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Abstract

Accurate short-term forecasts are indispensable for the integration of wind energy in power grids. 

On a wind farm, local wind conditions exhibit sizeable variations at a fine temporal resolution. 

Existing statistical models may capture the in-sample variations in wind behavior, but are often 

shortsighted to those occurring in the near future, that is, in the forecast horizon. The calibrated 

regime-switching method proposed in this paper introduces an action of regime dependent 

calibration on the predictand (here the wind speed variable), which helps correct the bias resulting 

from out-of-sample variations in wind behavior. This is achieved by modeling the calibration as a 

function of two elements: the wind regime at the time of the forecast (and the calibration is 

therefore regime dependent), and the runlength, which is the time elapsed since the last observed 

regime change. In addition to regime-switching dynamics, the proposed model also accounts for 

other features of wind fields: spatio-temporal dependencies, transport effect of wind and 

nonstationarity. Using one year of turbine-specific wind data, we show that the calibrated regime-

switching method can offer a wide margin of improvement over existing forecasting methods in 

terms of both wind speed and power.

Keywords

Regime-switching; spatio-temporal; wind energy; wind forecast

1. Introduction

With the global aspiration towards a more sustainable environment, wind power presents 

itself as one of the most appealing sources of clean energy (DOE (2015)). Despite the 

promising potential, serious challenges still hinder its large scale exploitation, including the 

intermittency and limited predictability of the wind resource. Hence, improving the accuracy 
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of short-term wind forecasts is essential for integrating wind energy in power grid systems 

(Pinson (2013)).

There is a rich body of literature on short-term wind forecasting (Giebel et al. (2011)), from 

time series methods (Brown, Katz and Murphy (1984), Erdem and Shi (2011)), machine 

learning techniques (Mohandes et al. (2004), Sideratos and Hatziargyriou (2012)), to spatio-

temporal models (Dowell and Pinson (2016), Pourhabib, Huang and Ding (2016)). In the 

past decade, there has been a growing recognition for regime-switching methods for short-

term forecast (Gneiting et al. (2006)). The essence of these regime-switching approaches is 

to fit statistical models that are conditioned on a finite set of wind regimes or states, and 

produce regime-dependent forecasts.

Our review of the literature suggests that a wide array of regime-switching methods assume 

that the wind regime observed at the time of forecast (or shortly prior to that) will persist 

during the forecast horizon, and hence, use the model whose parameters are fit specifically 

to the observed regime to make forecasts. One such approach is the regime-switching 

autoregressive method of Zwiers and Von Storch (1990). Several regime-switching models 

have been proposed in the past decade, mostly sharing the same concept, but with key 

differences in how regimes are defined, whether using lagged values of wind speed, power, 

direction, precipitation, temperature, or other exogenous variables (Gneiting et al. (2006), 

Hering and Genton (2010), Reikard (2008), Zhu et al. (2014), Browell, Drew and 

Philippopoulos (2018)).

Let us refer to the observed regime as the in-sample regime, and the regime in the forecast 

horizon as the out-of-sample regime. The aforementioned methods can be perceived as 

“reacting” to the in-sample regime without anticipating potential changes between the in- 

and out-of-sample regimes. We hereinafter label them collectively as “reactive” regime-

switching approaches. A drawback of the reactive approaches is that they are shortsighted to 

the changes in wind behavior that are yet to occur in the forecast horizon. If the wind 

behavior in the near future departs from the observed in-sample attributes, then a 

considerable discrepancy between the forecasts and the true underlying process can be 

expected.

In light of that, this paper proposes a calibrated regime-switching (CRS) method. The CRS 

approach starts by constructing a reactive regime-switching model, which by design, suffers 

from an inherent bias while extrapolating the in-sample attributes in the form of forecasts. 

The CRS approach then corrects this bias by introducing a regime-specific calibration to 

capture potential out-of-sample variations in the predictand (here the wind speed). This is 

achieved by modeling the forecast calibration as a parametric function of two elements that 

are shown to be able indicators of out-of-sample changes: the observed regime at the time of 

the forecast, and the runlength, which is the time elapsed since the most recent regime 

change.

A parallel line of research in the regime-switching literature concerning the in-sample/out-

of-sample regime difference is the Markov-switching (MS) models (Ailliot, Monbet and 

Prevosto (2006), Ailliot et al. (2015), Hering, Kazor and Kleiber (2015), Pinson et al. 
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(2008), Bessac et al. (2016)), which use a transition matrix to connect, probabilistically, the 

in-sample regimes with possible regimes in the forecast horizon. The forecast under an MS 

model is either the one made by the most probable regime (the hard thresholding approach) 

or a weighted average of all possible regime-specific forecasts (the soft thresholding 

approach).

We perceive both the CRS approach and MS approach as a transition step from the 

“reactive” regime-switching approaches to the next-generation “proactive” regime-switching 

models; the latter would ideally predict the out-of-sample regimes directly and then issue 

forecasts based on the regime predictions. CRS and MS do not involve a direct prediction of 

the out-of-sample regimes but both nonetheless account for in-sample/out-of-sample 

changes in wind behavior. In the MS approach, one estimates the transition probabilities 

from the current regime to other regimes based on the regime change data historically 

observed, and assumes that such change patterns remain the same in the next forecasting 

period. On the other hand, CRS employs the runlength variable to sense how likely the base 

reactive model is going to be biased, due to possible changes in wind behavior, and then uses 

the training data to estimate the amount of bias to be corrected as a function of both the 

runlength and the current regime. We show in our case study that the CRS approach has an 

advantage over MS methods in terms of short-term forecasting, primarily because of the use 

of runlength, which provides a more specific anticipation of out-of-sample variations in the 

predictand. The comparison between CRS and MS conveys the message that an 

improvement in change anticipation can lead to appreciable gains in wind forecasting 

accuracy. Further discussion is provided in Section 4.

Finally, it is important to highlight that we are specifically interested in turbine-specific, 

rather than the farm-level aggregated, short-term wind forecasts. Recently, several research 

studies hinted to the need for the former to replace the latter (He et al. (2014), Kusiak and Li 

(2010), Pourhabib, Huang and Ding (2016)). This is due to the fact that many wind farm 

operations are carried out at the turbine level and would naturally require turbine-specific 

forecasts, such as predictive turbine control (Santos (2007)), turbine-specific power 

estimation (Bessa et al. (2012), Lee et al. (2015)), wake propagation prediction (Hwangbo, 

Johnson and Ding (2018), You et al. (2017)) and repair decisions for wind turbines (Byon 

and Ding (2010), Byon, Ntaimo and Ding (2010)). Understandably, turbine-specific 

forecasts can be easily transformed to the farm-level estimates either by spatial averaging 

(for wind speed) or by aggregation (for wind power), while the converse is generally not 

true.

The remainder of this paper is organized as follows. Section 2 comprises the data description 

and preliminary data analysis. Section 3 elucidates the building blocks of the CRS approach 

and outlines its implementation procedure. Section 4 presents a case study using actual wind 

farm data and the corresponding results. Lastly, we conclude this article in Section 5 and 

highlight future research directions beyond this work.
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2. Data structure and preliminary analysis

The data in this study were collected at an onshore wind farm in the United States, located 

on a relatively flat terrain over approximately 25 × 17 square kilometers (km2). Several 

treatments were carried out to preserve the data provider’s confidentiality, such as shifting 

the geographic coordinates of the turbines, randomly selecting 200 turbines for analysis, and 

normalizing wind power outputs to the range of [0, 1]. Starting from September 2010, one 

year of turbine-specific hourly wind speed and power values are measured at the hub height 

of 80 meters on each of the 200 turbines. Additionally, hourly wind speed and direction 

values are measured at three spatially distant meteorological masts. The spatial map of the 

wind farm is presented in Figure 1.

Preliminary analysis suggests that the wind farm data exhibit dependencies across space and 

time. The first five panels of Figure 2 show the partial autocorrelation functions (PACF) of 

the wind speeds at five different wind turbines for lags ranging from one hour up to 12 

hours. Short lags (less than four hours) appear to be of high relevance to the current 

observed wind speeds at each of the five turbines. Similar trends were observed in multiple 

research studies (Erdem and Shi (2011), Kazor and Hering (2015a), Pourhabib, Huang and 

Ding (2016)). The quick decay of temporal correlation hints to the irrelevance of longer-

memory effects to short-term prediction.

The last panel of Figure 2 plots the correlation coefficients between the wind speeds at an 

arbitrarily chosen turbine and those at the remaining 199 turbines at zero-hour lag against 

the separating distances between them. The plot suggests that strong spatial correlations 

exist in the wind farm, ranging from 0.88 to 0.97. A decreasing trend in the coefficients is 

notable as the separating distance increases. Even at the near maximal distances, spatial 

correlations appear to sustain a relatively strong effect and do not vanish. The strong spatial 

dependence can be explained by wind propagation across a dense grid of spatial locations in 

the relatively small area of a wind farm. The observations made above advocate modeling 

both temporal and spatial dependencies when performing short-term wind forecasting.

Similar to previously reported works (Alexiadis et al. (1998), Reikard (2008), Ezzat, Jun and 

Ding (2018)), we note that local wind conditions (i.e. wind speed and direction) exhibit 

changes of sizeable magnitude in short periods of time, suggesting that the wind field under 

study is highly dynamic. For exploratory purposes, we conduct two univariate change point 

tests on the first 30 days of spatially averaged data of wind speed and wind direction. For the 

wind speed variable, we implement a change point detection with binary segmentation using 

the package changepoint in R (Killick and Eckley (2014)). For the wind direction, which is a 

circular variable, we implement a binary segmentation version of the circular change point 

detection (Jammalamadaka and SenGupta (2001)), using the package circular (Agostinelli 

and Lund (2013)). Figure 3 illustrates the results of the change point detections. The 

minimum-time-to-change and the median-time-to-change in wind speed are 5 hours and 15 

hours, respectively, whereas those in wind direction are 11 hours and 37 hours, respectively. 

On average, a change in wind speed or wind direction takes place every 10 hours.
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From a physical interpretation standpoint, Pinson (2013) explains that the variation in local 

wind conditions can be observed on multiple frequency ranges, among which slow 

fluctuations (i.e., days) are driven by synoptic-scale weather variables, whereas higher 

frequency variations (i.e., minutes to hours) occur due to a combination of interacting 

physical processes that are difficult to individually pinpoint, yet their collective effect is 

often notable. The system’s short memory noted in the PACFs of Figure 2 is perhaps an 

implication of this dynamic behavior.

3. The calibrated regime-switching method

Let Yi(j) represent the wind speed recorded at turbine i at time j, where i = 1, …, N turbines 

and j = 1, …, T hours. Furthermore, let Y (j) and d(j) be the spatially averaged wind speed 

and direction at time j, in m/s and degrees, respectively. Hereinafter, the time index, t, is 

reserved to denote the present time, whereas j denotes an arbitrary time index. A wind speed 

forecast is to be made at t + h for h = 1, 2, …, H, that is, the forecast horizon could be as far 

as H hours ahead of the present time.

3.1. Regime identification

There are several ways to define regimes in the wind simulation and forecasting literature 

(Kazor and Hering (2015a, 2015b)). Clustering-based methods can be run on prespecified 

meteorologic variables to identify regimes corresponding to physically interpretable weather 

patterns (Browell, Drew and Philippopoulos (2018)). In other instances, regimes can be 

defined implicitly through latent variables such as in hidden Markov models (Ailliot, 

Monbet and Prevosto (2006)). An alternative approach is to divide the space of some 

prescribed variables into a finite number of partitions by imposing a set of thresholds that are 

often selected through expert knowledge or data-driven measures. For example, Gneiting et 

al. (2006) postulated two regimes based on wind direction to reflect the alternation of 

westerly and easterly winds in the U.S. Pacific Northwest.

In this paper, we follow an approach similar to Gneiting et al. (2006), but we use both the 

wind speed and direction variables as regime identifiers. This is motivated by our explicit 

interest in capturing fluctuations of local wind conditions. The wind speed variable is the 

predictand of interest, and capturing its fluctuations would greatly benefit any data-driven 

method to forecast it, whereas wind direction is also known to affect wind flow patterns, 

power production and spatial correlations of wind speed between wind turbines. So both 

factors are used in defining our wind regimes.

For our regime definition scheme, we assume there exists a finite number, R, of wind 

regimes, such that the observed regime at time j, denoted by r(j), takes on values in {1, …, 

R} depending on the observed values of Y (j) and d(j). Suppose that there are R1 disjoint 

wind speed partitions and R2 disjoint wind direction partitions, then R = R1 × R2. 

Collectively, the regimes are defined by a set of bivariate thresholds, {r1, r2, …, rR−1}, 

where rk = rk
v, rk

d  comprises the wind speed and wind direction thresholds that separate two 

adjacent wind speed or wind direction partitions.
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Our regime identification starts by selecting the number of regimes R and a set of tentative 

thresholds rk k = 1
R − 1. Our approach for deciding the tentative thresholds is based on the 

understanding of wind power production. Later, in Section 4.2, we use a small subset of 

training data to fine-tune the tentatively selected thresholds in order to boost the forecast 

performance.

We guide the selection of wind speed thresholds, r1
v, …, rR − 1

v , in light of the regions 

associated with a wind power curve. Figure 4 plots one year of wind speed versus the 

normalized wind power values recorded at one of the turbines, as well as the histograms of 

wind speed and power shown, respectively, in the above and side subfigures. The power 

curve in Figure 4 is estimated by using the binning method (IEC (2005)), a common 

industrial practice. The binning estimates are shown in Figure 4 as the red triangles.

Four physically meaningful wind speed values define a power curve, namely: the cut-in-

speed, Vci, the inflection point, Vin, the rated speed, Vr, and the cut-out speed, Vco. The cut-

in speed Vci is the minimal speed at which turbines start to generate power. The rated speed 

Vr defines the minimal speed at which the maximum permissible power is produced. This 

maximum level is maintained until the speed reaches Vco, beyond which the turbine is halted 

for its safety. Between Vci and Vr, the power curve follows a nonlinear relationship, with an 

inflection point separating the convex and concave regions. This inflection point, 

corresponding to Vin, marks the point at which the turbine control mechanism is used to 

regulate the power production. For our data, Vci, Vr and Vco, as provided by the 

manufacturer, are around 3.5, 13.5 and 20m/s, respectively, whereas Vin is estimated by 

Hwangbo, Johnson and Ding (2017) for modern turbines to be around 9.5m/s.

These physically meaningful values can be used to set the wind speed thresholds at Vci, Vin 

and Vr, which partitions wind speed into four ranges. However, we notice that only around 

3% of wind speed data in our dataset are higher than Vr. We then decide to have a total of 

three speed partitions after merging the last two partitions and eliminating the threshold at 

Vr. Please also note that while Vco is at 20m/s for our data, Vco most commonly takes the 

value of 25m/s in commercial turbines. Extending Vco from 20m/s to 25m/s, however, does 

not affect our wind regime definition.

With respect to wind direction, Figure 5(a) shows the roseplot of the spatially averaged wind 

speed and direction data. We note that wind direction is dominantly westerly, and the year-

long spatio-temporal average wind direction is 257° (270° is due west). Figure 5(b) shows 

the histograms of the turbine-specific wind speeds for westerly versus easterly partitions, 

which shows a notable distinction between the behavior of the wind associated with each 

direction partition. This suggests two wind direction partitions with thresholds set at 0° and 

180°, resulting in a westerly regime and an easterly regime. The differences in wind speed 

histograms are not nearly as striking for northerly versus southerly partitions.

The above analysis motivates us to define a total of R = 6 wind regimes corresponding to the 

combination of three wind speed partitions and two wind direction partitions, as shown in 

(3.1). Figure 6 shows the time series of the first 30 days of Y (j), d(j) and r(j). In Section 4, 

the values of these tentative thresholds will be refined. That fine-tuning step is intended to 
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further enhance the regime identification procedure in light of the forecasting performance. 

Our regime identification procedure is not purely data-driven nor solely dictated by physics; 

rather it borrows the strength of both. While the physical understanding of how wind 

dynamics affects wind power generation guides our high level decision, like the choice of 

the number of regimes and the tentative regime thresholds, the farm-specific data informs 

the subsequent fine-tuning of the regime thresholds.

r(j) =

1, Y (j) ∈ [0, 3.5)
& d(j) ∈ 0°, 180° Low speed, easterly wind,

2, Y (j) ∈ [0, 3.5)
& d(j) ∈ 180°, 360° Low speed, westerly wind,

3, Y (j) ∈ [3.5, 9.5)
& d(j) ∈ 0°, 180° Moderate speed, easterly wind,

4, Y (j) ∈ [3.5, 9.5)
& d(j) ∈ 180°, 360° Moderate speed, westerly wind,

5, Y (j) ∈ [9.5, 20 or 25)
& d(j) ∈ 0°, 180° High speed, easterly wind,

6, Y (j) ∈ [9.5, 20 or 25)
& d(j) ∈ 180°, 360° High speed, westerly wind .

(3.1)

3.2. The CRS method

We assume that we have at hand a statistical model, denoted by ℳ. In this paper, ℳ is a 

reactive regime-switching model, which, conditioned on r(t), can produce regime-dependent 

spatio-temporal forecasts, where fi
r(t)(t + ℎ) represents a forecast at location i and time t + h, 

given the current regime of r(t). Its specific choice in the context of our application is to be 

discussed in Section 4, but our method is generic to different selections of ℳ.

As a reactive regime-switching model, ℳ suffers from an inherent bias while extrapolating 

the observed in-sample attributes in the form of short-term forecasts. The aim of the CRS 

approach is to correct this inherent bias through adding a regime-dependent term, 

ci(t + ℎ ∣ r(t)) ∈ ℝ, to the regime-specific forecast fi
r(t)(t + ℎ). Hereinafter, we refer to ci(t + h|

r(t)) as the regime-dependent forecast calibration, and the quantity 

f i(t + ℎ) = fi
r(t)(t + ℎ) + ci(t + ℎ ∣ r(t)) as the calibrated forecast.

We assume that the forecast calibration, ci(t + h|r(t)), can be informed by the observed data 

up to time t, denoted by Dt. The dependence on Dt is signified by the notation 

ci t + ℎ ∣ Dt, r(t) . For simplicity, we assume that ci t + ℎ ∣ Dt, r(t)  only varies over time and is 

fixed across space, that is, ci t + ℎ ∣ Dt, r(t) = c t + ℎ ∣ Dt, r(t) , for i = 1, …, N, but future 

research can look into the benefit of varying that quantity over space as well. A general 

calibration formulation to infer c ⋅ ∣ Dt, r(t)  can be expressed as
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min
c ∈ C

ℒ fi
r(t)(t + ℎ) + c t + ℎ ∣ Dt, r(t) , Y i(t + ℎ) , (3.2)

where C is some class of functions to which c ⋅ ∣ Dt, r(t)  belongs, and ℒ( ⋅ , ⋅ ) is a loss 

function that defines a discrepancy measure.

We would like to select a parametric form for c ⋅ ∣ Dt, r(t)  that enables our model to 

specifically capture the out-of-sample variations in wind speed. We suggest that c can be 

informed by means of two elements that are shown to be able indicators of out-of-sample 

change: the observed wind regime at the time of the forecast, r(t), and the runlength, denoted 

by x(t + h). The runlength, x(t + h), is defined as the time elapsed since the most recent 

regime change. The value of the runlength at any arbitrary time index j is defined as x(j) = j 
−j∗, where j∗ is the time at which the most recent change was observed such that j∗ < min(j, 
t). For a time point in the forecast horizon, that is, j = t +h, we define the runlength in the 

forecast horizon as x(t+h) = t+h−j∗. The runlength has been recently proposed as an 

indicator of upcoming changes in the emerging online change detection literature (Adams 

and MacKay (2007), Saatçi, Turner and Rasmussen (2010)), but has not been used in the 

regime-switching modeling or wind forecasting literature in general.

As such, we let the function c(·) depend on two inputs: {r(t),x(t + h)}. We further propose to 

use the functional form of a log-normal cumulative distribution function (cdf) to characterize 

c(·)’s relationship with the two inputs. We model c(·) individually in each wind regime, so 

that r(t) is implicitly incorporated into the relationship with c(·) through a set of regime-

specific parameters. Consequently, c(·) is manifested with the runlength, x(t + h), as the 

single explicit input.

For the kth regime, we denote the regime-specific parameters by Ψk = ψ1
k, ψ2

k, ψ3
k , and the 

calibration function by c(x(t +h)|r(t) = k). The functional form of the log-normal cdf is 

expressed as in (3.3):

c(x(t + ℎ) ∣ r(t) = k) = ψ1
kΦ

ln(x(t + ℎ)) − ψ2
k

ψ3
k , (3.3)

where Φ(·) is the normal cdf. The choice of the lognormal cdf as a calibration function is 

motivated by its flexibility to model a wide spectrum of change behavior, ranging from 

abrupt shifts to gradual drifts, depending on the values of parameters in Ψk. The parameters 

in Ψk are estimated from the data and continuously updated in a rolling forward forecasting 

scheme. Other selections of calibration functions are discussed in Section 4.

The estimation procedure of parameters in Ψk goes as follows. We assume that in a training 

dataset, we have at hand a sequence of forecasts and their respective true observations. 

These forecasts were obtained via the model ℳ in a rolling fashion, such that for the ℓth roll, 

the data observed up to time tℓ are used to obtain forecasts from tℓ + 1 till tℓ + H. Suppose that 

we have L forecasting rolls in the training set. For the ℓth forecasting roll, ℓ = 1, …, L, we 

store the following information: the observed wind regime at the time of forecasting, rℓ(t), 
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the associated runlengths, xℓ(t +h), the raw forecast via ℳ at t +h, fi
rℓ(t)(t + ℎ), and the actual 

observation at t +h, Y i
ℓ(t + ℎ), for h = 1, …, H and i = 1, …, N. By employing a squared error 

loss function, (3.2) can be rewritten as in (3.4),

min
Ψk

1
Lk × N × H

∑
ℓ = 1

Lk

∑
i = 1

N
∑

ℎ = 1

H
fi

rℓ(t)(t + ℎ)

+c xℓ(t + ℎ) ∣ rℓ(t) = k − Y i
ℓ(t + ℎ) 2,

(3.4)

where Lk denotes the number of forecasting rolls relevant to regime k. Solving (3.4) for each 

regime individually, that is, for k = 1, …, R, gives the least-squares estimate of the 

parameters in Ψk
k = 1
R

.

3.3. Proposed implementation procedure

We next propose an implementation procedure for the CRS approach, which comprises three 

sequential phases: (1) Phase I: generating the raw forecasts (via the model ℳ) in the 

initialization period, (2) Phase II: estimating the forecast calibration function based on the 

raw forecasts and the actual observations solicited during Phase I, (3) Phase III: making 

continuously rolling-forward forecasts and updates. Phases I and II use a subset of the data, 

say, a one-month initialization period to set up the CRS machinery. In Phase III, the actual 

forecasting and testing are carried out for the remaining 11 months.

We assume that the model, ℳ, used for issuing the raw forecasts, can be parameterized by a 

set of parameters in Θk, and is thus denoted as ℳ Θk , where the superscript k refers to the 

dependence of the model parameters on the current observed regime, r(t) = k. At each 

forecasting roll, we estimate Θk using a subset of historical data and obtain raw forecasts 

from t + 1 till t + H. As such, the parameters in Θk are regime-specific and time-varying.

Using a sliding interval of six hours, this rolling mechanism is continued until we exhaust 

the initialization period, resulting in L rolls. Once Phase I is finished, the goal of Phase II is 

to estimate the function c using the information attained in Phase I, where (3.4) is solved for 

each regime independently in order to estimate the regime-specific parameters Ψk.

Afterwards, we proceed to Phase III, where the same rolling mechanism is performed. 

Specifically, at the present time t, we estimate Θk and obtain short-term forecasts from t + 1 

till t + H. We then compute the runlength values x(t +h) for h = 1, …, H. Using r(t), x(t +h), 

and Ψk, we calculate the values of c(x(t +h)|r(t) = k) for h = {1, …, H} and use the resulting 

c(x(t +h)|r(t) = k) to calibrate the raw forecasts. The window is then slid by six hours. At 

each forecasting roll, the last 30-day of data are used to update Ψk by resolving (3.4), given 

the newly revealed observations. As such, similar to Θk, the parameters Ψk are also regime-

specific and time-varying. The cycle is repeated until the forecasts for the remaining 11 

months are produced.
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4. Case study: Application to data from an onshore wind farm

In this section, we conduct a case study of the CRS method using the wind farm data 

explained in Section 2. Our interest is to make one-hour ahead to 12-hour ahead wind speed 

and power forecasts, that is, H = 12 and h = 1, …, 12. We note that in the literature, there are 

no precise thresholds between short, medium or long-term forecasting, but the convention is 

that short-term forecasting is concerned with the prediction for a few hours ahead, a horizon 

that is critical to subsequent power system operations such as economic dispatch, electricity 

market operation and reserve quantification (Pinson (2013), Xie et al. (2014)).

4.1. Choice of ℳ

We choose ℳ as a reactive regime-switching model, for which the parameters are regime-

specific, leading to regime-dependent wind speed forecasts. Specifically, we use a Gaussian 

random field (GRF) in a spatio-temporal domain which makes use of information from 

recent wind conditions observed at the ith turbine as well as those from its neighborhood. 

The model has the following form: Y = Mq + e, where M is a prespecified NT × p design 

matrix, q = [q1, …, qp]T is a vector of regression coefficients and Y is the NT ×1 vector of 

spatio-temporal data points such that

Y = Y1(1), …, YN(1), Y1(2), …, YN(2), …, YN(T), …, YN(T) T .

Moreover, e ∼ N(0, Σ), where Σ is a positive-definite covariance matrix, for which the entries 

are modeled by a stationary covariance function, denoted by K(u,w), such that u = (u1,u2)T 

comprises the longitudinal and latitudinal lags, respectively, and w is the temporal lag.

Defining K(·,·) is a key aspect in a GRF since it dictates the spatio-temporal dependence 

structure. One particular aspect to consider when defining K(·,·) is the transport effect of 

dominant winds, related to what is known in the geostatistical literature as the spatio-

temporal “asymmetry” (Gneiting (2002), Gneiting, Genton and Guttorp (2007), Stein 

(2005), Jun and Stein (2007)). Asymmetry implies that a dominant wind direction causes a 

discrepancy between a stronger, alongwind spatio-temporal correlation and a weaker, span-

wind correlation. Ezzat, Jun and Ding (2018) numerically show that spatio-temporal 

asymmetry in local wind fields exist and is flow dependent. To account for possible flow 

dependent asymmetries and following Gneiting, Genton and Guttorp (2007) and Ezzat, Jun 

and Ding (2018), we model K(·,·) as a convex combination of two components: a fully 

symmetric nonseparable model, denoted by C1, and an asymmetric model, denoted by C2, as 

in (4.1).

K(u, w) = σ2 (1 − λ)C1(u, w) + λC2(u, w) + η1 u = w = 0 , (4.1)

where ‖ · ‖ is the Euclidean norm, 1 ⋅  is an indicator function, η ≥ 0 is the spatio-temporal 

nugget effect and σ2 > 0 the spatio-temporal variance. The convex combination coefficient, 

λ ∈ [0, 1], assigns the weight given to the asymmetric model C2. For C1, we use the 

nonseparable model proposed by Gneiting (2002):
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C1(u, w) = 1 − δ
1 + α |w|2

exp − c u

1 + α |w|2
β
2

+ δ
1 − δ1{‖u‖ = 0} , (4.2)

where 0 ≤ δ < 1. The parameters α, c ≥ 0 determine the inverse of the temporal and spatial 

ranges, respectively. The parameter, β ∈ [0, 1], is the nonseparability parameter indicating 

the strength of interaction between the spatial and temporal components.

The asymmetric model C2 characterizes asymmetry possibly existing in a local wind field. 

Conceptually, one way to define an asymmetric spatio-temporal covariance function is 

through the following form:

C2(u, w) = EVζ( u − Vw ), (4.3)

where V is a random vector in ℝ2 and ζ(·) is a valid spatial covariance function (Gneiting 

(2002), Gneiting, Genton and Guttorp (2007)).

Appropriate specifications of V and ζ(·) can yield different explicit representations of C2. 

The stochastic nature of local wind fields motivate us to use the asymmetric model proposed 

by Schlather (2010), which lets ζ(x) = exp(−x2) and V ∼ N μ, D
2 , rather than defining V as 

constant representing a fixed prevailing flow as suggested by Gneiting, Genton and Guttorp 

(2007). As such, the model in (4.3) is rewritten as in (4.4):

C2(u, w) = 1
12 × 2 + w2D

× exp −(u − wμ)T 12 × 2 + w2D −1(u − wμ) ,
(4.4)

where | · | in (4.4) denotes the matrix determinant.

To produce regime-dependent forecasts, we estimate the parameters in (4.1) using only the 

spatio-temporal data since the most recent regime change. In other words, conditional on 

r(t), we only use training data that pertains to the most recently observed wind regime. By 

continuously updating these regime-specific parameters through the rolling mechanism 

described in Section 3.3, we naturally overcome temporal nonstationarity (de Luna and 

Genton (2005), Fuentes (2001), Pourhabib, Huang and Ding (2016)), which is expected to 

exist in local wind fields due to atmospheric boundary layer effects resulting in turbulence 

and wake effect constantly perturbing the wind propagation across the farm. As such, the 

parameters in (4.1) are both regime-specific, and time-varying. In practice, we only use 

temporal lags that are smaller than or equal to 4 hours for model training, as dictated by the 

PACFs of Figure 2. We also impose a minimum of 2 time lags in history to ensure a reliable 

estimation of the parameters in (4.1). With 200 turbines, this truncation gives between 400 = 

(200 × 2) to 800 = (200 × 4) data points, which are sufficient for parameter estimation.

We further account for nonstationarity across space by assuming local stationarity within 

subregions of the spatial domain (Fuentes (2001)). We define three subregions of wind 
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turbines based on their proximity to the three masts, as shown in Figure 1. Within each 

subregion, we fit the stationary spatio-temporal model of (4.1) and obtain region-specific 

model parameters.

Maximum likelihood estimation (MLE) is used to estimate all model parameters, and is 

implemented using the routine nlm in R, except for μ and D, which are specified based on 

the region-specific wind velocity information. For each subregion, we use the most recent 

history of wind speed and direction data as recorded at the mast to compute a time series of 

two-dimensional wind velocity vectors. Our estimate for μ = (μ1,μ2)T is the sample average 

of the longitudinal and latitudinal wind velocities of the time series vectors, whereas our 

estimate for D
2  is the sample covariance matrix. Using the model of (4.1), we can obtain 

spatio-temporal ordinary kriging-based predictions.

4.2. Practical considerations

Before we present the case study results, we would like to stress a few practical 

considerations. Regarding the choice of the calibration function c, we have tried various 

choices including the exponential function, polynomial function and log-normal cdf. Our 

analysis indicates that the log-normal cdf achieves the best performance, that is, the lowest 

mean squared discrepancy between calibrated forecasts and actual observations, as measured 

by (3.4). We note, however, that differences in performance between different calibration 

functions are not that pronounced, suggesting that other appropriate selections of c are 

equally acceptable.

Regarding the identification of wind regimes, we were interested in refining the tentative 

thresholds of (3.1) to boost the performance of the CRS approach. Using the first month of 

data, we tried 112 different combinations of regime thresholds, chosen as follows: we vary 

r1
v from Vci to Vci +1.5 with increments of 0.5 m/s, r2

v from Vin −1.5 to Vin with increments 

of 0.5 m/s, r2
d from 180° −45° to 180° +45° with 15° increment, and set r1

d = 360° − r2
d. Our 

analysis indicates that, in terms of calibration performance as measured by (3.4), the best 

regime thresholds are at {0, 4.5, 9.0, 20.0} m/s for wind speed, and {45°, 225°} for wind 

direction, resulting in R = 6 regimes.

Figure 7 illustrates the estimated calibration functions for the six regimes. It appears that the 

wind speed variable is the main determinant of the calibration sign and magnitude. For 

instance, the first two regimes (top row), which share the same wind speed profile (low wind 

speeds), both transit to regimes with higher wind speeds. Same finding applies to regimes 

with moderate wind speeds (regimes 3 and 4), and regimes with high wind speeds (regimes 

5 and 6). The wind direction, however, appears to have a secondary, yet still important effect 

on the magnitude of the calibration. For instance, it appears that the magnitude of change is 

larger in regime 2 (westerly) than in regime 1 (easterly), and larger in regime 4 (westerly) 

than in regime 3 (easterly). The opposite happens in regimes 5 (easterly) and 6 (westerly). 

The switching behavior difference between gradual shifts like in regimes 1, 2, 3 and 6 and 

abrupt shifts like in regimes 4 and 5 also implies certain degree of interaction between the 
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two factors. As mentioned in Section 3.3, we allow these functions to change with time by 

continuously re-estimating Ψk at every roll in Phase III.

With respect to the implementation of the CRS approach in Phase III, we decide to impose 

bounds on the forecast calibration to avoid over-calibrating the forecasts when extrapolating. 

Our experiments indicate that bounding the calibration quantities in the range [−3, 3] m/s 

yielded satisfactory performance. Our analysis also suggests that, on average, calibrating 

forecasts does not offer much benefit in the very short-term horizons, so we decide to only 

calibrate the forecasts for more than two hours ahead forecasting, which means that CRS 

reduces to the model ℳ for h = 1, 2.

4.3. Forecasting results

The rolling mechanism described in Section 3.3 is implemented on the remaining 11-month 

data, resulting in a total of 200 turbines × 12 hours × 1339 rolls = 3,213,600 forecasts. Using 

this massive test set, we compare the performance of the CRS method to the following 

approaches: asymmetric model (ASYM), separable model (SEP), persistence forecast 

(PER), regime-switching autoregressive model (RSAR), Markov-switch autoregressive 

model (MSAR) and Markov-switch vector autoregressive model (MSVAR).

ASYM is in fact the reactive regime-switching base model, ℳ, used in the CRS approach, 

with its covariance function as specified in (4.1). Similar to ASYM is SEP, except that for 

that model, we set β = λ = 0 in (4.1) and freely estimate the rest of the parameters, yielding 

a separable spatio-temporal model. The persistence model is commonly used as a 

benchmark in forecasting studies and assumes that the current wind speeds will persist for 

the entire forecasting horizon.

RSAR is a reactive regime-switching approach, where the model parameters are dependent 

on r(t), and r(t) is assumed to persist in the forecast horizon. The autoregressive models used 

in RSAR are low-order autoregressive models like AR(1). Low-order AR models are 

common choices in the wind forecasting literature (Huang and Chalabi (1995), Pourhabib, 

Huang and Ding (2016)). To produce turbine-specific forecasts, we fit an RSAR model for 

each turbine.

For the MSAR model, we use Phase I data to estimate a transition probability matrix, ΠR×R, 

of which each entry is πkk′ = Pr r(t + 1) = k′ ∣ r(t) = k . Then, we fit six AR(1) models using 

the historical data classified to each regime. The final forecast at t + h will be the convex 

combination of the forecasts from the six models, where the combination coefficients 

correspond to the probability of reaching each regime at t +h, that is, 

f i(t + ℎ) = ∑k = 1
R fi

k(t + ℎ)Pr(r(t + ℎ) = k), where fi
k(t + ℎ) is the forecast at the ith turbine at t 

+ h obtained by fitting an AR(1) model to the data belonging to regime k, and Pr(r(t+h) = k), 

k = 1, …, R, denotes the probability of reaching regime k at t + h. At each forecasting roll, 

the transition matrix is re-estimated using the newly revealed observations.

Generalizing on MSAR is the MSVAR model which further accounts for the spatial 

dependence. Attempting to use all 200 turbines in a VAR model would require the 

estimation of a large number of parameters. Therefore, we follow an approach similar to 
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Pourhabib, Huang and Ding (2016), where for each turbine, we fit six VAR(1) models 

corresponding to each regime using the historical observations from the turbine itself and its 

nearest five neighbors, and obtain a final weighted prediction. We tested increasing the 

informative neighborhood up to ten turbines and the change in prediction performance was 

almost negligible.

We compare all the aforementioned competing models in both wind speed and power 

domains. For wind power forecasting, we first make a wind speed forecast and then convert 

it to the corresponding wind power forecast using the turbine-specific power curve. Figure 8 

shows, at one of the randomly selected turbines, the 6-hour ahead (i.e., one sliding interval) 

forecasts of wind speed and power, made by using CRS, versus the actual observations for 

five days starting on November 23, 2010.

We evaluate the overall forecast accuracy over all testing instances using the Mean Absolute 

Error (MAE), as expressed in (4.5):

MAE(ℎ) = 1
L × N ∑

ℓ = 1

L
∑
i = 1

N
|f i

ℓ(t + ℎ) − Y i
ℓ(t + ℎ)|, (4.5)

where Y i
ℓ(t + ℎ) and f i

ℓ(t + ℎ) are, respectively, the observation and point forecast (from any 

of the competing models) at the ith location and the hth horizon during the ℓth forecasting 

roll. For each forecasting horizon h = 1, …, 12, the associated MAE is computed over all 

turbines and forecasting rolls using the 11-month of test data. The resulting MAE values are 

presented in Table 1.

We note that MAE as a loss measure suggests the use of the medians of the predictive 

distributions as optimal point forecasts (Gneiting (2011a)). Since the mean and median 

coincide under a Gaussian predictive distribution, the point forecasts used in (4.5) for 

ASYM and CRS are the raw and calibrated kriging-based predictions, respectively. 

Similarly, RSAR, MSAR and MSVAR are all based on Gaussian (vector) autoregressive 

models, and as such, the means of the resulting predictive distributions (in case of RSAR), 

or the convex combination of the means (in case of MSAR and MSVAR), are used as the 

point forecasts in (4.5).

In addition to MAE, Pinson, Chevallier and Kariniotakis (2007) note that, in deregulated 

electricity markets, under-estimating power is often a more costly situation than over-

estimating it. To reflect this cost trade-off, Hering and Genton (2010) propose the power 

curve error (PCE), as expressed in (4.6) to evaluate the power forecast:

PCE(P, P) =

g Pi(t + ℎ) − P i(t + ℎ)
if fi(t + ℎ) ≤ Y i(t + ℎ),

(1 − g) P i(t + ℎ) − Pi(t + ℎ)
if fi(t + ℎ) > Y i(t + ℎ),

(4.6)
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where Pi(t +h) and P i(t + ℎ) are the normalized power observations and forecasts at t + h and 

the ith location, and g is the weight given to under-estimates, which is usually set at values 

higher than 0.5 to penalize under-estimates more than overestimates. Pinson, Chevallier and 

Kariniotakis (2007) suggest a value of g = 0.73. Under the loss function of (4.6), Gneiting 

(2011b) shows that the gth quantile of the predictive distribution is an optimal point forecast. 

For ASYM, SEP, CRS and RSAR, the gth quantile is directly computed from the resulting 

Gaussian predictive distribution and is used as the input point forecast to the PCE loss 

function in (4.6). For MSAR and MSVAR, however, the predictive distribution is a mixture 

of Gaussians, for which the quantiles do not have closed form expressions. Therefore, we 

numerically compute the gth quantile of the predictive distribution and use it as a point 

forecast for the PCE loss function in (4.6). In Table 2, we present the average PCE values 

across all horizons for values of g ranging between 0.5 and 0.8 with 0.1 increment, as well 

as g = 0.73. We stress that when computing MAE in (4.5) and PCE in (4.6) for the CRS 

approach, f i(t + ℎ) is the calibrated forecast.

Table 1 demonstrates that the CRS approach outperforms the competing models in terms of 

wind speed forecasting for h > 1. We believe that this is mainly the result of better capturing 

the out-of-sample variations in the wind speed variable using c(x(t + h)|r(t)). Additional 

benefits over temporal-only and separable spatio-temporal models come from the 

incorporation of comprehensive spatio-temporal correlations and flow dependent 

asymmetries. For the very short-term horizon, h = 1, PER offers the best performance, with 

CRS slightly behind, but still enjoying a competitive performance.

Figure 9(a) presents the percentage improvements, in terms of MAE of wind speed forecast, 

that CRS achieves over the competing models at different forecast horizons. The percentage 

improvement over reactive methods such as ASYM, SEP, RSAR and PER is more 

substantial as the look-ahead horizon increases. This does not come as a surprise since the 

farther the look-ahead horizon is, the more likely a change to take place in wind speed, and 

hence, the benefit of capturing the out-of-sample variations by means of the runlength 

variable becomes more appreciated.

The trend of the improvement of CRS over the Markov-switching approaches, that is, 

MSAR and MSVAR, is opposite. For short-term horizons, the performance of CRS is 

remarkably better than the MS approaches. As the look-ahead horizon increases, the 

advantage of CRS over MS models reaches a peak around h = 4 hours, and after that, the 

performance of the MS approaches gradually catches up with that of CRS. This trend 

suggests that CRS anticipates out-of-sample wind speed variations in the early portion of the 

forecast horizon better than the MS approaches. We believe that this is rooted in the 

mechanisms each approach relies on: CRS uses the runlength, whereas MSAR and MSVAR 

use the transition probabilities.

The analysis presented in Figure 10 helps explain the advantage of CRS over MSVAR. We 

evaluate how each method (CRS versus MSVAR) handles out-of-sample variations in wind 

speed. We define an out-of-sample change in wind speed as crossing a wind speed regime 

threshold set at either 4.5 or 9.0 in the forecast horizon. For a given h between 3-hour ahead 

and 12-hour ahead, if both the actual observation Yi(t +h) and its corresponding forecast 
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f i(t + ℎ) cross the same speed threshold, we label that as a true positive; while on the other 

hand, when neither Yi(t + h) nor f i(t + ℎ) crosses any speed threshold, we label it as a true 

negative. In the left panel of Figure 10, we plot the true positive rate (TPR) of CRS versus 

MSVAR for h = 3, 4, …, 12. Similarly, the right panel of Figure 10 plots the true negative 

rate (TNR). This analysis is performed on all 1339 forecasting rolls in the 11 months of test 

data and provides an empirical estimation of the TPR and TNR. Apparently, CRS does better 

than MSVAR in terms of both measures in the middle range of the forecast horizon, between 

4-hour ahead and 10-hour ahead. This is consistent with the difference between the two 

methods observed in Figure 9. In terms of the true positive rate, which is the proportion of 

correct anticipation of a change, CRS performs better than MSVAR for smaller h’s, while 

MSVAR is more conservative in signaling changes under those circumstances, suggesting 

that the use of runlength offers a higher degree of change anticipation in the shorter 

horizons.

Similar findings can be extended to the power forecasting results in Table 1; the CRS 

approach outperforms the competing models for power prediction for most forecasting 

horizons. Its improvement over the reactive methods is higher as the look-ahead horizon 

increases, whereas its improvement over the MS approaches is better in the shorter forecast 

horizons. In the case of wind power forecast, the performance of MS approaches in the end 

surpass that of CRS at h = 11. The percentage improvements shown in Figure 9(b) are 

somewhat different from their counterparts in Figure 9(a); the difference is mainly due to the 

nonlinear speed-to-power conversion.

In Table 2, it appears that the improvement of CRS over the competing models is also 

realizable in terms of PCE. The CRS approach performs well compared to the competing 

approaches, especially when the under-estimation is penalized more severely than over-

estimation (namely g > 0.5), which describes the more realistic cost trade-off in power 

systems.

The improvements presented above are indeed significant from a practical point of view. 

With sometimes double digit percentage improvements in wind speed forecasts, using the 

proposed method can lead to major benefits in a wide set of operational analytics on the 

wind farm such as predictive turbine control, power estimation and economic dispatch, 

among others.

It is still important, however, to test if these improvements are significant from a statistical 

point of view. Similar to Hering and Genton (2010), we implement the large sample test 

introduced by Diebold and Mariano (1995) for comparing the forecasting accuracy of two 

models at a specific forecasting horizon. For h = 1, …, 12, and i = 1, …, 200, we implement 

a one-sided version of the test, corresponding to a sample size of 1339 forecasts per turbine 

per horizon. Figure 11 shows the boxplots of the 200 p-values of the pairwise comparisons 

for the CRS approach against the competing models at each horizon. Again, the 

improvements from the CRS approach are mostly significant against the reactive methods in 

larger forecast horizons (h > 3), while the difference between the MS approaches and CRS is 

significant at the small and moderate time lags. Recall that CRS adds the forecast calibration 

only when h ≥ 3, which means that CRS is the same as ASYM for h = 1 and h = 2. For this 
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reason, the first two p-values, corresponding to h = 1 and h = 2 in the top-left panel of Figure 

11, are supposed to be one; these p-values are trivial and thus not shown.

4.4. Adaptation to and impact on probabilistic forecasting

Probabilistic forecasting stems from the importance of characterizing distributions 

associated with point forecasts to subsequent optimal decision makings (Pinson (2013), 

Gneiting and Katzfuss (2014)). While our discussion so far primarily focuses on the h-hour 

ahead point forecasting, the resulting method can be placed in the framework of a 

probabilistic forecasting because the essence of the CRS approach is to make an adjustment 

to the mean prediction of a statistical model that can be used for making probabilistic 

forecasts.

To elaborate, our choice of ℳ is ASYM, which is one type of Gaussian random field model, 

for which the point forecast is the mean of a predictive normal distribution. In other 

instances, the point forecast can be the mean of a truncated normal distribution as in 

Gneiting et al. (2006) and Pourhabib, Huang and Ding (2016). In all cases, the CRS 

approach inherits the uncertainty from ℳ, but offers an enhancement to reduce bias in the 

point forecasting. In other words, having started with a probabilistic forecasting using the 

base model, CRS aims at reducing the bias of the original forecasting without affecting its 

predictive variance.

To illustrate this point, we show in Figure 12 the forecast at one of the turbines from an 

arbitrarily selected forecasting roll. In the left panel, it shows that the calibrated forecasts are 

able to pick up an out-of-sample change in wind speed, in contrast to the reactive ASYM 

model, which fails to do so, as it solely relies on extrapolating the observed in-sample wind 

regime. The right panel depicts the predictive distributions associated with the point 

forecasts of CRS and ASYM at h = 4. The benefit of the CRS approach is to correct the 

inherent bias in the forecasts of the reactive ASYM model by shifting the mean of the 

resulting distribution towards the true value, while preserving the variance of the original 

model.

To summarize, the CRS method is a bias correction approach, rather than a variance 

reduction endeavor. The uncertainty in the resulting forecasts depends largely on the 

selection of ℳ. Since the CRS approach is generic to different selections of ℳ, the decision-

maker then has the luxury to select or tune ℳ accordingly to achieve a bias-variance trade-

off as dictated by the application under study.

A standard evaluation measure in probabilistic forecasting is the continuous ranked 

probability score (CRPS). In Table 3, we compare the calibrated forecasts (CRS) versus the 

uncalibrated, reactive forecasts (ASYM) in terms of CRPS using the 11-month worth of test 

data. Note that the essential difference between CRS and ASYM is the calibration part. For 

all h ≥ 3 cases, CRS outperforms ASYM, as much as 13.6% for some h’s. This comparison 

empirically supports the benefit of bias reduction rendered by CRS and highlights the impact 

of CRS under a probabilistic forecasting framework.
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5. Conclusions and future directions

This paper proposes the calibrated regime-switching method for short-term wind 

forecasting. The essence of the CRS approach is to calibrate raw forecasts from a reactive 

regime-switching statistical model to capture the out-of-sample variations in the wind speed 

variable taking place in the forecast horizon. Extensive testing using one year, 200-turbine 

wind farm data suggests that the CRS approach can offer substantial benefit that enhances 

the forecast accuracy over a wide spectrum of existing methods in both wind speed and wind 

power domains.

One important message conveyed in this paper is that an improvement in change anticipation 

can lead to appreciable improvements in forecasting quality. The CRS approach is an 

important step towards steering the focus of the literature and practice from the reactive 

“regime detection” models towards the next-generation proactive “regime anticipation” 

models. A fully proactive regime-switching model would of course not confine itself to 

solely calibrating reactive regime-switching forecasts, but would, instead, address the more 

general and challenging problem of predicting directly the out-of-sample wind regimes, thus 

naturally producing predictions that are adjusted to future regime changes. Albeit not fully 

proactive yet, we hope that the CRS approach paves one of the pathways and makes a solid 

step forward towards attaining that goal.

Some future research directions related to the CRS approach include, but are not limited to, 

looking into nonparametric modeling of the calibration function, using different indicators to 

inform the calibration action, and reducing both bias and variance in a probabilistic 

forecasting framework. Varying the calibration function over space, in addition to time, as 

mentioned in Section 3.2, is also a matter of promising future research.

Acknowledgments

Supported in part by NSF Grants CMMI-1300560, IIS-1741173, DMS-1613003 and NIH Grant P42ES027704.

REFERENCES

Adams RP and Mackay DJ (2007). Bayesian online changepoint detection. Preprint. Available at 
arXiv:0710.3742.

Agostinelli C and Lund U (2013). R package “circular”: Circular statistics (version 0.4–7). https://r-
forge.r-project.org/projects/circular.

Ailliot P,Monbet V and Prevosto M (2006). An autoregressive model with time-varying coefficients for 
wind fields. Environmetrics 17 107–117. MR2225530

Ailliot P, Bessac J, Monbet V and Pène F (2015). Non-homogeneous hidden Markov-switching models 
for wind time series. J. Statist. Plann. Inference 160 75–88. MR3315635

Alexiadis M, Dokopoulos P, Sahsamanoglou H and Manousaridis I (1998). Short-term forecasting of 
wind speed and related electrical power. Solar Energy 63 61–68.

Bessa RJ, Miranda V, Botterud A, Wang J and Constantinescu EM (2012). Time adaptive conditional 
kernel density estimation for wind power forecasting. IEEE Trans. Sustain. Energy 3 660–669.

Bessac J, Ailliot P, Cattiaux J and Monbet V (2016). Comparison of hidden and observed regime-
switching autoregressive models for (u, v)-components of wind fields in the northeast Atlantic. 
Advances in Statistical Climatology, Meteorology and Oceanography 2 1–16.

Ezzat et al. Page 18

Ann Appl Stat. Author manuscript; available in PMC 2020 August 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://r-forge.r-project.org/projects/circular
https://r-forge.r-project.org/projects/circular


Browell J, Drew DR and Philippopoulos K (2018). Improved very short-term spatio-temporal wind 
forecasting using atmospheric regimes. Wind Energy 21 968–979.

Brown BG, Katz RW and Murphy AH (1984). Time series models to simulate and forecast wind speed 
and wind power. Journal of Climate and Applied Meteorology 23 1184–1195.

Byon E and Ding Y (2010). Season-dependent condition-based maintenance for a wind turbine using a 
partially observed Markov decision process. IEEE Trans. Power Syst 25 1823–1834.

Byon E, Ntaimo L and Ding Y (2010). Optimal maintenance strategies for wind turbine systems under 
stochastic weather conditions. IEEE Trans. Reliab 59 393–404.

de Luna X and Genton MG (2005). Predictive spatio-temporal models for spatially sparse 
environmental data. Statist. Sinica 15 547–568. MR2190219

Diebold FX and Mariano RS (1995). Comparing predictive accuracy. J. Bus. Econom. Statist 13 253–
263.

DOE (2015). Wind Vision: A New Era for Wind Power in the United States. U.S. Department of 
Energy, Washington DC.

Dowell J and Pinson P (2016). Very-short-term probabilistic wind power forecasts by sparse vector 
autoregression. IEEE Trans. Smart Grid 7 763–770.

Erdem E and Shi J (2011). ARMA based approaches for forecasting the tuple of wind speed and 
direction. Applied Energy 88 1405–1414.

Ezzat AA, Jun M and Ding Y (2018). Spatio-temporal asymmetry of local wind fields and its impact 
on short-term wind forecasting. IEEE Trans. Sustain. Energy 9 1437–1447. [PubMed: 30405893] 

Fuentes M (2001). A high frequency kriging approach for non-stationary environmental processes. 
Environmetrics 12 469–483.

Giebel G, Brownsword R, Kariniotakis G, Denhard M and Draxl C (2011). The state-of-the-art in 
short-term prediction of wind power: A literature overview, 2nd ed. Technical report, 
ANEMOS.plus.

Gneiting T (2002). Nonseparable, stationary covariance functions for space–time data. J. Amer. Statist. 
Assoc 97 590–600. MR1941475

Gneiting T (2011a). Making and evaluating point forecasts. J. Amer. Statist. Assoc 106 746–762. 
MR2847988

Gneiting T (2011b). Quantiles as optimal point forecasts. Int. J. Forecast 27 197–207.

Gneiting T, Genton MG and Guttorp P (2007). Geostatistical space–time models, stationarity, 
separability and full symmetry. In Statistics of Spatio-Temporal Systems (Finkenstaedt B, Held L 
and Isham V, eds.). Monographs in Statistics and Applied Probability 4 151–175 4. CRC Press, 
Boca Raton, FL.

Gneiting T andKatzfuss M (2014). Probabilistic forecasting. The Annual Review of Statistics and Its 
Application 1 125–151.

Gneiting T, Larson K,Westrick K,Genton MG and Aldrich E (2006). Calibrated probabilistic 
forecasting at the stateline wind energy center: The regime-switching space–time method. J. Amer. 
Statist. Assoc 101 968–979. MR2324108

He M, Yang L, Zhang J and Vittal V (2014). A spatio-temporal analysis approach for short-term 
forecast of wind farm generation. IEEE Trans. Power Syst 29 1611–1622.

Hering AS and Genton MG (2010). Powering up with space–time wind forecasting. J. Amer. Statist. 
Assoc 105 92–104. MR2757195

Hering AS, Kazor K and Kleiber W (2015). A Markov-switching vector autoregressive stochastic wind 
generator for multiple spatial and temporal scales. Resources 4 70–92.

Huang Z and Chalabi ZS (1995). Use of time-series analysis to model and forecast wind speed. J. 
Wind Eng. Ind. Aerodyn 56 311–322.

Hwangbo H, Johnson AL and Ding Y (2017). A production economics analysis for quantifying the 
efficiency of wind turbines. Wind Energy 20 1501–1513.

Hwangbo H, Johnson AL and Ding Y (2018). Spline model for wake effect analysis: Characteristics of 
a single wake and its impacts on wind turbine power generation. IISE Trans. 50 112–125.

Ezzat et al. Page 19

Ann Appl Stat. Author manuscript; available in PMC 2020 August 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



IEC (2005). Wind Turbines-Part 12–1: Power Performance Measurements of Electricity Producing 
Wind Turbines. IEC-International Electrotechnical Commission, IEC-61400–12, Geneva, 
Switzerland.

Jammalamadaka SR and Sengupta A (2001). Topics in Circular Statistics Series on Multivariate 
Analysis 5 World Scientific, River Edge, NJ MR1836122

Jun M and Stein ML (2007). An approach to producing space–time covariance functions on spheres. 
Technometrics 49 468–479. MR2394558

Kazor K and Hering AS (2015a). The role of regimes in short-term wind speed forecasting at multiple 
wind farms. Stat 4 271–290. MR3429323

Kazor K and Hering AS (2015b). Assessing the performance of model-based clustering methods in 
multivariate time series with application to identifying regional wind regimes. J. Agric. Biol. 
Environ. Stat 20 192–217. MR3347625

Killick R and Eckley I (2014). changepoint: An R package for changepoint analysis. J. Stat. Softw 58 
1–19.

Kusiak A and Li W (2010). Estimation of wind speed: A data-driven approach. Journal of Wind 
Engineering and Industrial Areodynamics 98 559–567.

Lee G, Ding Y, Genton MG and Xie L (2015). Power curve estimation with multivariate environmental 
factors for inland and offshore wind farms. J. Amer. Statist. Assoc 110 56–67. MR3338486

Mohandes MA, Halawani TO, Rehman S and Hussain AA (2004). Support vector machines for wind 
speed prediction. Renewable Energy 29 939–947.

Pinson P (2013). Wind energy: Forecasting challenges for its operational management. Statist. Sci 28 
564–585. MR3161588

Pinson P, Chevallier C and Kariniotakis GN (2007). Trading wind generation from short-term 
probabilistic forecasts of wind power. IEEE Trans. Power Syst 22 1148–1156.

Pinson P, Christensen L, Madsen H, Sørensen PE, Donovan MH and Jensen LE (2008). Regime-
switching modelling of the fluctuations of offshore wind generation. J. Wind Eng. Ind. Aerodyn 96 
2327–2347.

Pourhabib A, Huang JZ and Ding Y (2016). Short-term wind speed forecast using measurements from 
multiple turbines in a wind farm. Technometrics 58 138–147. MR3463164

Reikard G (2008). Using temperature and state transitions to forecast wind speed. Wind Energy 11 
431–443.

Saatçi Y, Turner R and Rasmussen CE (2010). Gaussian process change point models. In Proceedings 
of the 27th International Conference on Machine Learning, (ICML-10) 927–934.

Santos RA (2007). Damage mitigating control for wind turbines. Ph.D. thesis Univ. Colorado Boulder, 
Boulder, CO.

Schlather M (2010). Some covariance models based on normal scale mixtures. Bernoulli 16 780–797. 
MR2730648

Sideratos G and Hatziargyriou ND (2012). Probabilistic wind power forecasting using radial basis 
function neural networks. IEEE Trans. Power Syst 27 1788–1796.

Stein ML (2005). Space–time covariance functions. J. Amer. Statist. Assoc 100 310–321. MR2156840

Xie L, Gu Y, Zhu X and Genton MG (2014). Short-term spatio-temporal wind power forecast in robust 
look-ahead power system dispatch. IEEE Trans. Smart Grid 5 511–520.

You M, Byon E, Jin J and Lee G (2017). When wind travels through turbines: A new statistical 
approach for characterizing heterogeneous wake effects in multi-turbine wind farms. IISE Trans. 
49 84–95.

Zhu X, Genton MG, Gu Y and Xie L (2014). Space–time wind speed forecasting for improved power 
system dispatch. TEST 23 1–25. MR3179610

Zwiers F and Von Storch H (1990). Regime-dependent autoregressive time series modeling of the 
southern oscillation. J. Climate 3 1347–1363.

Ezzat et al. Page 20

Ann Appl Stat. Author manuscript; available in PMC 2020 August 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 1. 
Spatial map of the wind farm (coordinates shifted to maintain confidentiality). M: 

meteorological masts located in the Northwest (NW), South (S) and Northeast (NE). T: 

Turbines grouped according to their proximity to the nearest mast, whether NW, S or NE.
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Fig. 2. 
Panels (1)–(5): PACFs of the wind speeds at five wind turbines. The x-axis is the time lag in 
hours. Panel (6): Correlations between wind speeds at an arbitrarily chosen turbine and those 
at the remaining 199 turbines at zero-hour lag against the separating distances.
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Fig. 3. 
Top panel: change points in one month of spatially averaged wind speed data. Bottom panel: 
change points in one month of spatially averaged wind direction data. The span of the x-axis 
is a month or 720 hours.
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Fig. 4. 
Normalized power versus speed values, histograms of wind speed and power, for one of the 
turbines on the wind farm. Vci: cut-in speed, Vin: inflection point, Vr: rated speed and Vco: 

cut-out speed.
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Fig. 5. 
Left panel: Rose plot of spatially averaged wind speeds and directions. Right panel: 
Histogram of wind speeds for westerly versus easterly winds.
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Fig. 6. 
Top panel: Spatially averaged wind speed data (solid line), along with the wind speed regime 
thresholds at 3.5 and 9.5 m/s (dashed line). Middle panel: spatially averaged wind direction 
data (solid line), along with the wind direction regime threshold value at 180° (dashed line). 

Bottom panel: Evolution of the regime variable r(j) ∈{1, …, 6}. The span of the x-axis is a 
month or 720 hours.
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Fig. 7. 
Estimated calibration functions using Phase I data for the six regimes.
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Fig. 8. 
Top panel: 6-hour ahead forecasts of wind speeds at the chosen turbine for five days starting 
on November 23, 2010. Point forecasts shown by the solid red line, along with ±1 standard 
deviation as the dashed blue lines. Actual observations shown as black circles. Similarly, the 
bottom panel shows the corresponding power forecasts and the actual observations.
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Fig. 9. 
Percentage improvements in MAE of CRS over competing approaches in wind speed (left 
panel) and wind power (right panel).
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Fig. 10. 
Left panel: the true positive rate (TPR). Right panel: the true negative rate (TNR). 

Comparisons are between CRS (blue triangles) and MSVAR (red circles) for h = 3, …, 12.
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Fig. 11. 
Boxplots of p-values generated from conducting the one-sided test of Diebold and Mariano 

(1995) to compare the turbine-specific CRS forecasts against those from the competing 
models at different horizons.
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Fig. 12. 
Left panel: CRS versus ASYM predictions for one turbine from an arbitrarily selected 
forecasting roll. Calibrated predictions shown without imposing the bounds discussed in 
Section 4.2. Right panel: Predictive distributions for the point forecast at h = 4. Absolute 
errors of point predictions at h = 4 are, respectively, 0.20 and 1.33 for CRS and ASYM.
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Table 1

MAE for wind speed and power forecasting for h-hour ahead, h = 1, 2, …, 12. Bold-faced values indicate best 
performance

Method 1 2 3 4 5 6 7 8 9 10 11 12

MAE for wind speed forecasts issued at h = 1, 2, …, 12

ASYM 1.12 1.45 1.72 1.96 2.15 2.27 2.39 2.51 2.68 2.77 2.83 2.87

SEP 1.15 1.47 1.74 1.97 2.15 2.27 2.40 2.52 2.68 2.77 2.84 2.87

PER 1.11 1.46 1.73 1.97 2.16 2.31 2.44 2.57 2.74 2.84 2.92 2.96

RSAR 1.16 1.53 1.79 2.03 2.21 2.36 2.46 2.56 2.73 2.82 2.89 2.93

MSAR 1.23 1.64 1.92 2.14 2.28 2.38 2.45 2.48 2.54 2.59 2.62 2.63

MSVAR 1.21 1.60 1.87 2.09 2.23 2.33 2.40 2.45 2.52 2.57 2.60 2.61

CRS 1.12 1.45 1.71 1.89 2.06 2.15 2.25 2.29 2.37 2.44 2.52 2.56

MAE for wind power forecasts issued at h = 1, 2, …, 12

ASYM 0.121 0.156 0.184 0.212 0.227 0.236 0.247 0.261 0.280 0.291 0.294 0.296

SEP 0.123 0.158 0.185 0.212 0.227 0.236 0.247 0.261 0.280 0.292 0.295 0.296

PER 0.125 0.161 0.189 0.215 0.230 0.241 0.253 0.268 0.286 0.299 0.303 0.304

RSAR 0.129 0.169 0.199 0.226 0.241 0.253 0.264 0.278 0.297 0.309 0.314 0.314

MSAR 0.132 0.171 0.200 0.220 0.233 0.242 0.249 0.258 0.263 0.267 0.268 0.269

MSVAR 0.131 0.170 0.198 0.217 0.228 0.238 0.245 0.256 0.262 0.266 0.267 0.267

CRS 0.121 0.156 0.186 0.207 0.220 0.229 0.239 0.244 0.254 0.263 0.268 0.271

Ann Appl Stat. Author manuscript; available in PMC 2020 August 12.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Ezzat et al. Page 34

Table 2

Average PCE values across all horizons. Bold-faced values indicate best performance.

Method g = 0.5 g = 0.6 g = 0.7 g = 0.73* g = 0.8

ASYM 0.116 0.117 0.114 0.111 0.104

SEP 0.116 0.118 0.114 0.112 0.105

PER 0.118 0.121 0.124 0.125 0.127

RSAR 0.123 0.123 0.120 0.117 0.110

MSAR 0.113 0.123 0.127 0.124 0.126

MSVAR 0.112 0.118 0.122 0.118 0.119

CRS 0.109 0.110 0.107 0.105 0.097

*
indicates the value suggested by Pinson, Chevallier and Kariniotakis (2007)

Ann Appl Stat. Author manuscript; available in PMC 2020 August 12.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Ezzat et al. Page 35

Table 3

CRPS values of wind speed prediction for h-hour ahead, h = 3, …, 12. Bold-faced values indicate best 
performance

Method 3 4 5 6 7 8 9 10 11 12

ASYM 1.34 1.55 1.71 1.82 1.94 2.05 2.20 2.28 2.35 2.38

CRS 1.32 1.47 1.62 1.70 1.79 1.83 1.91 1.97 2.05 2.08
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