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Vocalizations are an important means to facilitate social interactions, but
vocal communication may be affected by infections. While such effects
have been shown for mate-attraction calls, other vocalizations that facilitate
social contact have received less attention. When isolated, vampire bats pro-
duce contact calls that attract highly associated groupmates. Here, we test
the effect of an immune challenge on contact calling rates of individually iso-
lated vampire bats. Sickness behaviour did not appear to change call
structure, but it decreased the number of contact calls produced. This
effect could decrease contact with groupmates and augment other estab-
lished mechanisms by which sickness reduces social encounters (e.g.
mortality, lethargy and social withdrawal or disinterest).
1. Introduction
Infections can reduce contact between individuals by inducing ‘sickness behav-
ior’. For instance, sickness can decrease physical social encounters through
reduced movement [1] or decrease directed social interactions like grooming
[2,3]. Reductions in social contact can also occur if infected individuals vocalize
less. For example, an immune challenge reduces male mate-attraction vocaliza-
tions or some of their components in several species [4–8]. If sick males attract
fewer females and if avoiding sick males decreases the likelihood of females
acquiring parasites [9–11], then transmission of parasites between the sexes
will decrease [12].

Besides courtship vocalizations, a broader range of vocal interactions could
be influenced by sickness, but these other call types have received less attention.
In many group-living animals that live in conditions of low visibility, or that
must maintain cohesion while on the move, individuals produce contact calls
to maintain contact with groupmates or particular affiliated individuals
[13–21]. If contact calls facilitate physical contact, then sickness behaviour
that reduces the rate of contact calling should decrease contact with group-
mates. However, if contact calling is used by an individual in need to gain
benefits from others, then sick individuals might instead make a greater
number of contact calls. For example, when parents can acquire enough food
to feed all their offspring, hungry nestlings in worse condition are expected
to call more often, not less [22,23]. The expected effect of sickness behaviour
on contact calling by distressed individuals is therefore less clear.

Isolated common vampire bats (Desmodus rotundus) produce multi-harmonic
contact calls that vary in spectral structure and duration, and that facilitate indi-
vidual contact and recognition ([15,17], figure 1b,c). Contact calls appear to be
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Figure 1. Effect of lipopolysaccharide (LPS) on vampire bat contact calls. (a) Shows mean standardized LPS effect ± bootstrapped 95% confidence intervals (see
electronic supplementary material, table S1) and data points for the mean peak frequency, mean duration, mean amplitude, the total number of contact calls
produced and the total calling duration. Example spectrograms of a longer (b) and shorter (c) vampire bat contact call that also vary in peak frequency
(darker regions show frequencies of greater relative amplitude).
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important for maintaining co-roosting associations with
bonded partners and for finding or recruiting those partners
for help; for example, trapped and hungry individuals
appear to use contact calls to recruit both kin and non-kin
food donors to feed them by regurgitation [17,24].

Here, we mimicked a bacterial infection in vampire bats
using lipopolysaccharide (LPS) to trigger transient physio-
logical symptoms and sickness behaviours [2,3,25], and
then we tested for the effect of LPS on contact calling behav-
iour. LPS-injected vampire bats are groomed by fewer bats
and have lower social connectedness in the wild, an effect
that could be driven in part by a reduction in contact calling
[3,25]. We show that LPS-induced sickness behaviour
decreases the number of contact calls produced by isolated
vampire bats. This effect is relevant for pathogen trans-
mission in social animals that rely on vocalizations to
maintain contact because it might further reduce the prob-
ability of physical contact between individuals beyond the
effects of reduced movement.
2. Material and methods
We recorded contact calls by physically isolating an adult female
vampire bat (n = 18) in a soft mesh cage at a distance of 10–30 cm
from a CM16 ultrasound condenser microphone (frequency
range 1–200 KHz, Avisoft Bioacoustics, Berlin, Germany). The
mesh cage was inside a 68 l plastic bin lined with acoustic
dampening foam and within hearing range of conspecifics of a
captive colony. To selectively record contact calls, we used a
digitizer (116 Hn UltrasoundGate, Avisoft Bioacoustics, Berlin,
Germany, sampling frequency of 250 or 500 kHz) to save a
.wav file whenever a 10–50 kHz sound was detected at greater
than 5% amplitude. We used Avisoft SASLabPro (Avisoft
Bioacoustics, Berlin, Germany) to measure the onset, duration,
peak amplitude and peak frequency of all calls. We excluded
echolocation calls and other noise by deleting sounds that were
longer than 60 ms and shorter than 10 ms.

For each bat, we recorded two trial types. In LPS trials, we
induced sickness behaviour in subjects by injecting them subcu-
taneously with LPS (L2630 Sigma-Aldrich, USA, dose: 5 mg kg−1

body mass of bat) in phosphate-buffered saline (PBS) before the
recording period. We chose this dose based initially on observed
effects in another bat species [26], and on later studies in vampire
bats, which showed that this dose increases white blood cell
count and neutrophil to lymphocyte ratio [2] and decreases
physical activity, social encounters and social grooming
[2,3,25]. In control trials, the same bats were injected with an
equivalent volume of only PBS as a control treatment.

Treatments were given in random order, and eight bats
received the control treatment first. We recorded bats for 4–6 h
immediately after the injection, because we previously detected
symptoms for at least 6 h post-injection [2]. Different bats were
recorded for different times after injection, but the paired LPS
and control trials were always the same duration and time of
the night. Since bats often sleep in the recording chamber, we
excluded hours when the bat did not call during either the treat-
ment night or control night, but our results do not change if we
include these hours in our analysis. The inter-trial period was at
least 5 days to ensure recovery of the bats [2,25]. To calculate a
standardized effect (proportional change) of LPS on vocaliza-
tions for each bat, we used (YLPS−YC)/(YLPS + YC), where YLPS

and YC are the measures of vocal activity during the bat’s LPS
and control trial, respectively.

To test for an effect of LPS on contact calling, we randomly
swapped the control and LPS trial data within each bat to calcu-
late a distribution of t-statistics under the null hypothesis of no
difference between the LPS and control trial, then compared
the observed t-statistic to this distribution to obtain a two-sided
p-value (i.e. a nonparametric permuted paired t-test). To estimate
95% confidence intervals for LPS effect sizes, we used nonpara-
metric bootstrapping with accelerated bias-corrected percentile
limits [27]. We used 5000 permutations for both methods. We cal-
culated the mean and bootstrapped 95% CI for the LPS effect on
five measures of contact calling behaviour: the total number of
contact calls produced, the sum of call durations, the mean call
duration, the mean amplitude and the mean peak frequency
(the frequency at the point of the maximum amplitude of the
entire element). Data and R script to repeat our analysis are
available on figshare [28].
3. Results
LPS injections led to fewer contact calls. The average contact
calling rates per bat during the control and LPS trials were,
respectively, 66 and 16 contact calls per hour (see electronic
supplementary material, figure S1 for details on each bat
and electronic supplementary material, figure S2 for average
call production of bats after LPS and control over time). On
average, LPS injections caused female vampire bats to pro-
duce 30% fewer contact calls, with 15 of 18 bats producing
fewer contact calls during the LPS trial compared to the



Table 1. Effect of LPS on vampire bat contact calls. Means and their bootstrapped 95% confidence intervals for the standardized LPS effects for contact call
number, total calling duration, mean amplitude, mean peak frequency and mean call duration (table corresponds to figure 1a).

measure N lower CI mean upper CI p-value

call number 18 −0.78 −0.58 −0.27 0.0006

calling duration 18 −0.77 −0.57 −0.26 0.0012

mean amplitude 14a −0.11 −0.01 0.11 0.8754

mean peak frequency 14a −0.03 0.02 0.07 0.4656

mean duration 14a 0.01 0.04 0.08 0.0510
aWe could not calculate the LPS effect on mean amplitude, mean peak frequency and mean duration for four bats because they did not produce any calls
when injected with LPS.
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control trial ( p = 0.0006, figure 1a and table 1, electronic sup-
plementary material, figure S1). Fewer calls led to an average
decrease of 32% in total calling duration ( p = 0.0012, figure 1a
and table 1). We did not detect an effect of LPS on mean call
amplitude (figure 1a and table 1). Although vampire bats
produce contact calls that vary in call structure (figure 1b,c),
we did not detect an effect of LPS injections on mean call dur-
ation (figure 1a and table 1) or mean peak frequency
(figure 1a and table 1).
4. Discussion
Infection-induced sickness behaviours can affect vocal com-
munication as evident in LPS-injected male house mice that
produce fewer call syllables, which likely contributes to
reduced associations with females [7]. Similarly, immune-
challenged males decrease their song rate in collared flycatch-
ers (Ficedula albicollis), white-browed sparrow weavers
(Plocepasser mahali), field crickets (Gryllus campestris) and
white-crowned sparrows (Zonotrichia leucophrys gambelii)
[5,6,8,29]. In comparison to these mate-attraction calls, con-
tact calls and signals of need are interesting to consider
because a state of poor condition could lead to either a
higher or lower calling rate. In vampire bats, contact calling
can attract food donors and might act as a signal of need
[15,17]. Here, we showed that an immune challenge reduces
contact calling, which could potentially help to explain why
immune-challenged vampire bats encounter fewer individ-
uals [3,25], in addition to the more obvious explanation of
reduced movement.

In a previous study using the same dose as we used here,
LPS-injected vampire bats were more lethargic, spending less
time awake, moving or engaging in hygienic behaviours such
as self-grooming [2]. So, our results are most consistent with
the simplest explanation that reduced contact calling is also
owing to lethargy. Reduced contact calling is unlikely to be
explained as a kin-selected mechanism for reducing pathogen
transmission [30–32] because contact calls attract both kin
and non-kin [17]. We hypothesize that vampire bats reduce
contact calling to support the energetic demands of the phys-
iological response. Across several taxa, the metabolic costs of
acoustic signalling are estimated to be about eight times that
of remaining silent [33] and call rate is sensitive to other
ecological constraints like reduced food availability [34].
Experiments with a related frugivorous bat species show
that LPS injections reduce body mass and increase resting
metabolic rate by 40% [35].
We used a dose of LPS for which we knew the physiologi-
cal and behavioural effects in vampire bats [2,3,25]. It is
important to note, however, that the physiological responses
to LPS are dose-dependent and involve both pro-
inflammatory and anti-inflammatory responses [36]. To
determine what doses are most ecologically relevant for
different diseases, future work must compare the relationship
between the dose-dependent effects of LPS against the effects
of natural bacterial infections in vampire bats and other
species.

It is also important to note that infection-induced changes
to social vocalizations are pathogen specific. LPS mimics
common symptoms of a bacterial infection in vampire bats
and other animals [1,2]. Some live pathogens, however,
could increase specific social behaviours to favour their trans-
mission [37]. For instance, chytrid-fungus infected Japanese
tree frogs (Hyla japonica) increase their mating call effort,
which potentially favours the transmission of the fungus [38].
Vampire bats harbour multiple pathogens in their saliva that
rely on directed social interactions, like Bartonella [39], hemo-
plasmas [40] and, most notably, rabies [41]. It would be
particularly interesting to look at how rabid vampire bats
change their calling behaviour and their response to calls of
conspecifics.

Besides call rate, the structure of animal vocalizations
might also depend on infection status [4,42]. Common vam-
pire bats produce highly variable contact calls (e.g.
figure 1b and c), but we found no evidence that sick bats con-
sistently produced any particular contact call structure more
or less. However, for some pathogens, such as rabies, which
could affect the vocal tract, there may be clear differences in
call structure.
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