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Abstract

Alert signals like sirens and home alarms are important as they warn people of precarious 

situations. This work presents the detection and separation of these acoustically important alert 

signals, not to be attenuated as noise, to assist the hearing impaired listeners. The proposed 

method is based on convolutional neural network (CNN) and convolutional-recurrent neural 

network (CRNN). The developed method consists of two blocks, the detector block, and the 

separator block. The entire setup is integrated with speech enhancement (SE) algorithms, and 

before the compression stage, used in a hearing aid device (HAD) signal processing pipeline. The 

detector recognizes the presence of alert signal in various noisy environments. The separator block 

separates the alert signal from the mixture of noisy signals before passing it through SE to ensure 

minimal or no attenuation of the alert signal. It is implemented on a smartphone as an application 

that seamlessly works with HADs in real-time. This smartphone assistive setup allows the hearing 

aid users to know the presence of the alert sounds even when these are out of sight. The algorithm 

is computationally efficient with a low processing delay. The key contribution of this paper 

includes the development and integration of alert signal separator block with SE and the 

realization of the entire setup on a smartphone in real-time. The proposed method is compared 

with several state-of-the-art techniques through objective measures in various noisy conditions. 

The experimental analysis demonstrates the effectiveness and practical usefulness of the developed 

setup in real-world noisy scenarios.
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I. INTRODUCTION

There are a variety of sounds produced in the environment. The range of environmental 

sounds includes the sounds created indoors and outdoors. Usually, such sounds convey 
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information about surrounding environmental activities. In environmental sounds, alert 

signals like sirens from emergency vehicles or alarms from home security systems have high 

importance as they forewarn people of cautious and life-threatening situations. In adverse 

noisy environments, even a normal hearing individual can miss these critical warning signals 

leading to hazardous situations. The perception of the alert sounds becomes extremely 

difficult for hearing impaired listeners especially when the signals are mixed with various 

kinds of background noise and when they are out of sight. National Institute on Deafness 

and other Communication Disorders (NIDCD) reports that there are over 360 million people 

worldwide, including 15% of American adults i.e. about 37 million, suffering from hearing 

loss of some kind [1]. Personalized hearing devices like hearing aid devices (HADs) and 

cochlear implants (CIs) have been developed by researchers and manufacturers to improve 

hearing capabilities of impaired people. Developments have been made to improve the 

speech perception of the hearing aid (HA) users through noise suppression and speech 

enhancement (SE) techniques [2]. While hearing impairment is one of the most common 

physical disabilities in the world, little work has dealt with the role of alert sounds for people 

with listening impairment.

The HAD signal processing pipeline has several important modules. Acoustic feedback 

cancellation [3], [4], speech source localization [5], [6], SE [7]-[9], dynamic range 

compression (DRC) [10], [11] are some of the fundamental modules in the pipeline. SE is a 

vital module in the HAD signal processing pipeline as it tries to suppress the noise and 

enhance the performance of HADs by improving the speech quality and intelligibility 

perceived by people with hearing loss. Extensive studies can be found in which SE 

algorithms are developed to improve the efficiency of HADs in the presence of background 

noise. SE algorithms proposed based on statistical models [12], [13] have been effective in 

reducing noise at a higher signal to noise ratio (SNR) levels. There are some 

computationally efficient SE methods [14], [15] that work in real-time. Microphone array 

based SE methods [16], [17] have also worked with HADs. However, these methods achieve 

better performance at the cost of higher computational complexity. Recently, SE based on 

deep neural networks (DNN) have been proposed by researchers [18]-[21]. In the 

aforementioned methods, a model based on supervised learning is trained to estimate clean 

speech features from the noisy speech features. These DNN based approaches are known to 

have superior performance by achieving better noise suppression. However, the primary 

objective of all these methods is to suppress the background noise without causing any 

speech distortion. Most of the SE algorithms are application specific. The presence or the 

effect of the alert signals are not considered when SE algorithms are developed. Therefore, 

SE algorithms could mostly consider alert signals as a type of background noise and tend to 

attenuate these critical sounds especially when these are mixed with other environmental 

noise and last for rather long period of time. Although the human brain can identify specific 

sounds as alert sounds even if it is heard for the very first time, it becomes very difficult for 

HA users to identify the alert sounds when the signals are attenuated or when the source is 

unseen.

Research shows that hearing aid (HA) users want to be aware of different environmental 

sounds at all places [22]. The lowered interaction and the auditory cues from the 

environment can lead to a feeling of reduced safety for people with hearing impairment [23]. 
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For example, in situations where HA user is driving a car. In such cases, the HA user may be 

unable to hear the emergency vehicle approaching nearby when there is high background 

noise or if it is attenuated. People with hearing loss will feel more safe if they are cautioned 

about the warning sounds and it would be even better if the warning sounds are perceived 

well. In literature, there are some works to detect the alert signals and thereby enhance 

environmental awareness. In [24], a simulated environment is generated and a set of pre-

selected alarm sounds are detected through cross-correlation techniques. Artificial neural 

network (ANN) based pattern matching technique was used to detect police vehicle sirens in 

[25]. In [26]-[28] we can see works on detecting the sirens of emergency vehicles like 

ambulance and police cars. In [29], an alarm sound detector based on support vector 

machine was proposed that is tested using several audio features. A simple siren detection 

system that runs in real-time is described in [30]. Recently, in [31] authors proposed a 

warning sound detector working on a mobile platform. However, most of the methods 

mentioned focus only on particular type of alert signals and do not generalize. Some of the 

above mentioned methods do not consider frequency shifts of certain alert signals due to the 

Doppler effect and are tested in controlled environment like the laboratories or simulations. 

The majority of the methods do not have feasible solutions on how to transmit the alarm 

detection information to the HA user. Most importantly, these methods only consider the 

detection of the alert signal and do not take separation of it from the noisy speech into 

account. Therefore, it becomes highly improbable to incorporate many of these methods into 

the HAD pipeline which has noise suppression and SE modules in it. Thus, we need a better 

system to improve the surrounding awareness of hearing impaired people in real-world noisy 

environments.

In this paper, we present a smartphone assistive setup that enhances the perception of alert 

signals for the HA users in noisy environments. The proposed alert signal detector and 

separator modules are based on convolutional neural network (CNN) and convolutional-

recurrent neural networks (CRNN) respectively. We propose to use the real and the 

imaginary parts of the frequency domain signal as the input features for both the models. 

The convolutional layers extracts the information of the local patterns in input features and 

the recurrent layers maps the correlations between the consecutive frames. This joint 

optimization for the considered features improves the performance of the entire setup. The 

proposed method works in conjunction with SE modules used in HADs. The developed 

method works as an application on a smartphone in real-time that can be used as an assistive 

tool for hearing impaired listeners. We use a smartphone-based platform for integrating and 

running indispensable signal processing algorithms in real time to assist hearing impaired 

users. This is because it is impractical to do the same on HAD due to its limitations in size 

and processing capabilities. Smartphones have built-in, efficient ARM multi-core processors 

and sufficient resources to even run complex machine learning algorithms with low power 

consumption. Most importantly, smartphones are pervasive and are one of the most widely 

used devices everywhere. In the proposed approach, the smartphone captures the noisy 

speech signal comprising of alert signals, background noise and speech. The CNN based 

alert signal detector continuously monitors the presence of any emergency sound. If the alert 

signal detector detects any emergency sound, the detection is displayed on the smartphone 

application. The CRNN-based alert signal separator separates the alert signal from the 
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mixture of noisy speech before passing it through SE module. The input to the SE module 

now contains only the speech mixed with background noise. Once the SE module is 

executed, the enhanced speech along with the separated alert signal goes to compression 

stage, and the final processed output is sent from the smartphone to the HAD through a 

wired connection or wirelessly via Bluetooth low energy (BLE) [32]. The proposed setup 

(Figure 1) ensures that there is no attenuation and/or over-amplification of the alert signal, 

while the alert signal detection is shown to the user on the display panel of smartphone 

application. The novel contribution in this work is the high performance realization and 

operation of the alert signal detection and separation blocks and their integration to the SE 

module. To the best of our knowledge, there are no published works where there is an entire 

setup with an alert signal detector and separator combined with the SE module of HADs. 

Furthermore, the whole setup is implemented on a smartphone working with low latency in 

real-time. The objective evaluations show the overall benefits and usability of the proposed 

setup for end-users.

The remainder of this paper is organized as follows. In Section II, we describe the signal 

model, the features used in the proposed algorithm and the developed architectures for the 

alert signal detector and separator. Analysis and experimental results are presented in 

Section III. Section IV describes the real-time implementation of the developed method on 

smartphone. Conclusion is in Section V.

II. PROPOSED ALERT SIGNAL DETECTION AND SEPARATION

In this section, we discuss the signal model, the primary features, alert signal detection 

block, the separation block and its integration to SE module of the HAD processing pipeline. 

The block diagram of the proposed method is shown in Figure 1.

A. FORMULATION AND INPUT FEATURES

Speech processing applications like speech enhancement (SE) and dynamic range 

compression (DRC) usually consider additive mixture model for noisy speech y(n), with 

clean speech s(n) and noise v(n).

y(n) = s(n) + v(n) (1)

We have to note that the noise v(n) can be mixture of background noise d(n) and alert signal 

w(n). The input noisy speech signal is transformed to frequency domain by taking short time 

Fourier transform (STFT).

Y k(λ) = Sk(λ) + V k(λ) (2)

Yk(λ), Sk(λ), and Vk(λ) represent the noisy kth STFT coefficient of y(n), s(n) and v(n) 

respectively for frame λ. k = 0, 1, … , N − 1 where N is the STFT size.

The proposed method is based on supervised learning. It has two stages; training and testing/

inferencing. Offline training is executed to generate a model and this pre-trained model is 

implemented on a smartphone in real-time. For both the stages, the features remain the same 
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and the choice of the features is crucial in determining the performance of the method. A 

wide range of options are available to parametrically represent the speech signal. Ideal 

binary mask, Log power spectrum, Mel filterbank energy, Gammatone frequency power 

spectrum [33] are some of the widely used speech features. But, for alert signals the 

characteristics are different. The selection of the features for these signals plays a critical 

role in developing a detection model. Time domain features like pitch, Zero crossing rate 

(ZCR), short time energy and frequency features like spectral flux, spectral centroid, Mel 

frequency cepstral coefficients (MFCC) etc. have been used to recognize the warning signals 

[29]. However, some of the aforementioned features are not efficient in terms of 

computational and space complexity. Importantly, these features can only be used for signal 

detection and not for separation task. The alert signal separator reconstructs the signal and 

the above-mentioned features cannot be used for signal reconstruction (alert signal 

separation will be explained later in this section). In the proposed approach, we consider real 

and the imaginary values of the STFT of the signal as the input features. The choice of the 

input features is based on the fact that the trained model can learn better by using the raw 

STFT feature than other hand-crafted features [5]. By considering these features, we focus 

on both the magnitude and phase of the input which provides more information about the 

signal. The STFT coefficients are easy to compute and does not add much delay to input/

output (i/o) latency. This is significant as it reduces complexity specifically during real-time 

processing. The real and the imaginary parts of the Yk (λ) are considered as the input 

features for the proposed method. The following matrix shows the input feature sets.

Real part of Y k = 0(λ)
⋮

Real part of Y k = N ∕ 2 + 1(λ)
Imag . part of Y k = 0(λ)

⋮
Imag . part of Y k = N ∕ 2 + 1(λ)

(3)

Since Fourier transform of a signal is symmetric in the frequency domain, we consider only 

the first half of STFT of the data. Therefore, there are 2 × (N/2 + 1) number of real and 

imaginary values for every frame of STFT. The dimension of input feature set per time 

frame λ is, 1 × F where F = 2 × (N/2 + 1).

B. CNN FOR ALERT SIGNAL DETECTION

A classification model that recognizes the presence of an alert signal is designed using a 

convolutional neural network (CNN). The proposed method is formulated as a classification 

problem as there are two output classes i.e. ‘alert signal-only’ and the other class is ‘no-alert 

signal’. A typical CNN architecture consists of convolutional, pooling and dense or fully 

connected layers as their hidden layers to learn complex relationships between input features 

and the output label. When operated for audio related works, CNNs consider a matrix as 

input, the hidden layers learn critical time-frequency auditory features and finally are 

mapped to output labels through activation functions [20].
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Figure 2 shows the topology of the proposed CNN-based alert signal detector. The proposed 

CNN architecture has 3 hidden layers, 2 convolutional and 1 fully connected (FC) layer. The 

input layer consists of the input feature sets explained in the previous section. We have a 

single dimension matrix of size 1 × F consisting of real and imaginary parts of STFT of the 

signal as input to the network. The input features are processed by the convolutional layer. In 

the convolutional layer, a set of learnable filters (known as kernels) are convolved with small 

parts of input matrix. The kernels are repeated over the entire input space. The convolutional 

kernels of size 5 × 1 learn the local patterns from the input features in small windows of two 

dimensions. In the convolutional layer, each kernel generates a 2D feature map. We apply γ 
separate filters to generate a collection of feature maps. Instead of using pooling layers, 

which are usually used for dimensionality reduction, the convolution operation is carried on 

with the stride of size 2 in the proposed approach. This makes the network computationally 

efficient without losing much of prediction accuracy. The feature maps are flattened before 

feeding to the FC layer. Rectified linear Unit (ReLU) [34] is used as activation function in 

convolutional layers to learn non-linear, and complex mapping between the input features 

and the output labels. The selection of the ReLU function is also based on its advantages of 

solving vanishing gradient problems.

Relu (a) = max {a, 0}

The FC layer performs classification using Softmax activation function [35]. The softmax 

activation function gives the probability of each class and the one with the maximum 

probability is selected as the output class. The architecture of the proposed alert signal 

detector includes 2 convolution layers. Each convolution layer has 64 filters (γ) with size 5 

× 1. There is one FC layer with 512 nodes. We have 2 output classes with Softmax activation 

at the output layer. The CNN model receives real and imaginary parts of STFT as inputs and 

generates classification results based on the presence of alert signal.

βi = argmax{p (βc ∣ ϕi}, c ∈ (0, C − 1)

βi denotes the estimated output class i.e. the input frame is alert signal or not an alert signal, 

p(.) is the probability of cth class when given the ith time frame ϕi. C is the number of output 

classes, which is two in the proposed case.

Since the alert signal detection block should continuously check the warning sounds in real-

time, the CNN architecture is considered for detection block. CNNs are simpler than other 

deep learning methods. They are computationally less complex with a fewer number of 

parameters. This is important especially when these models have to be deployed on edge 

devices.

C. ALERT SIGNAL SEPARATION USING CRNN

A regression based mapping network is developed for the proposed alert signal separation 

technique. The real and the imaginary values of the STFT of the siren signal is estimated by 

the proposed convolutional-recurrent neural network (CRNN). The alert signal separation is 
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formulated as regression problem, as it involves reconstruction of the warning signal. A 

regression model is trained to estimate the features of the siren signal from the noisy input 

features. The input features to the proposed network are the same inputs as explained in the 

detector section i.e. the real and the imaginary parts of the STFT of the noisy signal, shown 

in Eq. (3). We consider the same features as that of the signal detector as the STFT of the 

raw input signal as they include spatial and temporal characteristics of a signal [36]. This 

also makes sure that there is no additional delay to the setup as the features will be already 

created in the alert signal detector block. Importantly, the real and the imaginary parts in the 

STFT of the signal have all the information that can be used to reconstruct the signal back to 

the time domain. The output labels (features) for the alert signal separator are the real and 

the imaginary parts of the STFT of the alert signal. CRNN acts as a mapping function 

between the input and the output features. Let Wk(λ) be the kth STFT coefficient of the alert 

signal w(n). k represents the frequency bins k = 0, 1, … , N − 1 where N is the size of STFT. 

Therefore, the output labels for the proposed architecture is given by,

Real part of W k = 0(λ)
⋮

Real part of W k = N ∕ 2 + 1(λ)
Imag . part of W k = 0(λ)

⋮
Imag . part of W k = N ∕ 2 + 1(λ)

(4)

Convolutional Layers: As explained in the previous section, only the positive half of the 

STFT of the signal is considered due to symmetry. The dimension of the output labels is 

equal to input dimension i.e. (1 × F) where F = (2 × N/2 + 1).

Figure 3 shows the architecture of the CRNN based alert signal separator. There are 4 hidden 

layers in the topology viz. two convolutional layers, a single recurrent neural network layer 

(RNN) and a fully connected (FC) layer. The input layer consists of the features with size (1 

× F). The convolutional architecture is similar to the detector block. The two convolutional 

layers with 64 filters are used to generate the feature maps. The kernel size is set to be (5 × 

1). Due to the local similarities in the adjacent frequency bins, we propose to use stride of 

size 2 to perform convolution. This would considerably reduce the dimension i.e. the 

number of parameters and complexity in the following recurrent layer, without significant 

loss of accuracy. In order to reconstruct the estimated alert signal, we need to ensure the 

input and the predicted output to have same length in time dimension. Zero padding is 

applied to the input before convolution. This assures that the generated feature maps and the 

input are of the same dimension. The ReLU activation function is considered for the 

convolutional layers. We note that the advantage of using the convolutional layers in the 

architecture is the layers learn the specific and non-linear local patterns from the input 

features.

Temporal Learning using GRUs: Usually, the alert signals are periodic and have longer 

duration. Therefore, to learn the correlation between the adjacent frames, we use RNNs. The 
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RNNs accounts for the temporal dynamics of the alert signals. In the proposed method, we 

stack two Gated recurrent units (GRUs) to form a recurrent layer. GRUs are a type of RNN 

which are capable of extracting dependencies of various time scales by recurrent units that 

can been applied effectively to sequential or temporal data [37]. These have been widely 

used in speaker recognition, language modeling etc., [38]. The GRUs have special gates to 

learn the relevant information in the data and increase the efficiency of learning. Figure 4 

shows the GRU cell and the forward propagation of the basic GRU cell is given by,

zt = σ (Gxz xt + Gℎz ℎt − 1 + bz) (5)

rt = σ (Gxr xt + Gℎr ℎt − 1 + br) (6)

where, xt is the input state, zt is the update gate, rt is the reset gate, ht−1 is the hidden states at 

time t − 1 (previous state), bz and br are the biases at two gates. The update gate, zt, aids to 

determine how much of the past information (from previous time steps) needs to be passed 

to update the hidden states. The reset gate, rt, is degree to forget the previous hidden state 

information. The gate mechanism in GRUs is used to modulate the flow of information 

within the unit. The G terms denote the weight matrices i.e Gxz is the weight matrix between 

input state and update gate, Ghz is the weight matrix between hidden states and the update 

gate. σ is the non-linear activation function which are be used to switch on or off the two 

gates.

σ(a) = 1 ∕ (1 + exp ( − a))

In Eq. (7), ℎt′ is known as the candidate hidden state which can be viewed as the current 

memory content in the GRU cell. The reset gate is used to remove the information from the 

previous time steps and store the relevant information from the past. ⊙ indicates an element-

wise multiplication.

ℎt′ = tanℎ(Gxz xt + Gℎℎ (rt ⊙ ℎt − 1) + bℎ) (7)

ℎt = zt ⊙ ℎt − 1 + (1 − zt) ⊙ ℎt′ (8)

yt = ℎt (9)

The tanh(.) is an activation function, given by,

tanℎ(a) = ea − e−a
ea + e−a

After transforming the update gate and the reset gate, the final memory at the current time 

step is given by ht. The update gate controls the ht which holds information for the GRU cell 
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at current time step and passes it down to the network. The model can learn to set the update 

gate values zt close to 0 or 1. If zt is close to 0, majority of the previous information is not 

passed to the output state. When zt ≈ 0, 1 − zt will be close to 1 which can be observed as, 

big portion of the current information is relevant to the output state at the current time step. 

In order to aid efficient temporal feature extraction, we use stacked GRU, which is 

composed of several GRU cells as shown in Figure 5.

In the proposed method, we use two stacked GRUs to form a recurrent layer. The recurrent 

layer is inserted between the convolutional layer and the FC layer (shown in Figure 3). We 

note that after the convolutional layer, the feature maps are aggregated across feature 

dimension to form the stacked 2D feature maps. The GRU layer has 100 cells each and the 

FC layer is composed of 512 nodes. The output layer has F nodes which is equal to the size 

of the input feature vector. Linear activation function is applied at the output to map the 

predicted output features. The CRNN uses mean squared error as the target loss function. 

The architecture utilizes Adadelta [39] optimization with scheduled learning for training the 

model.

D. INTEGRATION TO SPEECH ENHANCEMENT

Speech enhancement (SE) is a vital component in Hearing Aid Devices (HADs). SE 

improves the quality and intelligibility of speech in the presence of background noise. 

Traditional SE algorithms are modeled considering speech to be the signal of interest and the 

rest of the signals in the additive mixture to be noise. Typically, in conventional SE 

algorithms, speech is detected by a voice activity detector (VAD) or by statistical 

probabilities and the noise is suppressed based on developed gain function. The warning 

signals which usually do not contain speech, are attenuated by SE algorithms. Recent neural 

network-based SE methods consider clean speech features as their output label to develop a 

neural network model. These SE methods tend to distort the signals when warning signals 

are present in an unseen environment. This performance is expected as the researchers do 

not consider the presence of these critical signals while training the SE model. Therefore, 

through our experiments, we observed that most of the SE algorithms either attenuate the 

alert signal or the processed signal is distorted when there is an alert signal mixed in the 

background. In the proposed setup, the real and the imaginary values i.e. the input features 

are extracted from the input noisy signal. The developed CNN-based alert signal detection 

block is used before the SE module to continuously check for the presence of any alert 

sounds in the input signal. If there is no presence of alert signal, the signal is passed to the 

SE module for background noise suppression. If the alert signal is detected by the alert 

signal detector, the user is notified, and the same noisy input features are used as the input to 

the alert signal separator. The alert signal is separated from the mixture of the signals. The 

input noisy speech free from the alert signal is processed by the SE module. The alert signal 

is then be added back to the enhanced speech. This signal can be passed to other signal 

processing modules in the HADs or can be converted to the time domain by taking inverse 

Fast Fourier Transform (IFFT) of the signal. The proposed setup ensures that there is no 

attenuation of the alert signal and no distortion in the processed speech. The setup 

overcomes the constraints of losing the information in emergency conditions for hearing 
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impaired and even for normal hearing people. The overall pipeline of the method is shown in 

Figure 1.

III. EXPERIMENTAL ANALYSIS AND RESULTS

In this section, we discuss the experimental evaluations carried out on the alert signal 

detector and the alert signal separator.

A. DATASET

To train and evaluate the developed CRNN-based alert signal detector and separator, the 

alert signals are mixed with noisy speech files at different SNR levels. Different types of 

alert signals have varying characteristics. A standard for “auditory danger signals” (ISO 

7731) [40] has been established by the International Organization for Standardisation. 

However, this provides basic instructions for warning sounds and is not commonly used 

around the world. In order to achieve generalization and to generate robust models, it is 

important to include the variety of alert signals with all the unique characteristics. In [41], 

the common characteristics of the alert signal are mentioned. Some of the types of alert 

signals are,

• Pulsed alarms - Consists of a repeat of the same sound with silence between the 

instances.

• Sirens - Sounds, in which the frequency varies constantly. ‘Wail’, ‘Yelp’ and ‘Hi-

Lo’ are the major patterns found in sirens. Wail and Yelp are the signals in which 

the pitch of the signal rises and falls over time. Wail and yelp have the same 

basic composition. However, in Yelp, the pitch alternates rapidly. Hi-Lo is the 

two-tone sirens that have two signals with different frequencies.

• Alternating alarms - Consists of two distinct alternating tones with no silence 

between them. These can also be viewed as a type of Hi-Lo sirens.

Figure 6 shows the spectrogram of the types of alert signals considered. A large database 

was designed using different web sources. All the above mentioned types of alert signals 

were included in the dataset. We note that, signals with frequency shifts due to the doppler 

effect were also considered, especially for Wail and Yelp type of outdoor siren signals.

The clean speech sentences were selected from HINT, TIMIT and LibriSpeech corpus [42]. 

The noise files are selected from the DCASE 2017 challenge database [43]. Three major 

outdoor noise types machinery, traffic and multi-talker babble are considered as they are 

commonly seen in real-life environment. Along with this, more than 50 smartphone 

collected realistic noise is included in the noise database. The alert signals, speech 

sentences, and noise files were selected from various sources as it improves generalization. 

It is also important as it helps to work in real-world noisy conditions. We note that the noisy 

speech files were created by adding speech and noise at 0 dB SNR. The noisy speech was 

mixed with alert signals at SNR levels from −5 dB to +10 dB with an increment of 5 dB. All 

the signals were sampled at 16 kHz. An overall of 60 hours of data was used for training. 

Only 30% of the database had alert signals mixed with noisy speech. This is because the 
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amount of alert signals is extremely low when compared to the no-alert signals in real-life 

scenarios.

B. OFFLINE OBJECTIVE EVALUATION FOR ALERT SIGNAL DETECTOR

The performance of the proposed detection method is evaluated in this section. The 

proposed detection method is compared with two other methods. A conventional method 

based on autocorrelation [41] and a feed forward neural network based siren detection [31] 

algorithms are compared with the proposed detection technique. As performance metrics, we 

use true positives (TP), False Positives (FP) and False negatives (FN). TP can be viewed as 

the percentage of alert signal frames correctly classified. FP is the percentage of non-alert 

signal frames classified as alert signal frames. FN is the percentage of alert signal frames 

classified as non-alert signal frames. Higher TP means, higher is the accuracy of detection. It 

is ideal to have lower FP and FN as they indicate smaller chances of error. True Negatives 

(TN) are not considered in this experiment as they are considerably less significant in the 

proposed application. Figure 7 shows definition used for TP, FP and FN. Experimental 

evaluations are performed for 3 different noise types; machinery, multi-talker babble, and 

traffic noise. Table 1 shows the comparison of TP, FP and FN results averaged over 20 

sentences. We note that, the speech signals, the noise files, and the alert signals used for 

objective measures are validation data i.e. the dataset was unseen by the model and were not 

included for training and testing. On an average, the proposed method is ≈30% and ≈13% 

better in true positive rate when compared to conventional and the DNN method 

respectively. From Table 1 we can observe that higher the SNR, lower the TP and higher the 

FP/ FN. This performance is expected because, as the SNR increases, the power of the noisy 

speech increases. The Objective measures show significant improvements over conventional 

and deep learning methods for all the three noise types considered.

C. OFFLINE OBJECTIVE EVALUATION FOR ALERT SIGNAL SEPARATION

This section describes the performance evaluation of the proposed alert signal separation 

method when integrated with the speech enhancement (SE) techniques. The alert signal 

separator ensures that there is no attenuation of the warning signals. However, it is essential 

to guarantee that there are no distortions, and processing artifacts. It is also important to note 

that the entire setup does not affect the speech intelligibility. The proposed method is 

evaluated using a performance measures, Signal to Distortion Ratio (SDR), Signal to 

Interference Ratio (SIR), Signal to Artifact Ratio (SAR) [44], and Coherence Speech 

Intelligibility Index (CSII) [45]. The alert signal separation method can be considered as a 

type of single channel source separation, therefore we use the above mentioned objective 

measures. SIR measures the effect of other sources on the separated source and shows how 

much interference the other signals have on the signal of interest. SAR measures if there are 

any residual noise or other artifacts introduced by the proposed method. SDR measures the 

overall separation quality. Higher SIR, SAR and SDR measures mean the separated signal 

has minimal artifacts and distortion. CSII is the speech intelligibility measure which varies 

from 0 to 1, with 1 being high intelligibility.

To the best of our knowledge, there are no published works on alert signal separation and its 

integration with speech enhancement. Therefore, we compare the proposed alert signal 
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separation method integrated with several SE methods. The conventional SE method based 

on Log-MMSE [13], and a convolutional neural network (CNN) based SE [20] methods are 

integrated with the proposed alert signal separation block to evaluate the performance. We 

test the results of the integrated setup because the aim of the proposed method is to ensure 

there is no attenuation of the alert signals and no distortion in the processed speech after SE. 

Machinery, Multi-talker babble and Traffic noise types are considered. The noisy speech 

files were created by adding speech and noise at 0 dB SNR. The noisy speech was mixed 

with alert signals at different SNR levels. We note that if the SNR mentioned is +10 dB, the 

power of the noisy speech is 10 dB higher than the power of the alert signal. As considered 

in the previous section for detection method comparison, the validation sentences are unseen 

by the model. Tables 2 and 3 show the objective results for the proposed separation method 

integrated with SE techniques. The results shown are the average of over 15 sentences. In the 

tables, the unprocessed signal is the mixture of noisy speech and alert signal. The Conv. and 

the CNN represent the signals processed using SE methods [13] and [20] respectively 

without any separation. i.e. the mixture of noisy speech and alert signal does not pass 

through proposed separation block and are processed using SE methods alone. Conv. + 

separation and CNN + separation represent the signals processed using SE methods [13] and 

[20] respectively with separation. i.e. the mixture of noisy speech and alert signal is 

processed using the proposed alert signal separation method to separate the alert signal, the 

estimated noisy speech free from the alert signal is processed using SE methods to generate 

enhanced speech. The separated alert signal is added back to the enhanced speech.

Objective measures show significant improvements over conventional and deep learning 

method for all three noise types considered. From the Tables 2 and 3 we observe that on an 

average, the inclusion of the proposed separator block increases the SAR and SDR ≈5.05 

dB. The SIR also increases by ≈6.18 dB. This shows that the overall quality of the output 

signal improves significantly while preserving the alert signals. The proposed setup also 

improves the speech intelligibility. Table 3 shows the CSII results at different SNRs for three 

different noise types. This shows that the addition of the alert signal separator block does not 

degrade the intelligibility of speech. Objective measures shown in Tables 2 and 3 

reemphasize the fact that the proposed method achieves comparatively more noise 

suppression without attenuating the warning signals and without distorting speech.

D. SCALING NETWORK FOR SEPARATION BLOCK

The proposed CRNN architecture is scaled by controlling the number of trainable 

parameters. The proposed architecture is scaled to have total of a 3, 9, 15, and 27 million 

parameters with a tolerance of 5%. Considering the limitations like latency, accuracy, 

training time and the hardware capabilities, through our experiments we consider the upper 

bound to be 27M parameters. The size of the model becomes significant when it is used to 

deploy on edge devices (example: smartphones, laptops, raspberry pi, etc.). This experiment 

gives an overview of how the performance of the model varies for the architecture with the 

same depth but the different number of hidden units. Table 4 summarises the details of 

different structures including the layer width (the number of feature maps). The width of 

each layer is changed to control the number of parameters. We note that the depth of the 

architecture is the same. This ensures that the hierarchy of the learned features remains the 
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same and only the number of features in each layer changes. The size of the convolutional 

kernel, the stride size, the training batch size are set to be the same. Table 5 shows the 

comparison of the objective measures used for the scaled CRNN network. The results are 

shown for alert signals mixed with noisy speech (traffic noise) at 0 dB. We consider traffic 

noise type in this experiment as it was considerably more challenging than the others. From 

the table, we can observe that as expected, the objective results were comparatively better as 

the number of learnable parameters increased. However, the proposed architecture with ≈9M 

parameters had a better trade-off with the performance of alert signal separation and 

computational complexity. Neural network models under 10M parameters have been 

implemented on edge devices like smartphones [20]. Considering these parameters, the 

model with 9M parameters is used for smartphone implementation. The same model is used 

for the objective results shown in Tables 2 and 3. Models with a higher number of 

parameters can also be implemented on edge devices that have high computational 

capabilities.

E. COMPARISON OF GRU WITH LSTM

The efficiency of GRUs is compared with LSTMs (Long Short Term Memory units) in this 

experiment. LSTMs are a type of recurrent neural network which also use gating mechanism 

to control the flow of information to the current hidden units. LSTM cells have four gates to 

transfer the information which is two more than GRUs. Two different models are trained and 

evaluated. The proposed CRNN model with stacked GRU cells as the RNN layer. The GRUs 

are replaced with the stacked LSTM cells to compare the performance. The rest of the 

network architecture remains the same. The input and the output features are the same i.e. 

the real the imaginary parts of the FFT of the input signal. Table 6 shows the performance of 

the proposed setup with GRU and LSTM networks. The clean speech is mixed with different 

noise types at 0 dB SNR and the noisy speech is at 0 dB SNR with respect to the alert signal. 

The performance of the two networks integrated with conventional SE technique is shown in 

Table 6. The results suggest that the proposed GRU model performs slightly better than that 

of the LSTM model. The additional gates in the LSTM network increase the number of 

learnable parameters by ≈10%. Thus, the cost of computations and complexity increases. 

Because of the following limitations and degradation, in the proposed method we considered 

GRUs over LSTMs.

F. UNSEEN SNR EFFECT

In this experiment, we assess the influence of the unknown SNR on the proposed model. 

The changes in the SNR is common and often rapid in real-world noisy environments. So, 

we need a robust model that will be able to overcome these rapid SNR shifts in real time. To 

examine the effect of unseen SNR, the proposed CRNN models trained at −5 dB and +10 dB 

SNRs are tested with signals at different SNR. We consider the two conditions as they are 

extreme cases where the power of the alert signal is 5 dB higher than the noisy speech and 

+10 dB lower than the noisy speech. The model trained at −5 dB SNR is tested with the 

unseen signals at an unseen SNR of −10 dB (the power of the alert signal is 10 dB higher 

than the power of the noisy speech). Similarly, the model trained at +10 dB SNR is tested 

with the unseen signals at an unseen SNR of +15 dB (the power of the noisy speech is 15 dB 

higher than the power of the alert signal). Table 7 shows the performance evaluation of the 
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proposed integrated setup tested at unseen SNR conditions. Clean speech degraded by traffic 

noise at 0 dB SNR is used as noisy speech to evaluate the performance of the proposed 

method in unseen SNR. For comparison, we use unprocessed noisy speech mixed with the 

alert signal, the signals processed using only conventional SE method and the signals 

processed using integrated setup of CRNN separation and conventional SE method. From 

Table 7 we can see that, even under unknown SNR conditions the proposed setup out-

performs other methods. The trends were similar with other noise types like multi-talker 

babble and machinery noise. The results shown in Table 7 indicate that the model can be 

used in realistic environments with unknown and changing SNR conditions.

IV. REAL-TIME IMPLEMENTATION ON SMARTPHONE

In this section, we discuss the steps and tools involved in the real-time implementation on 

smartphone. As an example, we choose iOS-based smartphones (iPhones) as our 

implementation platform. However, the proposed method can work seamlessly on android 

devices or other edge devices like laptops. The video demonstration of the proposed method 

running on a smartphone can be seen in [46].

A. OFFLINE TRAINING AND TOOLS

The models used for smartphone implementation are trained offline. For training the 

detection and the separation model, the input features i.e. the real and the imaginary parts of 

the STFT are generated using MatLab. For input data generation, each input data frame of 

the noisy speech signal mixed with the alert signal is sampled at 16kHz. Each frame input 

data of size 32ms with a 50% overlap is windowed using the Hamming window. An STFT 

size of 512 (N) is considered to generate the real and the imaginary parts of the STFT. 

Therefore, 257 (N/2 + 1) real and imaginary parts of the STFT form the input features. 

Therefore, the dimension of the input data will be 514 for each frame. The output labels for 

the detection and the separation models are generated in MatLab. After data generation, 

GPU and cloud-based training are employed for generating the detection and separation 

models. Tensorflow software [47] is used for model design and offline training. Tensorflow 

is considered for training as it provides framework called Tensorflow-Lite (tflite) [48] for 

implementing deep learning models on edge devices. Tensorflow-Lite provides a library 

called tflite Converter to convert trained models to (.tflite) version. These models in (.tflite) 

versions are optimized to be used as inference-only models on mobile and embedded 

devices that have limited resources. Firebase software development kit (SDK) [49] is used to 

provide custom APIs which are added to the iOS application. These APIs help to provide 

on-device model inference. The feature extraction and SE on smartphone application were 

coded in C++. Xcode [50]was used for coding and debugging. Objective C was used for on-

device inference and GUI deployment. Core Audio framework [51], is used to carry out 

input/ output (i/o) handling for audio processing. We note that all software tools and 

frameworks used are open source.

B. REAL-TIME PROCESSING

The proposed set-up can work as a real-time application on any ARM processing platform. 

In the proposed method, we consider iPhone 11 smartphone running on iOS 13.1.1 for real-
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time implementation. For real-time processing, the entire setup that includes alert signal 

detection and separation integrated to the SE module is implemented on a smartphone. Input 

data is captured on the smartphone with a frame size of 32ms with an overlap of 50% at a 48 

kHz sampling rate. The captured data is downsampled to 16 kHz by low-pass filtering and a 

decimation factor of 3. Therefore, there are 512 samples (32ms in time) for every processing 

frame frame. A 512 point STFT is computed and only the first 257 (N/2 + 1) real and 

imaginary values are considered. The input feature vector of size (514 × 1) is computed. 

This feature vector is continuously fed to the pre-trained CNN-based detection model. The 

output of the detection model is the classification output which detects the presence of the 

alert signal. The detection model works for every frame to monitor the presence of any 

warning sounds. The Graphical User Interface (GUI) is updated to display the classification 

result on the smartphone screen for the user as shown in Figure 8. If the 5 consecutive 

previous frames are classified as alert signal, the input features, are fed to the CRNN-based 

alert signal separation model. The output of the separation model is the estimate of the real 

and the imaginary parts of the STFT of the alert signal. The estimated alert signal is 

separated from the mixture of noisy speech and the alert signal. The estimate of the noisy 

speech which does not have the alert signal is then passed to the SE module for noise 

suppression. After applying IFFT and reconstruction, the enhanced speech and the alert 

signal are then transmitted to the HAD via Bluetooth low energy. When the 20 consecutive 

previous frames are classified as non-alert signal, the CRNN separation block is deactivated. 

This deactivation time is set to be large because some pulsed alert signals have large silence 

between the sounds. However, the detection block and the SE work continuously. In the 

Figure 8, the button shown on the upper part of the screen controls the application. When the 

button is ‘OFF’ the application acts like usual audio play-back without any processing. 

When the button is ‘ON’, the application works as SE alone. The conventional SE based on 

LogMMSE [13] is implemented as the SE module. The button on the lower part of the 

screen controls the alert signal detection and separation. When this button is ‘ON’ the alert 

signal detection and the separation block is integrated with the SE module. Once the module 

is integrated, the application takes approximately 1.8 seconds for Firebase to initialize the 

tflite inference only models. After the initialization, the application runs seamlessly in real-

time. The proposed CRNN model with 9M parameters is considered for the smartphone 

implementation. The overall i/o audio latency of the application ≈14 ms. The i/o latency on 

iPhone ≈9 ms [52]. The processing latency of the entire setup is, 5.21ms. The SE alone has a 

processing delay of 4.2ms, the alert signal detection and the separation inference time for 

each frame is approximately 0.36ms and 0.65ms respectively. All these measures were 

calculated on the smartphone for an input frame of size 32ms. Reference [46] shows the iOS 

app running on iPhone 11.

C. SMARTPHONE TESTING

In offline conditions with a controlled environment, most of the methods work extremely 

well. However, their performance degrades significantly when tested in real-time and under 

varying acoustic conditions. Smartphones are portable and can be used in challenging 

conditions, such as constant motion, varying SNRs or varying noise. Therefore, it is 

important to evaluate the real-time performance of the proposed method on a smartphone 

platform. In order to test the real-time operation of the proposed setup on the smartphone 
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platform, a mixture of alert signals and known noisy speech sentences were played 

approximately at 0 dB SNR. These signals were processed by smartphone (in real-time) and 

on a PC (in offline mode). The classification and the separation outcomes of the smartphone 

are stored to compare with the offline method. The performance assessment in offline (PC) 

and in real-time (smartphone) conditions of the proposed method are shown in Tables 8 and 

9. The true positives, false positives and false negative results for the alert signal 

classification performed in real-time and offline conditions are shown in Table 8. Table 9 

shows the performance evaluation of the proposed integrated setup in real-time and offline 

conditions. Tables 8 and 9 show that the results measured in a real-time condition on 

smartphone are similar to the offline process. This experiment shows that the model 

performs well when tested on the smartphone platform. The sample audio files enhanced 

using the integrated setup can be found in [53].

D. SMARTPHONE APPLICATION CHARACTERISTICS

In this section, we discuss the computational burden on the smartphone when the entire 

setup is running as a real-time app. The application’s CPU consumption is low. Even though 

the app makes use of the audio frame work, Firebase APIs, and inferences two neural 

network models, the overall CPU usage of the setup is around 19-20%. The memory used by 

the application is around 44.3 MB. The iPhone 11 smartphone has a RAM of size 4GB. 

Therefore, the app uses ≈1.1% of the memory. The memory consumption is quite low 

considering the tools and the computations in the app. This shows that the app will not 

overload the smartphone’s CPU and memory space. Since the developed application uses 

minimal smartphone resource, it can be used when the smartphone is running other apps in 

the background. The energy impact of the app is also low. The application runs about 8 

hours on a fully charged iPhone 11 which has a battery capacity of 3046mAH. Figure 9 

shows the CPU, memory and battery usage of the proposed application when it is running on 

the smartphone. While energy consumption and memory usage are both low, it is worth 

noting that it is better to use simple networks instead of larger networks with a higher 

number of parameters. That is because deeper networks typically have long inference time 

that can increase the overall latency in real-time.

V. CONCLUSION

In this paper, we presented a neural network-based alert signal detector and separator. The 

alert signal detector is based on convolutional neural network (CNN). The separator is based 

on convolutional-recurrent neural network (CRNN) with stacked GRUs as the recurrent 

layer. The developed methods were integrated with speech enhancement techniques used in 

hearing aid devices. The alert signal detector and separator blocks ensure that there is no 

attenuation of critical warning sounds. The entire setup is implemented on a smartphone that 

works in real-time to improve the environmental awareness for people with hearing loss. The 

proposed method is computationally efficient and optimized to have minimal audio latency. 

The objective measures for each block of the setup affirm the usefulness and applicability of 

the proposed approach in various noisy conditions in the real world. The proposed setup on 

the smartphone provides a cost-effective and portable system that can be used by people 

with listening impairment, audiologists and researchers for improving the hearing study.
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FIGURE 1. 
Block diagram of the proposed setup involving signal detector, separator. SE is integrated 

with the two blocks.
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FIGURE 2. 
Convolutional neural network architecture for the proposed alert signal detector.
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FIGURE 3. 
Convolutional-recurrent neural network architecture for the proposed alert signal separator.
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FIGURE 4. 
Conventional GRU cell.
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FIGURE 5. 
The structure of stacked GRU. The two layered stacked network is used in the proposed 

method.
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FIGURE 6. 
Spectrograms of different types of alarm sounds. a) Alternating alarm usually used in Fire 

alarms. b) An emergency vehicle driving away (Sirens). c) Yelp alarms (frequency 

continuously changes). d) Pulsed alarm signals.
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FIGURE 7. 
Representation of True Positives, False Positives and False Negatives considered as the 

objective measures for siren detection. An example of classification results for alert signal 

mixed with background noise is shown.
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FIGURE 8. 
GUI of the developed smartphone application running on an iPhone.

BHAT et al. Page 29

IEEE Access. Author manuscript; available in PMC 2020 August 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



FIGURE 9. 
Battery, RAM and the CPU consumption of the proposed integrated setup running on a 

smartphone as real-time application.
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TABLE 1.

Comparison of the classification results of the proposed method with conventional and DNN based method at 

various SNRs and noise types. The TP, FN, FP results are in %.

Noise Type SNR(dB)
Conventional DNN Proposed

TP FN FP TP FN FP TP FN FP

−5 83.33 16.67 1.20 91.21 8.76 4.71 97.60 2.40 1.02

Machinery 0 77.00 23.00 2.14 87.80 12.20 7.10 95.41 4.59 1.45

+5 70.36 30.64 3.95 79.79 20.21 8.49 93.47 6.53 2.92

+10 67.23 33.77 7.46 67.25 32.75 13.23 90.29 9.71 3.65

−5 76.00 24.00 3.16 91.32 8.68 5.65 97.96 2.04 0.85

Babble 0 72.32 27.68 6.20 87.11 12.89 8.20 94.00 6.00 1.18

+5 66.79 33.21 8.69 85.64 14.36 9.44 92.37 7.63 2.11

+10 55.08 44.92 10.90 83.80 16.20 14.63 90.42 9.58 3.04

−5 77.22 22.78 3.21 90.02 9.98 2.16 96.94 3.06 0.60

Traffic 0 71.66 28.34 4.12 85.45 14.55 5.40 94.39 5.61 1.39

+5 69.70 30.30 8.30 76.99 23.01 9.00 90.66 9.34 2.08

+10 68.35 31.65 12.66 74.84 25.16 12.41 89.72 10.28 2.96
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TABLE 2.

Comparison of SAR and SDR objective measures for 3 different noise types at various SNRs. The comparison 

Is for unprocessed signal and for the SE methods with and without the proposed separation module.

Noise
Type SNR(dB) Unprocessed Conv.

SAR
Conv. +

separation
CNN CNN +

separation
Unprocessed Conv.

SDR
Conv. +

separation
CNN CNN +

separation

−5 −17.46 −19.52 −14.3 −19.63 −14.94 −16.71 −19.16 −14.59 −19.8 −14.52

Traffic 0 −7.54 −8.77 −2.32 −9.55 −2.95 −7.5 −8.84 −3.18 −9.62 −3.61

+5 −5.46 −5.68 −2.01 −6.11 −2.35 −5.21 −5.48 −1.86 −6.16 −2.21

+10 −3.9 −3.13 −1.9 −3.26 −1.98 −3.92 −3.17 −0.90 −3.87 −1.23

−5 −13.13 −13.02 −9.95 −14.65 −10.09 −13.98 −13.1 −9.9 −13.07 −9.18

Machinery 0 −3.26 −2.96 1.37 −3.02 0.95 −4.35 −3.04 1.32 −3.96 1.26

+5 −0.96 −0.75 2.08 −0.89 1.41 −1.55 −0.85 2.05 −1.39 1.85

+10 1.79 2.62 4.17 2.38 4.02 1.78 2.8 4.15 2.09 3.57

−5 −19.67 −20.3 −14.74 −20.82 −15.31 −21.21 −20.03 −14.90 −21.09 −15.86

Babble 0 −17.32 −16.57 −4.02 −16.24 −4.54 −18.13 −18.04 −4.36 −18.85 −4.39

+5 −11.04 −10.03 −2.83 −10.21 −3.43 −11.38 −10.69 −2.99 −11.50 −3.22

+10 −5.36 −4.05 −1.8 −4.74 −2.52 −5.42 −4.09 −1.83 −4.95 −2.28
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TABLE 3.

Comparison of SIR and CSII objective measures for 3 different noise types at various SNRs. The comparison 

is for unprocessed signal and for the SE methods with and without the proposed separation module.

Noise
Type SNR(dB) Unprocessed Conv.

SAR
Conv. +

separation
CNN CNN +

separation
Unprocessed Conv.

SDR
Conv. +

separation
CNN CNN +

separation

−5 14.59 9.80 18.55 9.44 16.89 0.2954 0.2905 0.4323 0.2860 0.4042

Traffic 0 21.97 19.92 24.64 18.49 24.02 0.3885 0.4045 0.5243 0.3890 0.4759

+5 22.12 21.23 25.15 19.69 24.70 0.4030 0.4087 0.5308 0.3899 0.4882

+10 22.72 22.96 26.17 21.28 25.88 0.4279 0.4186 0.5430 0.4010 0.5078

−5 17.09 17.7 20.13 17.13 20.65 0.5067 0.5042 0.5731 0.4819 0.5646

Machinery 0 18.65 19.07 23.02 18.84 22.43 0.5100 0.5002 0.6222 0.4963 0.5181

+5 22.47 23.00 26.63 22.52 25.83 0.5522 0.5764 0.6472 0.5055 0.5845

+10 27.88 28.54 32.12 27.79 31.05 0.6331 0.6931 0.7177 0.6609 0.7009

−5 3.67 4.05 14.3 3.89 14.06 0.2006 0.2467 0.2793 0.2324 0.2758

Babble 0 9.07 9.13 21.86 8.99 20.01 0.2746 0.3664 0.4178 0.3537 0.3944

+5 14.20 15.31 22.98 14.78 21.59 0.3205 0.3827 0.4354 0.3684 0.4162

+10 19.69 21.87 24.67 20.93 23.70 0.4089 0.4452 0.5015 0.4227 0.4853
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TABLE 4.

Comparison of the architecture of scaling networks. The layers considered, the width of the each layer and the 

total number of parameters is shown.

CRNN
architecture

No. of parameters

3M 9M 15M 27M

Layer Type Layer Width

2D convolution 64 64 128 256

2D convolution 64 64 128 256

stacked GRU 70 100 150 150

Fully connected 256 512 512 1024
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TABLE 5.

Comparison of the objective measures for scaling networks. The clean speech is mixed with traffic noise at 0 

dB SNR. The noisy speech is at 0 dB to the alert signals.

Scaling
Network

SE Method +
Separation

Objective measures

SAR SDR SIR CSII

Conv. −4.50 −4.54 21.05 0.47

3M CNN −5.71 −5.77 20.52 0.44

Conv. −2.32 −3.18 24.64 0.52

9M CNN −2.95 −3.61 24.02 0.47

Conv. −2.07 −3.08 25.17 0.54

15M CNN −2.66 −3.48 24.9 0.50

Conv. −1.90 −2.91 25.72 0.54

27M CNN −2.36 −3.12 25.04 0.51
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TABLE 6.

Comparison of the proposed GRU model with LSTM model for different noise types. Noisy speech mixed 

with alert signal at 0 dB SNR.

Noise
Type

SE Method +
Separation

Objective measures

SAR SDR SIR CSII

GRU −2.32 −3.18 24.64 0.5243

Traffic LSTM −2.56 −3.90 24.17 0.5135

GRU 1.37 1.32 24.67 0.6222

Machinery LSTM 0.94 0.90 24.09 0.6142

GRU −4.02 −4.36 21.86 0.4178

Babble LSTM −4.33 −4.72 21.08 0.4096
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TABLE 7.

Performance evaluation in unseen SNR condition for noisy speech (traffic noise at 0 dB) mixed with alert 

signal. The neural network models were trained at −5 dB and +10 dB SNR, tested at −10 dB and +15 dB 

respectively.

SNR
dB

Method Objective measures

SAR SDR SIR CSII

Unprocessed −19.82 −19.32 7.21 0.2303

−10 Conv. −19.88 −20.27 5.21 0.2309

Conv + Separation −15.77 −15.93 9.92 0.3981

Unprocessed −2.32 −2.36 22.27 0.439

+15 Conv. −2.64 −2.66 22.05 0.4511

Conv + Separation −1.71 −1.77 23.59 0.5334
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TABLE 8.

Alert signal detection method tested on PC and smartphone platform. The real-time smartphone tested results 

are on par with the results tested offline.

Platform Objective measures

TP FP FN

PC (Offline) 94.61 2.07 5.39

Smartphone 92.80 3.85 7.20
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TABLE 9.

Alert signal separation method tested on PC and smartphone platform. The real-time smartphone tested results 

are on par with the results tested offline.

Platform Objective measures

SAR SDR SIR CSII

PC (Offline) −1.53 −1.94 23.29 0.6430

Smartphone −2.65 −3.07 22.17 0.6007
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