial execution (300ms width, 20ms step). The results 

revealed that image and location chosen drove the activity of a large fraction of neurons 

(Fig. 2C, ~62% and ~50%, respectively). Toward the end of the trial, there was a strong 

neural response associated with the outcome.

We also examined associations between neural responses and Bayesian estimates related to 

learning in the task. Around 20% of the neurons had activity associated with the posterior 

probability of a reversal in the choice behavior - P(reversal∣M=BHV). An interesting feature 

is that activity was related to P(reversal∣M=BHV) even before the cue onset, suggesting that 

the neurons represent the choice to switch preferences throughout the trial, in agreement 

with previous observations (Asaad et al., 2000; Averbeck and Lee, 2007; Mushiake et al., 

2006). We focus on this reversal related activity in detail below. From the BHV model, we 

also estimated if the animals were choosing consistently between images or locations, that 

is, the posterior probability of block type being WHAT (P(blocktype=what)) or WHERE 

(P(blocktype=where)). Similar to the activity related to P(reversal), the association between 

neural activity and Bayesian estimates for block type existed from the beginning of the trial, 

and there is only a small increase in the fraction of neurons with a significant effect of this 

factor after cue onset (Fig. 2C), revealing Block Type inference processes in the PFC. We 

did not observe differences in behavior around reversal (Fig 1E-H) or in reversal decoding 

between block types (Fig 3D legend). Therefore, further reversal analyses included all 

blocks together independently of block type.

Neural activity predicts choice preference reversal.

Next, we examined the reversal-related neural activity in more detail. We fit a linear model 

(Fig. 2C) to the spike count data using all regressors except the Bayesian estimate of the 

posterior p(reversal∣M=BHV) (see Methods). We then extracted the residuals from this 

model and computed the Sum of Squared Residuals across all recorded neurons (SSresid) 

for each trial and time window within a trial. For the time window from 0-300ms after cue 

onset, the SSresid followed closely the posterior over reversals, p(reversal∣M=BHV), when 

examined trial-by-trial (Fig. 3A). Both p(reversal∣M=BHV) and SSresid peaked at the trial at 

which the choice preference reversal occurred. We also examined the reward prediction error 

(RPE) from the RW model, as they would be large around the time of the reversal. RPEs 

peaked before the behavioral reversal trial and was overall biased to the trials before reversal 

(Fig. 3B). This is consistent with the animals integrating the RPE to drive their switch, but 

suggests that the neural activity represents the switch itself, and not the RPE. Supporting this 

point, SSresid has a significantly higher correlation with p(reversal∣M=BHV) than with the 

RPE, when examined session-by-session (t7=9.83, p<0.001; see Fig. 3A,B, insets).

Next, we used the residual neural activity to predict the reversal trial and compared this to 

the actual behavioral reversal trial. We first predicted the reversal trial in each block by 

finding the trial (within a window ±10 trials around reversal) with the highest SSresid. We 

found that the trial with the largest SSresid was useful to decode the reversal (Fig. S2). 

However, SSresid is an unsigned quantity, thus this approach is blind to activity patterns (i.e. 

both increases and decreases in single cell activity that may signal reversals) in the neural 

population. To take the population response pattern into account, we used the adjusted 
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neural activity (e.g. the residual activity without squaring) to classify trials into reversal and 

non-reversal using Linear Discriminant Analysis (LDA). In each block, the LDA takes the 

adjusted activity of all the recorded neural population (predictors) and generates a posterior 

probability distribution that the reversal occurred on each trial, p(reversal∣Neural Response). 
We first examined the mean p(reversal∣Neural Response), and found that the neural posterior 

probability peaked at the behavioral reversal trial (Fig. 3C) and approximated 

p(reversal∣M=BHV) closely. Next, we decoded the single trial in each block on which the 

reversal occurred, using the neural activity. The decoded reversal trial in each block was the 

trial with the maximum posterior probability (MAP). By computing this MAP estimate for 

each block from p(reversal∣Neural Response), we were able to decode accurately the trial at 

which the choice preference reversed for most of the blocks (Fig. 3D). We repeated this 

analysis on raw spike counts rather than the adjusted activity (Fig. S3) and found a similar 

p(reversal∣Neural Response), however, the distribution of decoded reversal trials is less 

accurate than that obtained using the residual activity. This mismatch indicates that activity 

not related to reversal introduces noise in the decoding.

Reversal decoding uncertainty is related to uncertainty in behavior

We examined p(reversal∣M=BHV) separately for blocks that differed in the neural decoding 

error (i.e. the difference between the behavioral reversal and the decoded reversal) to assess 

whether p(reversal∣M=BHV) was related to decoding accuracy. When we plotted 

p(reversal∣M=BHV) as a function of the size of the decoding error (Fig. 4A), we found that 

larger decoding errors were associated with wider distributions of p(reversal∣M=BHV). 
Thus, when the animal failed to reverse abruptly, as evidenced by a broad distribution over 

trials, the decoding error was large (Fig. 4B). To characterize uncertainty in the behavioral 

posterior, we calculated the standard deviation of the p(reversal∣M=BHV) distribution. The 

standard deviation was correlated with the decoding error (Pearson R=0.224±0.07, mean

±SEM across sessions). Because noisy posterior distributions tended to have more than one 

peak, we also calculated the entropy of the p(reversal∣M=BHV) distribution to measure of 

the concentration of the distribution. Entropy was also correlated with decoding error (Fig. 

4C). In fact, t-tests revealed that the Pearson correlation coefficient was significantly 

different from zero (t7=3.76, p=0.007), as well as the slope of the regression (t7=3.82, 

p=0.006). Plus, an ANOVA that used block-by-block decoding error and entropy revealed a 

significant main effect of decoding error size on the entropy (F1,188=22.81, p<0.0001).

The reversal signal develops at the time of the outcome on the pre-reversal trial

Up to this point we have focused on a time window from 0-300ms after cue onset. To 

examine the time-course of this signal, we decoded the reversal using spike counts from a 

sliding window (300ms width, 50ms steps, Fig. 5A). We were able to accurately decode the 

reversal trial from ~100ms after cue onset until ~400ms after cue onset, then the peak of the 

decoded reversal distribution shifted to −1, i.e. the trial previous to the behavioral switch 

(Fig. 5B). The timing of this shift matched the average time at which the reward was 

stochastically delivered (or not), suggesting that the neural signal related to reversals 

develops after the animal knows the outcome on the trial before it reverses its choices. To 

examine this, we decoded the reversal trial using neural data aligned to the expected time of 

the trial outcome. Results of decoding using data from a sliding window showed that after 
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the outcome was revealed, the decoded reversals predict that the choice reversal will happen 

in the next trial (Fig. 5C,D). In fact, for a window from 0-300ms after trial outcome, the 

p(reversal∣Neural Response) distribution is shifted to the left, peaking 1 trial before the 

behavioral reversal (Fig. 5E). Thus, the intention to switch is represented as soon as the 

monkeys learn the outcome and continues into the switch trial.

Uncertainty at the beginning of a new block

Next, we asked if the observed signal could be interpreted as a general state uncertainty 

signal, rather than a signal for the reversal of choice behavior. On the first few trials of a new 

block, the SSresid is roughly as high as at the trial of reversal (Fig. 6A). When we repeated 

this using spike counts in a window 0-300ms from trial outcome (Fig. 6B), the SSresid 
decreased faster. This shows that there is a response at the beginning of a new block similar 

in magnitude to the response at the reversal point. Thus, this could be a general state 

inference signal, since a state (i.e. Block Type) has to be inferred at the beginning of the 

block, as well as at the reversal point.

Following this, we examined whether the population code for state uncertainty at the 

beginning of the block is the same as the code at the time of reversal. Since SSresid is 

unsigned, it could be that the response patterns were different in these two epochs. For all 

units in our recorded population, we compared the mean residual activity during the first 

three trials of the block with the mean response of three trials centered at the behavioral 

reversal. We found a small negative correlation between the two response patterns which 

was significant, given the large number of neurons (r=−0.0474, p=0.044). When we squared 

the residuals, thus ignoring the direction of the response, the correlation turned out to be 

high and significant (r=0.6627, p<0.0001). Furthermore, by fitting a multiple linear 

regression model to the spike count data (see Methods) we found an association between 

population activity and the Bayesian BHV estimates for Block Type (Fig S4A,B). Thus the 

blocktype inference is also represented in the PFC. Note that the initial state of the network 

seems to be biased toward the Where block type (Fig S4B).

These results indicate that PFC neural populations carry a signal that may reflect 

uncertainty, during both acquisition and reversal. However, the activity pattern of the 

population differs between these two epochs of the block, suggesting that the state of the 

neural population changes throughout learning.

Network state evolves from a pre-reversal state to a final state within a block of trials.

We further analyzed the evolution of network activity during the execution of a block of 

trials, and how different the network state was between epochs of a block. Using spike 

counts from 0-500ms after cue onset, we performed a Principal Component Analysis (PCA) 

to compute neural trajectories across trials in a block. In an example session (Fig 7A), the 

network activity moved within the first 10 trials of the block from an initial state (Fig 7A, 

blue segment) to a more stable pre-reversal state restricted to a region of the PCA space. 

Then, around the reversal, the trajectory exited the pre-reversal region and moved toward a 

final region (orange shade), remaining in it during the last 20 trials of the block, far from the 

acquisition. We computed the Euclidean distance between the centroid of the final state 
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(mean PC score during the last 20 trials) and each trial during the block. The maximum 

separation was between the first trial and the final state (Fig 7B), then it quickly decreased to 

a plateau that lasted for most of the acquisition phase, until the behavioral reversal, 

indicating that the population remained in the same state during the late acquisition phase. 

After the reversal, the distance quickly decreased as the neural activity moved toward its 

final state (Fig 7B, orange shading). Interestingly, neural trajectories computed separately 

for WHAT and WHERE blocks start in a similar region of the PCA space and then diverge (Fig 

S4C,D) indicating that block type inference leads to different latent subspaces.

Neural trajectories diverge around the behavioral reversal.

In Fig 7A there is a disturbance around the point of reversal. We asked if the single-trial 

neural trajectories around the reversal diverged from the trajectories of the other trials. We 

divided each trial into overlapping time bins (100ms width), evenly distributed within each 

trial period. Then, we used PCA to obtain single-trial neural trajectories. Fig 7C shows the 

evolution of the neural activity over the 2nd PC for trials around the reversal from an 

example recording session. In this example, PC2 shows interesting differences in the neural 

trajectories of different trials at different times within each trial: the neural trajectories of the 

reversal trial (trial 0) and the trial before the reversal (trial −1) diverge from the trajectories 

of other trials during the choice period. Furthermore, after the outcome the trajectories of the 

two trials before the reversal deviate from the average trajectory. To characterize these 

deviations, we computed the Euclidean distance between the neural trajectory around the 

reversal (average of trials −2 to 0 from reversal) and the average trajectory during the initial 

acquisition (first 5 trials in the block) or the end of the block (last 10 trials in the block) (Fig 

7D). The distance between reversal and acquisition is generally larger than that between 

reversal and the end of the block, suggesting that the state of the network changes more 

dramatically during the acquisition phase, when value is assigned to each option. The 

distance between the trajectories in the reversal trials and the trajectories from the end of the 

block peak during the choice period, reflecting the change in the state of the network 

between phases. It then decreases during the target hold period and is smaller than the 

distance between reversal and acquisition trajectories. This suggests that target-holding 

activity may be related the valuation of the chosen option. To examine trials around the 

reversal more closely, we computed the distance between the trajectory for each trial around 

the reversal and the average trajectory of all other trials during each trial period (Fig 7E-H). 

The trajectory deviations peak at the trial of reversal during the fixation, choice, and target-

holding periods, but after the outcome, the peak deviation switches to 2 trials before the 

behavioral reversal (Fig 7H). These results match our decoding analysis.

Using small populations decreases reversal decoding performance.

Finally, we investigated if we would obtain the same results using smaller populations. We 

repeated the decoding analysis using randomly selected populations of varying size from the 

total recorded population in each session (500 populations of each size). We computed the 

average posterior P(reversal∣Neural Response) distribution for each population size (Fig 8A). 

As the population size decreased, the posterior distribution became uniform and was less 

peaked around the reversal trial. We also computed the distributions of decoding errors for 

each population size (Fig 8B). Reversal decoding accuracy was dramatically lower for small 
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populations (25 neurons) than for large populations (>500 neurons). In fact, the mean 

fraction of blocks for which the reversal was decoded accurately (i.e. decoding error=0) was 

0.086, which is not significantly above chance level (0.05) for a given session of 24 blocks 

(binomial test, p=0.116).

Discussion

Reversal learning tasks have long been used to study behavioral flexibility (Dias et al., 1996; 

Groman et al., 2019; Iversen and Mishkin, 1970; Jones and Mishkin, 1972). They were 

originally motivated by the finding that patients with dorsal-lateral PFC damage had 

perseverative deficits in the Wisconsin Card Sorting task (Milner, 1963). There are several 

approaches to studying reversal learning, with important differences between them. 

Originally, animals were studied while they learned that reversals occur (Butter, 1969; 

Iversen and Mishkin, 1970; Jang et al., 2015; Rudebeck et al., 2013). These tasks test 

learning to learn (Harlow, 1949; Neftci and Averbeck, 2019), which is the process of 

learning a model of the world (Jang et al., 2015). Before animals have acquired a model of 

the task, learning may be driven by general-purpose model-free mechanisms, similar to the 

RW model used here. Evidence suggests that ventral-lateral PFC in macaques (Murray and 

Rudebeck, 2018; Rudebeck et al., 2017b; Rudebeck et al., 2013) and neighboring OFC in 

rats (Stalnaker et al., 2007) and marmosets (Dias et al., 1996) play an important role in 

acquiring a model of the task.

Other work, including the presented here, has focused on over-trained animals that have 

acquired a Bayesian model of the task, which allows for more efficient inference and better 

decisions (Costa et al., 2016; Costa et al., 2015; Farashahi et al., 2017; Groman et al., 2019; 

Rothenhoefer et al., 2017). After the task is over-trained, animals are no longer learning the 

task structure. Rather, they are using the acquired model to carry out inference and make 

choices, integrating multiple behavioral and neural processes. The animals must infer the 

block type (i.e. WHAT vs. WHERE), the best initial choice within the block, and then infer 

reversals. We have previously shown that the amygdala and ventral-striatum contribute to 

inferring the correct choice within a block (Costa et al., 2016; Rothenhoefer et al., 2017), 

with the ventral-striatum playing a specific role in learning the values of objects 

(Rothenhoefer et al., 2017). This is consistent with these subcortical structures mediating a 

model-free learning process, as has been suggested by previous work (Averbeck and Costa, 

2017; Daw et al., 2006; Hampton et al., 2007; Lee et al., 2015; O'Doherty et al., 2004; 

Rudebeck et al., 2017a; Seo et al., 2012; Taswell et al., 2018). We have not found evidence 

that either the ventral-striatum or the amygdala drives reversals, although both structures are 

capable of representing complex reward values, e.g. the value of exploring novel options 

when mediating explore-exploit trade-offs (Costa et al., 2019). In addition, although we 

focused on inferring reversals, we show that two state inference processes are performed. At 

the beginning of each block animals have to infer the Block Type, which is equivalent to 

inferring a task from a known set (Collins and Frank, 2013). The finding of a bias toward the 

WHERE condition, along with previous findings (Rothenhoefer et al., 2017), lead us to 

hypothesize that the WHERE rule is used as a starting point.
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We found that the animals rapidly switched their choice preference following reversals in 

this task, consistent with Bayesian state inference. Previous studies have suggested that 

regions of the PFC are important for state inference, including the orbitofrontal cortex 

(Schuck et al., 2016; Wilson et al., 2014), limbic PFC (Starkweather et al., 2018), anterior 

cingulate cortex (Durstewitz et al., 2010; Sarafyazd and Jazayeri, 2019) and the frontal-

parietal network (Glascher et al., 2010). Similarly, neural activity coding ‘explore’ vs 

‘exploit’ states has also been observed in the frontal eye fields (Ebitz et al., 2018) and 

anterior cingulate (Karlsson et al., 2012). The dorsal-lateral PFC also represents current 

choice strategies, which may reflect states (Genovesio et al., 2005). These studies have all 

found correlates of the current state. Our study shows that dorsal-lateral PFC also codes state 

switches, in the context of a task where detecting switches in choice-outcome mappings to 

switch behavior accordingly is optimal. In addition, we found that the signal arose in the 

trial before the monkey reversed its choice preference, after receiving feedback (usually 

negative) for its choice. The signal was also not consistent with the reward prediction error. 

Although there were large RPEs around the time of the switch, they peaked in the trial 

before the switch. Hence, the signal appears to code a state switch, further supported by our 

decoding analysis.

From a behavioral modeling point of view, the Bayesian model provides a formal 

description of the reversal process, whereas the RW model captures aspects of the update 

mechanism, and the reward prediction errors used by the RW and PH model have been 

closely linked to dopamine (Schultz and Romo, 1990; Steinberg et al., 2013). A wide space 

of models exists between the RW model, which has no information about the statistical 

structure of the task, and the Bayesian model, which has complete information about the 

structure of the task. Future work could examine, for example, models that incorporate 

knowledge of the acquisition and reversal phases, which have been used previously to study 

reversal behavior. In addition, more general reinforcement learning models based on 

sophisticated state spaces that incorporated information about the trial in the block could be 

developed. Such models could be used to learn that reversals happen in the middle of the 

block, therefore they would likely reverse choice preferences more rapidly.

There is extensive work on the neural systems underlying model-free RL learning (Frank et 

al., 2004; Houk et al., 1995). This work has focused on dopamine and its projections to the 

striatum (Lau and Glimcher, 2008; Lee et al., 2012; Lee et al., 2015; Pessiglione et al., 2006; 

Samejima et al., 2005), following the finding that dopamine codes RPEs (Kim et al., 2009; 

Montague et al., 1996; Schultz et al., 1997). However, many important learning processes, 

including the state inference studied here, are more complex than model-free RL. For 

example, complex behavior is often hierarchically organized, and hierarchical RL algorithms 

can learn more efficiently than non-hierarchical algorithms in these scenarios (Badre and 

Frank, 2012; Botvinick, 2008; Botvinick et al., 2009; Collins and Frank, 2013; Dayan and 

Hinton, 1993; Frank and Badre, 2012). Current theories suggest that complex learning 

mechanisms, including hierarchical RL and model-based learning (Abe et al., 2011; Daw et 

al., 2011; Doll et al., 2012), may be mediated by the PFC (Wang et al., 2018). However, 

much work still needs to be done to understand how these various behavioral mechanisms 

are implemented by cortical and subcortical structures, and how they are integrated, when 

tasks tap into more than one.
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Conclusion

Learning to make optimal choices in diverse environments is mediated by a network of 

cortical and subcortical areas, including PFC, the amygdala, basal ganglia and thalamus (Lee 

et al., 2012; Neftci and Averbeck, 2019). Even simple learning tasks likely engage learning 

processes on multiple time-scales (Averbeck, 2017) from working and episodic memory 

(Collins and Frank, 2012; Gershman and Daw, 2017), to plasticity mediated by dopamine or 

spike-timing mechanisms that operate on longer time-scales (Averbeck and Costa, 2017; 

Frank, 2005). The reversal learning task we used is likely solved by both model-free 

mechanisms, perhaps mediated by sub-cortical structures including the striatum and 

amygdala (Costa et al., 2016; Costa et al., 2019) and Bayesian mechanisms, which may be 

mediated by cortical structures, as shown here. Future work analyzing the contributions of 

multiple cortical and subcortical nodes, and their interactions, is necessary to build a detailed 

understanding of how multiple learning processes are orchestrated to implement these 

behaviors.

STAR Methods.

LEAD CONTACT AND MATERIALS

Further information and requests for resources should be directed to and will be fulfilled by 

the Lead Contact, Ramon Bartolo (ramon.bartoloorozco@nih.gov).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

All experimental procedures were performed in accordance with the ILAR Guide for the 

Care and Use of Laboratory Animals and were approved by the Animal Care and Use 

Committee of the National Institute of Mental Health. Procedures adhered to applicable 

United States federal and local laws, regulations and standards, including the Animal 

Welfare Act (AWA 1990) and Regulations (PL89–544; USDA 1985) and Public Health 

Service (PHS) Policy (PHS2002). Two male monkeys (Macaca mulatta, W - 6.7kg, age 

4.5yo, V - 7.3kg, age 5yo) were used as subjects in this study. All analyses were performed 

using custom made scripts for MATLAB (The Mathworks, Inc.). All behavioral parameters 

were controlled using the open source MonkeyLogic software (http://www.brown.edu/

Research/monkeylogic/). Eye movements were monitored using the Arrington Viewpoint 

eye-tracking system (Arrington Research, Scottsdale, AZ).

METHOD DETAILS

Reversal Learning Task.—Monkeys were trained to perform a two-arm reversal learning 

task (Fig. 1A) while they were seated in front of a computer screen. The task was organized 

in blocks of 80 trials. On each trial, animals had to acquire and hold central fixation for a 

variable time (400-800ms). After fixation, two cues (squared images 2°×2° degrees of visual 

angle) were presented simultaneously to the left and right of the fixation dot (6° away from 

fixation) instructing the monkeys to make a choice. The monkeys reported their decision by 

making a saccade to the chosen option. After holding sight on their choice for 500ms reward 

was delivered stochastically with a few drops of juice.
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On WHAT blocks, high (p=0.7) or low (p=0.3) reward probabilities were randomly assigned 

to each image. On WHERE blocks, reward probabilities were randomly assigned to each 

location (left/right), independently of the image presented on that location. Two novel 

images were used on every new block and their locations (left/right of the central fixation) 

was randomized across trials. By trial-and-error, monkeys had to learn which factor (location 

or picture) was the relevant for reward and which one of the two available options was the 

high reward probability choice. On each individual block, the type (WHAT or WHERE) was 

help constant, but the reward mappings were switched across options at a random trial 

(REVERSAL) within a window from trials 30-50, thus the monkeys had to reverse their choice 

behavior to maximize the received reward. Typically, monkeys performed 24 blocks on a 

given recording session (12 WHAT + 12 WHERE, randomized) receiving a total daily amount 

of 175-225 mL of juice.

The images used as cues were normalized for luminance and spatial frequency using the 

SHINE toolbox for MATLAB (Willenbockel et al., 2010). All images were converted to 

grayscale and subjected to a 2-D FFT to control spatial frequency. To obtain a target 

amplitude spectrum, the amplitude at each spatial frequency was summed across the two 

image dimensions and then averaged across images. Next, all images were normalized to 

have this amplitude spectrum. Using luminance histogram matching, we normalized the 

luminance histogram of each color channel in each image to match the mean luminance 

histogram of the corresponding color channel across all images. Spatial frequency 

normalization always preceded the luminance histogram matching. We manually screened 

each image to verify its integrity. Images that were unrecognizable after normalization were 

discarded.

Data acquisition and preprocessing.—Microelectrode arrays (BlackRock 

Microsystems, Salt Lake City, USA) were surgically implanted over the prefrontal cortex 

(PFC), surrounding the principal sulcus (Fig. 1B). Four 96-electrode (10×10 layout) arrays 

were implanted on each hemisphere. Details of the surgery and implant design have been 

described previously (Mitz et al., 2017). Briefly, a single bone flap was temporarily removed 

from the skull to expose the PFC, then the dura mater was cut open in order to insert the 

electrode arrays into the cortical parenchyma. Finally, the dura mater was sutured, and the 

bone flap was placed back and attached to the skull with absorbable suture, thus protecting 

the brain and the implanted arrays. In parallel, a custom designed connector holder, 3D-

printed using biocompatible material, was implanted onto the posterior portion of the skull.

Recordings were made using the Grapevine System (Ripple, Salt Lake City, USA). Two 

Neural Interface Processors (NIPs) made up the recording setup, one NIP (384 channels 

each) was connected to the 4 multielectrode arrays of one hemisphere. Synchronizing 

behavioral codes from Monkey Logic and eye tracking signals were split and sent to each 

NIP box. Raw extracellular signal was high-pass filtered (1kHz cutoff) and digitized 

(30kHz) to acquire single unit activity. Spikes were detected online and the waveforms 

(snippets) were stored using the Trellis package (Grapevine). Single units were manually 

sorted offline. We collected neural data in 8 recording sessions (4 sessions per animal).
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QUANTIFICATION AND STATISTICAL ANALYSIS

Bayesian model of choice behavior.—We fit a Bayesian model to estimate probability 

distributions over several features of the animals’ behavior as well as ideal observer 

estimates over these features as described elsewhere (Costa et al., 2015; Rothenhoefer et al., 

2017). We extracted probability distributions over the behavioral REVERSAL point as well as 

the BLOCK TYPE.

Briefly, to estimate the Bayesian model we fit a likelihood function given by:

f(x, y ∣ r, ℎ, b, p) = ∏k = 1
T q(k) (1)

Where r is the trial on which the reward mapping switched across options (r ϵ 0-81). The 

variable h encodes whether option 1 or option 2 is the high reward option at the start of the 

block (h ϵ 1, 2),b encodes the block type (b ϵ 1, 2 – WHAT or WHERE) and p indexes the 

reward rate in the block (0.5 < p < 1.0). The variable k indexes trial number in the block and 

T is the current trial. The variable k indexes over the trials up to the current trial so, for 

example, if T = 10, then k = 1, 2, 3, … 10. The variable r ranges from 0 to 81 because we 

allow the model to assume that a reversal may not have happened within the block, and that 

the reversal occurred before the block started or after it ended. In either scenario where the 

model assumes the reversal occurs before or after the block, the posterior probability of 

reversal would be equally weighted for r equal to 0 and 81. The choice data are given by x 
and y, where elements of x are the rewards (xi ϵ 0, 1) and elements of y are the choices (yi ϵ 
1, 2) in trial, i.

For the ideal observer model used to estimate the reversal trial and the “ideal” curve in the 

Bayesian analysis, we estimated the probability that a reversal happened at the current trial, 

T, based on the outcomes from the previous trials. Thus, the estimate is based on the 

information that the monkey had when it made its choice in the current trial. The following 

mappings from choices to outcomes gave us q(k). For estimates of WHAT (i.e. b = 1), options 

1 and 2 refer to the individual images and location is ignored; whereas for WHERE (i.e. b = 

2), options 1 and 2 refer to the location (left/right) and the image is ignored. Let p be the 

reward probability of the high probability option. For k < r and h = 1 (namely, the current 

trial is prior to the reversal and option 1 has the high reward probability) choose 1 and get 

rewarded q(k) = p, choose 1 and receive no reward q(k) = 1 – p, choose 2 and get rewarded 

q(k) = 1 – p, choose 2 and have no reward q(k) = p. For k ≥ r these probabilities are flipped. 

For k < r and h = 2 the probabilities are complementary to the values where k < r and h = 1. 

To estimate reversal, all values were filled in up to the current trial, T.

For the animal’s choice behavior, the model is similar, except the inference is only over the 

animal’s choices independently of the outcomes of the choices. We assumed that the animal 

had a stable choice preference which switched at some point in the block from one option to 

the other. Given the choice preference, the animals chose the wrong stimulus (i.e. the 

stimulus inconsistent with their choice preference) at some lapse rate 1-p. Thus, for k < r and 

h = 1 choosing option 1: q(k) = p, choosing option 2: q(k) = 1 – p. For k ≥ r and h = 1, 
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choosing option 1: q(k) = 1 — p, choosing option 2: q(k) = p. Correspondingly for k < r and 

h = 2, choosing option 2: q(k) = p, etc.

Using these mappings for q(k), we then calculated the likelihood as a function of r, h, b and 

p for each block of trials. The posterior is given by:

p(r, ℎ, b, p ∣ x, y) = f(x, y ∣ r, ℎ, b, p) p(r) p(ℎ, b, p)
p(x, y) (2)

For h, r, b, and p the priors were flat and independent. The normalization constant is given 

by p(x, y) = ∑r,h,b,p f(x, y∣r, h, b, p) p(r) p(h, b, p) as we used a discrete approximation to 

p(p). With these priors, there is general agreement between the ideal observer estimate of the 

reversal point and the actual programmed reversal point (Fig. 1C).

We calculated the posterior over the reversal trial (denoted p(reversal∣M) in the results 

section) by marginalizing over h, b and p.

p(r ∣ x, y) = ∑ℎ, b, p p(r, ℎ, b, p ∣ x, y) (3)

The posterior over block type could correspondingly be calculated by marginalizing over r, h 
and p.

Reinforcement Learning models of choice behavior.—We fit Rescorla-Wagner 

(RW) reinforcement learning models to the choice data for each block type. We fit models 

with separate learning rates and inverse temperatures for the two block types. In the mode, 

value updates were given by:

vi(k + 1) = vi(k) + δf R − vi(k) (4)

Where vi is the value estimate for option i, R is the outcome for the choice for trial k, and δf 

is the outcome-dependent learning rate parameter, where f indexes whether the current 

choice was rewarded (R = 1) or not (R = 0), i.e. δpos, δneg. For each trial, δf is one of two 

fitted values used to scale prediction errors based on the type of reward feedback for the 

current choice. We then passed these value estimates through a logistic function to generate 

choice probability estimates:

d1(k) = (1 + eβ v2(k) − v1(k) )−1, d2(k) = 1 − d1(k) (5)

The likelihood for these models is given by:

f x, y ∣ β, δpos, δneg = ∏k [d1(k)c1(k) + d2(k)c2(k)] (6)

Where c1(k) had a value of 1 if option 1 was chosen on trial k and c2(k) had a value of 1 if 

option 2 was chosen. Conversely, c1(k) had a value of 0 if option 2 was chosen, and c2(k) 
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had a value of 0 if option 1 was chosen for trial k. We used standard function optimization 

methods to maximize the likelihood of the data given the parameters.

We also fit Pearce-Hall (PH; sometimes referred to as hybrid Pearce-Hall) reinforcement 

learning models to the data, to allow for more flexibility in the learning rates:

vi(t + 1) = vi(t) + καt R − vi(t) (7)

where vi is the value estimate for option i, R is the outcome for the choice for trial t, κ is the 

salience parameter and αt is the associability parameter, which is updated on each trial by:

α(t + 1) = η ∣ R − vi(t) ∣ + α(t) ∗ (1 − η) (8)

where η is the maximum associability. We then passed these value estimates through a 

logistic function to generate choice probability estimates (Eq. 5). The likelihood function 

was given by:

f(x, y ∣ β, α, κ, η) = ∏k [d1(k)c1(k) + d2(k)c2(k)] (9)

For both models we used standard function optimization methods to maximize the likelihood 

of the data given the parameters.

Comparison of models of reversal behavior—We predicted the behavior around the 

reversal trial (i.e. from trial 20-60) using the Bayesian model and RW and PH models. To 

compare the RW and PH models to the Bayesian model we marginalized over model 

parameters to estimate the marginal likelihood of each model:

p(x, y ∣ θ, M = RW or PH) = ∫ f(x, y ∣ θ)k ∈ {20…60}p(θ)dθ . (10)

For the RW model θRW = β, αpos, αneg and for the PH model θPH = β, κ, η. For the RW and 

PH models the likelihood is given by:

f(x, y ∣ θ)k ∈ {20…60} = ∏k ∈ {20…60} [d1(k)c1(k) + d2(k)c2(k)] . (11)

The integral in equation 10 was approximated numerically. We used flat priors, consistent 

with the Bayesian model. Learning rates (i.e. α, κ, η) were assumed uniform on [0, 1] and 

betas were uniform on [1, 11]. We then directly sampled from f(x, y∣θ)kϵ{20…60}p(θ) 500 

times to estimate the integral.

For the Bayesian model we explicitly computed the marginal likelihood, which is also the 

normalization constant of the Bayesian model, p(x, y∣M = Bayes) as defined above. When 

then computed the pair-wise log Bayes Factors (BF), which are the posterior pair-wise log 

odds of the models:
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logBF = ln p(x, y ∣ M = Bayes)
p(x, y ∣ M = PH or RW ) . (12)

In the results we report the mean BF as well as a t-stats across the BF calculated in each 

session. The Bayesian model was favored to both models (i.e. BF > 0) in 7/8 sessions.

Analysis of single unit responses.—ANOVAs were applied to the single neuron data 

to assess response association. The dependent variable was the spike count of the single 

neuron in a sliding window (300ms, 25ms steps), aligned to cue onset. The ANOVA 

included main effects for trial-in-block, block-in-day, chosen location, chosen image (nested 

in block-in-day) and reward. These were included as categorical factors. In the same model, 

the Bayesian estimates across trials for the posterior P(reversal∣M=BVH) and P(block 
type=WHAT∣M=BHV) were included as continuous factors. The same model was applied to 

all time windows, even when the variable could not have been reflected in the neural data, 

for example reward outcome at the time of choice. This allowed us to see that we were only 

getting significance at the alpha level (i.e. 0.01) for these variables.

Decoding of behavioral reversal.—We computed the residual activity of each recorded 

single unit fitting a linear model to the trial by trial neural responses. The model included as 

regressors: trial-in-block (TIB), block-in-day (BID), trial by trial posterior probability for 

Block Type, image chosen (nested within BID), location chosen, and choice outcome 

(reward/no-reward). The response variable of the model was a vector of spike counts within 

a 300ms sliding window moving in 50ms steps. For each time window we computed the 

Sum of Squared Residuals (SSResid) across all the units recorded in each session as a 

measure of response strength.

Next, we decoded the trial of reversal using Linear Discriminant Analysis (LDA). We fitted 

an LDA model to the residual activity in the window that started at the time of cue onset 

using the function fitcdiscr in Matlab. To control for the imbalance between the number of 

observations ‘reversal’ trials (1 per block) vs. ‘non-reversal’ trials (19 per block) we fitted 

the LDA model using a flat prior. Then, we used this model to decode the trial of reversal in 

all time windows. We predicted the trial of reversal searching for the trial with the maximum 

posterior P(reversal∣Neural Response) within a 20 trial window centered at the point 

estimate for the behavioral reversal. The results are shown as DECODING ERROR, which was 

defined as the difference between the predicted trial of reversal and the behavioral reversal 

from the Bayesian model. For this procedure we performed 10-fold cross-validation.

Regression of posterior probabilities for Block Type on neural response 
patterns.—We analyzed the association between the neural activity and Block Type 

Bayesian estimates fitting a multiple linear regression model regularized with early stopping. 

We used spike counts from a window from 0-300 ms from cue onset as predictors, and the 

logit-transformed posterior P(Block Type=what ∣ BHV) as the dependent variable. To 

estimate the model parameters, we maximized the log-likelihood using a cross-validated 

early-stopping algorithm (Fukushima et al., 2014). We split the data into 3 subsets of 

randomly taken trials: 1) A training set (90% of the trials) was used to train the model, 
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updating the parameters to improve the log-likelihood on each iteration, 2) a stopping subset 

(5% of the trials) used to stop the algorithm when the log-likelihood value calculated with 

this subset became smaller than the value in the previous iteration, and 3) a reporting subset 

(5% of the trials), from which spike counts were projected onto the parameter estimates. We 

performed 20-fold cross-validation. The model predictions were back converted using the 

inverse logit function to compute the predicted P(Block Type=what ∣ Neural Response).

Neural trajectories.—We analyzed the evolution of neural activity across trials using 

Principal Component Analysis (PCA). First, we generated a spike count matrix using a 

sliding window (100ms) that was moved at variable step size in order to have the same 

number of windows (31) for all trials, independently of variations in total trial duration due 

to unequal reaction times. We aligned the time windows to have a constant number of 

windows per trial period, namely: fixation (5 windows), choice (4 windows), target holding 

(11 windows) and post-outcome (11 windows) periods. These windows were evenly spaced 

within each period of a trial and had a ~50ms overlap with each other.

Next, to generate block neural trajectories, for each trial we averaged the spike rate of the 

first 8 time-windows after cue onset. Then we stacked the averaged spike rates from all trials 

in a given recording session and performed the PCA on this stacked matrix. The size of this 

matrix was given by the number of trials × number of blocks (rows) and the number of 

neurons (columns) in the recording session. For all calculations made using neural 

trajectories (Euclidean distances, principal angles) we used the n-principal components that 

explained 70% of the variance. Block trajectories were smoothed using a kernel weighted 

moving average (gaussian, σ=3 trials) and the reversal points were aligned across blocks in a 

session.

To compute single-trial neural trajectories, we took the neural activity from trials −10 to +9 

from the reversal point. We stacked the spike counts from all time windows and all trials and 

performed the PCA on this matrix. The size of this matrix was given by the number of trials 

× number of blocks × number of time windows in each trial (rows) and the number of 

neurons (columns) in the recording session. To calculate the Euclidean distances, we 

considered a sub-space defined by the n-principal components that explained 70% of the 

variance, as it was done for block trajectories. The total distance between the trajectory of 

each individual trial and the average of all other trajectories was calculated as the sum of all 

the pairwise distances between corresponding time windows. The distance was then 

normalized within each block to have a maximum value of 1.

DATA AND SOFTWARE AVAILABILITY

Analysis-specific code and data are available upon request to the authors.
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Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Task and Recording Sites. A. Schematic of the reversal learning task. On each trial, the 

animals were required to fixate centrally, and after a variable fixation time the fixation spot 

was toggled off and two targets were simultaneously presented to the left and right. Then, 

animals made a saccade to select a target, holding it for 500ms to successfully complete a 

trial. Reward was delivered stochastically with one option having a higher reward 

probability (p=0.7 vs p=0.3). On each block of 80 trials, reward probability mappings were 

defined in two ways defining two block types: in WHAT blocks reward probabilities were 

associated to the images independent of where they were presented, whereas in WHERE 

blocks probabilities were associated to locations (left/right) independent of the image 

presented at that location. Animals explored the available options to find both the block type 

and the best option, acquiring a choice preference. Then, at a random trial within a switch 

window (trials 30-50) reward mappings were flipped across options according to block type, 

dividing the block into acquisition and reversal phases. Block type was held constant within 

a given block. B. Location of the 8 microelectrode arrays (96 electrodes, 10×10 

arrangement) on the prefrontal cortex, surrounding the principal sulcus. C. Bayesian 

estimates of the posterior probability of a reversal in the choice-outcome mapping (Ideal 

Observer (IO) model, P(reversal∣M=IO)) and in the choice preference (Behavioral (BHV) 

model, P(reversal∣M=BHV)). These curves were generated by averaging trial-by-trial the 

posteriors across blocks. D. Bayesian estimate of the posterior probability of a reversal in 

choice preference aligned to the point estimate of the trial at which the reversal occurred. 

These curves were generated by calculating the expected value of P(reversal∣M=BHV) in 

each block, and then aligning P(reversal∣M=BHV) around that estimate before averaging 

across blocks. E. Boxplots of the difference between the point estimates for the reversal 

based on the posterior P(reversal∣M) distributions for the BHV and the IO models. Positive 
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values indicate that the reversal in choice preference occurred after the reward mapping 

switched. F. Choice and Rescorla-Wagner model data aligned to the IO reversal estimate. 

Because the reversal trial varied across blocks, the choice and model data from each block 

were split into acquisition (i.e. trials < the IO reversal trial) and reversal (i.e. trials >= the IO 

reversal trial) phases. The data were then interpolated such that the acquisition and reversal 

phases both had 40 trials. Interpolated data was then averaged. Plots show the fraction of 

times the animals chose the option that initially had a higher reward probability, split by 

block type. Overlays are choice probability estimates from the Rescorla-Wagner model fit. 

G. Same as F, except acquisition and reversal phases were defined by the BHV reversal 

point. H. Same as G, except that overlays are Pearce-Hall model choice probabilities. F-H 
show means±SEM across sessions (n=8).
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Figure 2. 
Neural responses. A. Raster plots of an example neuron during WHAT and WHERE blocks. 

Each row of blue ticks represents the spikes during a trial. Red dots along each line represent 

trial start, cue onset, outcome time/end of trial. Because the image varies in each block, trials 

were sorted by preferred (Image B) and non-preferred (Image A) images in each block. B. 
Spike densities for the example unit during each option and block type combination. C. 
Activity associations to behavior found in the population of recorded single units. The plot 

shows the average fraction of neurons across sessions (mean±SEM) with significant main 

effects for the indicated factors from an ANOVA on spike counts from a sliding window 

(300ms width, 20ms step). The total number of neurons recorded is 6081.
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Figure 3. 
Decoding of Reversal from activity between 0-300ms after cue onset. A. Sum of Squared 

Residuals (SSResid) across neurons. The residual for each neuron in each trial was squared, 

then the squares were summed across neurons. The average Sum of Squares (red) on each 

trial within the switch window is shown overlaid on the Bayesian posterior 

P(reversal∣M=BHV) (blue). Inset shows the correlation between the two curves, the red line 

is the best linear fit. B. Reward Prediction Error (RPE) from a Rescorla-Wagner model. 

SSResid (red) is overlaid on the RPE around the trial of behavior reversal (green). Inset, 

same as in A. C. Neural posterior distribution, P(reversal∣Neural Response), from a Linear 

Discriminant Analysis (black) overlaid on P(reversal∣M=BHV) (blue). Note that the 

decoding algorithm generates a posterior over reversal trials for each block. This plot shows 

the average of those posteriors. D. Histogram of decoded trial of reversal. Within a window 

around the actual reversal in each block, we searched for the trial with the maximum 

posterior from the neural decoding model: trial = argmax(trial) P(reversal=trial ∣ Neural 
Response) and used this trial as the predicted reversal. We labeled decoded reversals as 

decoding error, i.e. the number of trials from the Bayesian point estimate for the behavioral 

reversal. The red dashed line shows chance level. Note that the histogram of decoded trials 

(D) usually matches the average posterior (C) but not always. The 5th and 95th percentiles of 

the decoding errors were −9 and 7 trials relative to reversal, respectively. The distribution of 

decoding errors was not significantly different between WHAT and WHERE blocks (KS test, 

D94,96=0.072, p=0.96), hence they were pooled together. Plots show mean±SEM across 

sessions (n=8).
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Figure 4. 
Decoding error and noise in behavior. A. Bayesian P(reversal∣M=BHV) distribution 

averaged across blocks as a function of absolute neural decoding error. Color code indicates 

probability. The triangle markers to the right of the plot mark decoding error values 0 (blue), 

5 (green) and 10 (red). B. P(reversal∣M=BHV) distributions (mean±SEM, n=8 sessions) 

around the behavioral reversal point for three different decoding error values. C. Entropy of 

the P(reversal∣M=BHV) distributions as a function of decoding error. Black dots are entropy 

values for individual blocks and blue circles are the mean across blocks with the same 

absolute decoding error value. Mean regression line across sessions in red, shading is the 

SEM of the regression line.
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Figure 5. 
Decoding of Reversal across trial execution. A. Decoding error distributions for a sliding 

time window (300ms width, 50ms step) during trial time using data aligned to cue onset. 

Color code is fraction of blocks. B. Peak decoding error during trial execution. The gray 

shaded area depicts the time window at which the trials ended and the outcome (reward/no-

reward) was known to the animals. C. Decoding error distributions for data aligned to cue 

onset. Color code is fraction of blocks. Spikes were aligned to the time of the trial 

outcome/end of trial. D. Peak decoding error during trial execution around outcome time. 

The dashed line marks decoding error = −1. E. Mean posterior probability 

P(trial=reversal∣Neural Response) distribution for a 300ms window starting at outcome time. 

Red dashed line shows trial −1 from behavioral reversal. Values in B, D and E are means

±SEM across sessions (n=8).
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Figure 6. 
Sum of Squared Residuals (SSresid) during the first 20 trials in the block. A. SSresid for a 

window from 0-300ms after cue onset. B. SSresid for a window from 0-300ms after trial 

outcome. Means±SEM across sessions (n=8).
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Figure 7. 
Neural state-space trajectories. A. Neural trajectory across trials for an example recording 

session. The curve represents the average trajectory for all blocks in the session. Color code 

is trial number within block. Orange shading illustrates the final state-space region where the 

neural activity lies, centered on the average of the last 20 trials in the block. B. Euclidean 

distance between the location for each trial in the PCA space and the centroid of the final 

state-space (means±SEM across sessions). C. Trial neural trajectories over the 2nd principal 

component for an example session. Each trace corresponds to a trial around the reversal 

(trials −10 to 9 from reversal, color coded), averaged over blocks. Dashed lines divide the 

different trial periods (see Fig 1A). Arrows and numbers point at the period of the trial on 

which the trajectory of the indicated trial (−2, −1 and 0) deviates the most from the average 

trajectory of all other trials. D. Distance from the average trajectory around the reversal 

(trials - 2 to 0 from reversal) to the average trajectory during the initial acquisition (first 5 

trials in the block, blue) and to the average trajectory at the end of the block (last 10 trials in 
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the block, red). Distances were normalized by the maximum observed value, thus ranging 

between 0 and 1. E-H. Distances between trajectories of each individual trial and the 

average of all other trials in different trial periods. Data are means±SEM across sessions 

(n=8).

Bartolo and Averbeck Page 30

Neuron. Author manuscript; available in PMC 2021 June 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 8. 
Effect of population size on decoding of reversal A. Distribution of the classification 

P(reversal∣Neural Response) over trials around the estimated reversal for different 

population sizes (grayscale coded). B. Histogram of decoded trial of reversal. The dashed 

line shows chance level. Data are means±SEM across sessions.
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Experimental Models: Organisms/Strains

Rhesus macaque (Macaca mulatta) NIMH/NIH N/A

 

Software and Algorithms

MATLAB The MathWorks. SCR_001622
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