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One response to the coral reef crisis has been human intervention to enhance
selection on the fittest corals through cultivation. This requires genotypes to
be identified for intervention, with a primary basis for this choice being
growth: corals that quickly grow on contemporary reefs might be future win-
ners. To test for temporal stability of growth as a predictor of future
performance, genotypes of the coral Porites spp. were grown in common gar-
dens in Mo’orea, French Polynesia. Growth was measured every two to four
months throughout 2018, and each period was used as a predictor of growth
over the subsequent period. Area-normalized growth explained less than
29% of the variance in subsequent growth, but for biomass-normalized
growth this increased to 45–60%, and was highest when summer growth
was used to predict autumn growth. The capacity of initial growth to predict
future performance is dependent on the units of measurement and the time
of year in which it is measured. The final choice of traits to quantify perform-
ance must be informed through consideration of the species and the
normalization that best capture the information inherent in the biological
processes mediating variation in traits values.
1. Introduction
Human influence on the biosphere defines the Anthropocene [1] through per-
turbation of biological resources [2]. Faced with the subsequent ecological
crises [3], attention is focusing on the taxa that might persist and the traits pro-
moting success [4–6]. Identifying ‘winners’ [4,7] has become a priority [4,6], but
without an historic analogue of biological responses to future conditions with
which such determinations can be informed [8], the task is daunting.

Marine communities provide many examples of changes resulting from
anthropogenic effects [9]. Most are undesirable [10], because they impair the
capacity of communities to deliver the services with which they have been
associated [11,12]. Agriculture provides examples of strategies of human inter-
vention that have alleviated such effects [13], offering hope that similar
approaches can be applied in natural ecosystems. Coral reefs provide a compel-
ling example in which human intervention could be considered [14,15], because
corals face acute challenges [16,17] and impending extinction [18].

Interest in human-assisted solutions to the coral reef crisis has risen [14,15]
as coral mortality has accelerated [19]. These solutions rely on the ability to
identify corals suitable for intervention, with the expectation that propagation
of their genetic diversity will delay or prevent extinction [14]. The field of evol-
utionary biology describes how this goal can be achieved [20], but transferring
this knowledge is difficult because it is challenging to quantify coral fitness by
enumerating offspring, or breeding corals in captivity [21]. Coral fitness
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Figure 1. Schematic illustrating experimental corals (a), the experimental chronology and seawater temperature (b), and potential outcomes (c–e). The relationships
between initial and subsequent growth over each period were analysed over three trials (Trial 1–3), with three outcomes hypothesized: none (c), strong (high r2)
(d ), or weak (low r2) (e).
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therefore is frequently measured through proxies (sensu [22])
such as growth [23], and propagation is often accomplished
asexually [24].

The common use of growth to evaluate coral fitness [23]
is based on the rationale that it leads to increased fecundity
[25–27] and is tractable for measurement. Using growth for
this purpose is complicated by inconsistent terminology
and methodology [28], so that ‘growth’ can mean different
things, particularly with respect to fitness. These problems
are highlighted through surveys of small corals for which
growth has been shown to be a poor predictor of perform-
ance [29], possibly because growth has been depressed over
decades [30,31]. To screen coral genotypes for candidates
suitable for intervention, the mechanism of screening requires
careful consideration.

This study explored the utility of coral growth in predicting
future growth throughout a year by tracking corals in common
gardens to reveal intrinsic phenotypic variation [32,33]. Three
hypotheses were tested using Porites spp.: (i) initial and sub-
sequent growth are positively associated, (ii) the association
between initial and subsequent growth is temporally stable
and (iii) the goodness of fit between initial and subsequent
growth is independent of growth normalization.
2. Methods
(a) Overview
Small colonies (less than or equal to 4 cm diameter) of Porites spp.
(P. lobata and P. lutea) were collected in January 2018 and their
growth measured by change in mass in common gardens from
28 January to 15 March, 15 March to 5 May, 5 May to 27
August, and 27 August to 1 November 2018 (figure 1). Small colo-
nies increased the likelihood that each was genetically unique, as
they originate through recruitment of sexual larvae [34]. Tempera-
ture was recorded (Hobo U22, ± 0.2°C) at approximately 2 m
depth. Using area- and biomass-normalized growth, associations
between initial and subsequent growth were predicted (figure 1).

(b) Corals and dependent variables
Corals were collected on January 25 and 26, from 2–3 m depth in
the back reef (17.475°S, 149.816°W) and transported to the labora-
tory, where they were glued to bases (Coral Glue, Ecotech, USA).
Prepared corals were kept in seawater where their diameters were
measured (±1 mm), and their masses were determined by buoy-
ant weighing (±1 mg [35]). Corals were haphazardly assigned
on 28 January to common gardens at 5 m or 8 m depth. Depth
initially was part of the experiment, but when this effect was
absent (see electronic supplementary material), the results were
pooled by depth. Light was measured using a meter (LI-1400
fitted with LI-193SA, Li-Cor, Nebraska), and around noon on 1
February 2018, was 443 ± 2 µmol quanta m–2 s−1 at 5 m depth
and 324 ± 1 µmol quanta m−2 s−1 at 8 m depth.

The diameter and buoyant weight of the corals were
measured on approximately 15 March, 5 May, 27 August and
1 November. Measurements were taken over approximately
3–4 days before the corals were returned to the common gardens,
and the measurement of all corals reduced the likelihood of
species identity confounding time in modifying growth. Changes
in buoyant weight were converted to dry weight using the den-
sity of aragonite (2.93 g cm−3) and seawater (1.017–1.023 g cm−3)
[35]. Net calcification was standardized to time and mean tissue
area over each period (mg cm−2 d−1), with area calculated using
previous data and a regression of area on size (electronic
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Figure 2. Growth of Porites spp. at 5 m (red) and 8 m (blue) depth on area- (a–c) and biomass- (d–f ) normalized scales for corals that were measured on five
occasions. Plots show initial and subsequent growth over each trial, together with Model I regression. Stacked histograms show the frequency distribution of initial
growth at 5 m (red) and 8 m (blue) depth.
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supplementary material). In November, biomass was measured
by fixation (5% formalin), decalcifying in 10% hydrochloric
acid and drying at 60°C; biomass was normalized to the area
of coral tissue. Using the relationship between biomass and
season (electronic supplementary material), biomass at the
other four sampling times was estimated for each coral, and
the mean biomass over each period was used to normalize
growth (mg mg−1 d−1).

(c) Statistical analysis
Results were analysed using area- and biomass-normalized
growth. Hypothesis 1 was tested with Pearson correlations
using initial and subsequent growth over three trials (figure 1)
and Model I linear regressions [36]. The first initial growth was
recorded over Period 1 with the subsequent growth over
Period 2 (supporting Trial 1); growth over Period 2 then was
the initial growth supporting Trial 2, and so on. Hypothesis
2 was tested using repeated measures (RM) ANCOVA in
which coral was the RM factor. Unplanned contrasts of
elevations were completed with Tukey’s honestly significant
test [37]. Residual variation was used to compare the fit of
the linear relationships prepared using area- and biomass-
normalized growth (Hypothesis 3). Biomass-normalized
growth was log-transformed as it was positively skewed. The
normality and homoscedasticity assumptions of the statistical
procedures were tested through graphical analysis of residuals,
and statistical analyses were completed with Systat 13.0
software.

3. Results
(a) Overview
Of the prepared corals, 60 were placed on the common gar-
dens at 5 m depth and 57 at 8 m depth. Sample size
declined over time as corals were lost to attrition and
sampled for other purposes; this analysis is based on the
60 corals that were weighed on all five occasions (approx.
28 January, approx. 15 March, approx. 5 May, approx. 27
August, approx. 1 November).
(b) Hypothesis 1: subsequent versus initial growth
Area-normalized growth was higher in the warmer versus
the cooler portion of the year. Mean (± s.e.) growth over
the four periods (figure 1b) was 1.4 ± 0.1 mg cm−2 d−1, 0.8 ±
0.1 mg cm−2 d−1, 0.8 ± 0.1 mg cm−2 d−1 and 0.9 ± 0.1 mg cm−2

d−1 (all n = 60). Initial and subsequent growth rates over each
of the three trials were significantly and positively associated
(r≥ 0.495, d.f. = 60, p≤ 0.001) and linear regressions for each
trial were significant (F1,58≥ 18.811, p≤ 0.001) (figure 2).

Previous data from the western Atlantic [38,39] show that
coral biomass varies throughout the year, and in November
in the southern hemisphere (when biomass was measured
in the present study), it is predicted to be at 97.4% of the
annual maximum value inferred to occur in October. The
relationship between coral biomass and time (electronic sup-
plementary material, figure S2) indicates that biomass was
88.7% of the maximum in January, 83.1% in March, 89.9%
in May and 95.4% in August. In November, measured bio-
mass ranged from 0.3 to 7.7 mg cm−2, with a mean (±s.e.)
of 3.1 ± 0.2 mg cm−2 (n = 60). Biomass-normalized growth
was higher in the first versus the other three periods, and
initial and subsequent growth (log-transformed) were posi-
tively associated over each trial (r≥ 0.759, d.f. = 58, p <
0.001), and the regressions of subsequent on initial growth
were significant (F1,58≥ 46.500, p≤ 0.001) (figure 2).
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(c) Hypothesis 2: stability of initial–subsequent growth
association

For area-normalized growth, the slopes of the regressions were
homogeneous among trials (F2,115 = 0.917, p = 0.403), and over-
all growth rate (i.e., the elevation of the regressions) differed
among trials (F2,117 = 5.320, p = 0.006) (figure 2b,c). Overall
growth rates were higher in Trial 1 versus 2 and 3 (p≤ 0.050),
but similar in Trial 2 and 3 (p = 0.537). For biomass-normalized
growth, the slopes of the regressions were homogeneous
among trials (F2,115 = 0.857, p = 0.427) and elevations differed
among trials (F2,117 = 11.362, p < 0.001). Overall growth rates
were higher in Trial 1 versus 2 and 3 (p≤ 0.001), but similar
between Trials 2 and 3 (p = 0.902) (figure 2).

(d) Hypothesis 3: goodness of fit comparing growth
normalizations

For area-normalized data, the relationships explained 25–28%
of the variation in subsequent growth. For biomass-normal-
ized growth, the relationships explained 45–66% of the
variation in subsequent growth (figure 2).
4. Discussion
The extent to which organism performance is consistent
across space and time has profound implications for popu-
lation stability. In heterogeneous habitats, non-plastic
reaction norms can lead to reduced genetic diversity [40]
and impaired genetic capacity to respond to changing
conditions, while genotype-by-environment interactions
facilitate plasticity, which can allow phenotypic performance
to vary across space and time [41]. Within a human-dis-
turbed biosphere, predicting organism performance from
present-day phenotypes necessitates decisions about select-
ing for plastic or non-plastic reaction norms for the trait(s)
of interest, which is critical to understanding the function
of future communities [42–44]. Accurate prediction of
organism performance is a pre-requisite for human inter-
vention to facilitate desirable outcomes to the changes
affecting community structure [44]. While these principles
have broad application in the Anthropocene, they are par-
ticularly relevant to coral reefs, which are at the forefront
of systems at a tipping point with respect to human dis-
turbances [14,45]. These anthropogenic forces have
initiated rapid ecological changes, ensuring that future
reef communities will be different from those of the past
[46] and pushing the foundation taxon towards extinction
[18]. For corals, the need to predict future performance
is acute, and the time for an intense focus on the science
for rigorous decision making for human intervention is
now [14,45].

For massive Porites spp. colonies that we infer are geneti-
cally distinct, the present study shows that colony growth
predicts future growth performance over two to four
months (Hypothesis 1), but prediction accuracy varies over
time (Hypothesis 2) and is higher for biomass-normalized
(r2 > 0.44) versus area-normalized (r2 ≤ 0.28) growth
(Hypothesis 3). In terms of the pressing need to identify
‘winning’ corals [4,7] that might populate future reefs, our
results provide an objective evaluation of the limited poten-
tial to accurately predict the future performance of corals
from present-day responses. Using growth rate as an indi-
cator of one such trait that might be used for this purpose,
our results show that corals with fast, area-normalized
growth are unlikely to sustain rapid growth over at least a
year and, therefore, are poor candidates for human interven-
tion [sensu 14]; area-normalized growth is a weak proxy for
performance. Biomass-normalized growth was a better pre-
dictor of future performance, and corals growing fast on this
scale likely continue to grow fast throughout the year.

Intraspecific phenotypic variation is common in corals
[47,48], but it has re-emerged as a research topic in the
study of genetic variation in the response of corals to asexual
propagation [49–51] and environmental stressors [51,52]. The
limitations of growth in corals as a predictive tool are begin-
ning to be described, including the value of mass deposition
versus linear extension [53], and evidence of weak capacity to
predict field growth from cultured growth [50], and over time
[49]. Nevertheless, growth remains a common means to
evaluate coral performance based on the inference that it is
relatively stable, and is one of several traits recommended
to assay genotypes for future performance [45]. As high
growth in corals is likely to be traded against other traits
determining performance [49,54], measurement of single
traits to predict future performance will have limitations
[45]. Yet, our analyses reveal the circumstances under
which short-term growth has a strong predictive capacity
for future growth, and therefore, how it can best inform a
search for coral ‘winners’ [4,7]. The accuracy of biomass-nor-
malized growth for this purpose highlights the need to better
understand the physiological mechanisms of variation in
growth in order to sharpen the capacity to identify winning
genotypes. By extension, it will be important to begin com-
prehensive measurements of coral biomass, for example,
through non-destructive approaches [55] or through tissue
biopsies sampled with precision tools. Finally, it is notable
that the accuracy of predicting future performance was great-
est around the Austral summer when growth was
maximized. This trend suggests that long-term declines in
coral growth [30,31] may erode the capacity to predict their
future performance [29] at a time when this capacity is
urgently needed.
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