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Abstract

Genetic and genomic architectures of traits under selection are key factors influencing evolutionary 
responses. Yet, knowledge of their impacts has been limited by a widespread assumption that most 
traits are controlled by unlinked polygenic architectures. Recent advances in genome sequencing 
and eco-evolutionary modeling are unlocking the potential for integrating genomic information 
into predictions of population responses to environmental change. Using eco-evolutionary 
simulations, we demonstrate that hypothetical single-locus control of a life history trait produces 
highly variable and unpredictable harvesting-induced evolution relative to the classically applied 
multilocus model. Single-locus control of complex traits is thought to be uncommon, yet blocks 
of linked genes, such as those associated with some types of structural genomic variation, have 
emerged as taxonomically widespread phenomena. Inheritance of linked architectures resembles 
that of single loci, thus enabling single-locus-like modeling of polygenic adaptation. Yet, the number 
of loci, their effect sizes, and the degree of linkage among them all occur along a continuum. We 
review how linked architectures are often associated, directly or indirectly, with traits expected to 
be under selection from anthropogenic stressors and are likely to play a large role in adaptation 
to environmental disturbance. We suggest using single-locus models to explore evolutionary 
extremes and uncertainties when the trait architecture is unknown, refining parameters as 
genomic information becomes available, and explicitly incorporating linkage among loci when 
possible. By overestimating the complexity (e.g., number of independent loci) of the genomic 
architecture of traits under selection, we risk underestimating the complexity (e.g., nonlinearity) of 
their evolutionary dynamics.
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Eco-evolutionary Responses Hinge on Genetic 
and Genomic Architecture

Predicting the responses of populations and species to anthropogenic 
disturbance is a major challenge, and one that requires urgent atten-
tion given the current climate and biodiversity crises (IPCC 2018; 
IPBES 2019). Advances in second- (high throughput) and third- (long 
read) generation sequencing have produced a wealth of sequence and 
structural genomic data on non-model organisms. These data have 
great potential to inform eco-evolutionary models of the responses 
of natural populations to a variety of selection pressures (Hoffmann 
et al. 2015; Coulson et al. 2017; Bay et al. 2017a). Such models can 
inform current management strategies and facilitate planning for fu-
ture environmental conditions and associated ecosystem structures.

Key parameters influencing evolutionary responses are the gen-
etic/genomic architectures underlying adaptive traits. These refer 
to how a trait is controlled by one or more genes and interactions 
among alleles (e.g., number and effect sizes of contributing loci, 
dominance, epistasis, pleiotropy), structural arrangement (e.g., in-
versions, fusions, translocations, duplications), position, and linkage 
among loci. These characteristics contribute to the inheritance 
models for genes underlying adaptive traits that are used in evolu-
tionary predictions.

Here, we discuss some effects of genetic (the number of loci and 
their effect sizes) and genomic (the degree of linkage among loci) 
architectures on predictions of evolutionary responses to envir-
onmental disturbance. Single or unlinked loci have received com-
paratively more attention than linked genomic architectures in this 
regard (Bay et  al. 2017a; Kardos and Luikart 2020). We demon-
strate that hypothetical single locus control of a life-history trait 
under harvesting-induced selection generates a more variable evo-
lutionary response compared to an unlinked polygenic scenario. We 
then suggest that linked polygenic architectures resemble those of 
single large-effect loci, yet exist along a continuum of linkage dis-
equilibrium (LD), and are likely to play a large role in adaptation 
to rapid environmental change. We show that linked architectures 
underlie diverse traits in natural populations that are directly or in-
directly under environmental selection. Finally, we discuss some bar-
riers to modeling such architectures and challenges they present to 
conservation and management. More broadly, we aim to promote 
the integration of genomic data into eco-evolutionary modeling of 
responses to environmental change.

Large-Effect Loci Alter Evolutionary Predictions 
Compared With Traditional Polygenic Models
The degree to which a trait is controlled primarily by a single locus 
or multiple loci will influence its evolution in response to environ-
mental stressors. Traditional evolutionary models have focused on 
the fixation dynamics of single-locus traits suddenly exposed to se-
lection (Orr and Unckless 2014). As single-locus control of complex 
traits has been considered rare (Feder and Walser 2005), eco-
evolutionary models of complex non-model organisms often incorp-
orate a standard inheritance model of 10 or 20 unlinked loci (e.g., 
Kuparinen and Hutchings 2012). Multilocus (e.g., 100+ loci) models 
based on genomic single-nucleotide polymorphism (SNP) data have 
also been employed more recently to predict the capacity of a popu-
lation to evolve in pace with global climate change (Bay et al. 2017a, 
2018). Bay et al. (2017b) described a potential framework for gen-
omic predictions of adaptive responses to environmental change, 
termed “evolutionary response architectures,” but focused on un-
linked polygenic control of climate-associated traits.

The assumption that single genetic variants accounting for large 
amounts of phenotypic variation are rare is being challenged as 
more refined statistical genomics enable their discovery (Hoban et al. 
2016). Large-effect loci have been documented in plants (Kivimäki 
et  al. 2007; Baxter et  al. 2010), insects (Reed et  al. 2011), mam-
mals (Johnston et al. 2013; Kardos et al. 2015; Jones et al. 2018; 
Barrett et al. 2019), birds (Toews et al. 2019; Merritt et al. 2020), 
and fishes (Colosimo et al. 2004; Lampert et al. 2010; Barson et al. 
2015; Thompson et al. 2019). For example, the optix gene controls 
wing pattern in Heliconius butterflies (Reed et al. 2011), the RXFP2 
gene controls horn architecture in Soay sheep (Johnston et al. 2013), 
and the Agouti locus controls coat color polymorphism in deer mice 
(Barrett et  al. 2019). The implications of these variants for eco-
evolutionary model predictions can be severe. After the discovery 
that the vgll3 gene is responsible for 40% of the variation in age 
at maturity in Atlantic salmon (Salmo salar) (Barson et  al. 2015), 
Kuparinen and Hutchings (2017) demonstrated that hypothetical 
single-locus control of this key, sexually dimorphic life-history trait 
generates divergent and disruptive fisheries-induced evolution rela-
tive to that predicted by the classically applied, commonly assumed 
multi-locus model. As demonstrated in Box 1, these chaotic dy-
namics are largely driven by the single-locus control, not the sexual 
dimorphism, which indicates that they could occur for a broad 
range of traits. This finding is consistent with recent simulations 
demonstrating increased variability in population viability under 
rapid directional environmental change when the trait under selec-
tion is under single-locus rather than multi-locus control (Kardos 
and Luikart 2020). It further suggests that recovery following relax-
ation of selection is also highly variable.

Inheritance of Linked Polygenic Architectures 
Resembles that of Single Loci
Particularly for complex traits, such as those contributing to growth, 
behavior, or environmental responses, polygenic control might in-
deed be the norm (Savolainen et al. 2013; Palumbi et al. 2014; Bay 
et al. 2017a). Yet, blocks of tightly linked putatively adaptive genes 
that undergo reduced or no recombination are taxonomically wide-
spread (Nosil et al. 2009; Rogers et al. 2011; Yeaman 2013; Küpper 
et al. 2016; Wellenreuther and Bernatchez 2018; Pearse et al. 2019).

There are several mechanisms by which linked clusters might 
evolve in response to selection, but all are characterized by a re-
duction in recombination (Yeaman 2013). This is because when 
linkage captures an advantageous allelic combination, selection will 
favor a reduced recombination rate in that region to avoid splitting 
up complementary alleles (Charlesworth and Charlesworth 1979; 
Kirkpatrick and Barton 2006; Bürger and Akerman 2011; Yeaman 
and Whitlock 2011). Low recombination rates can be achieved by 
genic modifiers that decrease the frequency of crossovers during mei-
osis or genomic rearrangements that alter gene order, suppress re-
combination, and/or generate unbalanced gametes in heterozygotes 
(Figure 1; Butlin 2005; Ortiz-Barrientos et al. 2016). Recombination 
rate is also negatively correlated with epistasis, chromosome length, 
and proximity among loci (Figure 1; Kong et al. 2002; Butlin 2005). 
Sequence content can have both positive (CpG content) and negative 
(GC, polyA/polyT, and heterochomatin content) effects on recom-
bination rate (Figure 1; Kong et al. 2002).

The lower the rate of recombination, the greater the degree of 
LD (nonrandom association of alleles at different loci). LD is also 
inversely proportional to effective population size through its rela-
tionship to genetic drift (Sved 1971; Waples et al. 2016), which could 
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Box 1. Drift dominates evolutionary trait dynamics of single-locus architectures

We revisited the eco-evolutionary model developed by Kuparinen and Hutchings (2017) for Atlantic salmon. That model showed 
the evolution of age at maturity in response to fishing, assuming that it was controlled by a single locus with sexually dimorphic 
expression. Our objective was to compare single- and multi-locus architectures in a hypothetical species without sexually dimorphic 
trait expression, to illustrate how genetic architecture affects trait evolution in a more general scenario absent of sexual dimorphism. 
To this end, we took simple averages of the sex-specific probabilities for the male and female age at maturity in Atlantic salmon. By 
doing this, a male and a female carrying the same single-locus genotype have the same probabilities to mature at the ages of 1 sea 
winter (SW), 2 SW, and 3 SW (Table 2).

Eco-evolutionary Model. The model simulates the annual demographic processes of mortality (both natural and fishing), 
maturation, and reproduction at the level of individuals. Parameters for these processes are based on Atlantic salmon except 
that the probability of maturing is not sex specific (Table 2). In practice, for each individual, its survival from the previous to the 
next time step is determined based on binomial trials (one for natural mortality and one for fishing mortality, when applicable). 
For the single-locus scenario, maturation is determined based on a binomial trial using the probabilities shown in Table 3. For 
the multilocus scenario, maturation is based on the sum across 10 loci with 2 alleles in each (allele sum is thus 0–20) coupled 
with phenotypic variability sampled from a normal distribution. Sums <6.66, 6.67–13.33, and >13.34 cause maturation at the 
age of 1 SW, 2 SW, and 3 SW, respectively. For each mature female, a mature male is sampled randomly and the number of 
eggs produced is based on empirical estimates (Table 3). The number of eggs surviving up to grilse is sampled from binomial 
distributions (probabilities given in Table 3). Genotypes of the newborn are sampled from the alleles of their parents and sex is 
assigned randomly with a 50:50 sex ratio. After these processes, the simulation proceeds to the next time step. Heritability was 
not held constant, but allowed to fluctuate with variation in allele frequencies. For further details about the simulation model, 
see Kuparinen and Hutchings (2017).

Simulation Design. To illustrate the conceptual differences between the single- and multilocus scenarios, we simulated 10 in-
dependent evolutionary trajectories for both scenarios and tracked the average age at maturity for each simulation time step. The 
simulations involved 3 phases: 1) pristine conditions in the absence of fishing (500 years, the first 400 of which were discarded as 
burn-in), 2) exposure to selective fishing mortality at the rate of 0.2 (selectivity given in Table 3), and 3) recovery in the absence of 
fishing.

Results. The simulations demonstrate that single-locus control of age at maturity generates increased variability in this trait 
compared with the multi-locus scenario and that the response to, and recovery from, fishing are also highly varied (Figure 3). In 
the single-locus scenario, oscillations driven by heightened genetic drift leading to chaotic dynamics are evident under pristine con-
ditions, reduced at varying rates under fishing pressure, and markedly return in only 3 of 10 simulations (Figure 3a). In contrast, 
the multilocus scenario does not generate chaotic dynamics and exhibits little variability both within and between simulations 
(Figure 3b). Consequently, single-locus control causes largely divergent and disruptive evolution of age at maturity with a wide 
variety of possible evolutionary trajectories and greater trait variability within trajectories, whereas polygenic control results in uni-
directional evolution toward earlier maturation.

Table 2.  Probabilities for maturation in the single-locus scenario. The values are obtained as averages from the sex-specific prob-
abilities reported by Barson et al. (2015)

Timing of maturity Homozygote (11) Heterozygote (10 or 01) Homozygote (00)

2 SW → 3 SW 0.5100 0.6130 0.9090
1 SW → 2 SW 0.7950 0.2325 0.5660

Table 3.  Demographic and fishing parameters for each age class, based on Atlantic salmon

Parameter Smolt (3 years) 1 SW 2 SW (immature/ 
mature)

3 SW+ (immature/ 
mature)

References

Survival 0.015 (egg to smolt) 0.07 (smolt to 
grilse)

0.9/0.2 0.9/0.2 Hutchings and Jones (1998);  
Kuparinen and Hutchings (2017)

Fishing selectivity — 0.15 0.5 1 Kuparinen and Hutchings (2017)
Eggs — 3040 7560 10 200 Legault (2004)

Continued
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have notable consequences for small populations, as they would tend 
to harbor loci in higher LD. When LD is high, the inheritance pat-
tern of a genomic region containing multiple loci resembles that 
of a single locus, such that complete linkage among genes would 

result in their coinheritance (Figure 2). Although, historically, pre-
cise estimates of LD have been challenging to obtain and are there-
fore not readily available for most species or populations, accessible 
high-throughput sequencing of non-model organisms is rapidly 

Conclusion. Single-locus control of age at maturity results in highly unpredictable evolutionary and ecological responses to fishing-
induced selection on this trait, relative to the commonly assumed multilocus control, due to greater phenotypic stochasticity (genetic 
drift). This appears to be the case with (Kuparinen and Hutchings 2017) and without (Figure 3) sexually dimorphic expression.

Figure 3.  The evolution of mean age at maturity in response to fishing for a hypothetical anadromous fish population under (a) single-locus 
and (b) multilocus scenarios for genetic architecture of the trait. Model parameters are based on Atlantic salmon except that the probability of 
maturing is not sex-specific for a given genotype. The beginning and end of the fishing period are indicated by dashed vertical lines. Each row 
represents one replicate simulation (N = 10).

Box 1. Continued
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Box 2. Estimates of linkage disequilibrium and its effects on fitness are needed

Estimates of Linkage Disequilibrium Are Becoming Widely Accessible

A major challenge to modeling the evolution of linked genomic architectures in diverse taxa has been the availability of relevant 
estimates for LD. LD depends on the distance and epistasis among loci, chromosome size, position of loci along a chromosome, 
local sequence content, other sources of recombination rate and gene conversion variation (e.g., genic modifiers and structural gen-
omic polymorphisms), and demographic factors such as effective population size (Figure 1; Kong et al. 2002; Butlin 2005; Peñalba 
and Wolf 2020). LD can be estimated from individual-level population-scale genomic data (Gianola et al. 2013; Bilton et al. 2018; 
Ragsdale and Gravel 2020). For example, population-based inference of LD can be obtained by using multiple genome alignments 
to calculate the statistical association of alleles, ideally accounting for demographic history (Peñalba and Wolf 2020). One advan-
tage of this approach is that the genomic data required are already available for many systems, which also explains the frequent use 
of such LD estimates as proxies for inferring population recombination rates (Peñalba and Wolf 2020).

More direct estimates of recombination and gene conversion rates can be obtained using pedigree-based and gamete-based ap-
proaches (e.g., Korunes and Noor 2019; Rowan et al. 2019; reviewed by Peñalba and Wolf 2020). Though they can be challenging 
to implement in some systems (e.g., wild populations lacking pedigree information and species without external fertilization for 
pedigree-based and gamete-based methods, respectively), recent technological advances have made them feasible for many non-model 
species (Peñalba and Wolf 2020). However, biological variation in recombination rates is abundant within and among chromosomes, 
individuals, sexes, populations, and species, the cataloging of which is still in its infancy (Peñalba and Wolf 2020). Importantly, even 
if accurate estimates of LD and/or recombination rate are obtained for a particular set of environmental conditions, recombination 
rates are often plastic (Stevison et al. 2017), complicating estimates of LD under environmental change. Nonetheless, the rapid ad-
vancement of this field will continue to eliminate the barriers associated with parameterizing LD in eco-evolutionary models.

Linked Architectures Have Fitness Effects Besides Those of the Target Phenotype

Besides effects of the trait that is the target of selection, other aspects of linked genomic architectures impact fitness and, con-
sequently, the evolutionary trajectory of the architecture and trait. For example, linked architectures can prevent the purging of 
deleterious mutations, reducing the fitness of homozygotes (Jay et al. 2019). Conversely, heterozygotes for linked architectures can 
experience partial sterility due to the production of inviable gametes during meiosis, although strong evidence for this appears 
limited to plants (Hoffmann and Rieseberg 2008). Whether species outside of Diptera can displace crossovers away from the 
breakpoints of chromosomal rearrangements, thus altering their patterns of inheritance, is also poorly understood, as is taxonomic 
variation in other types of recombination modifiers. Furthermore, there is some probability of developing genetic incompatibilities 
at linked loci, which could be modeled explicitly. Finally, a better understanding of how eco-evolutionary feedbacks shape genomic 
architectures is needed.

Figure 1.  Positive LD exists on a spectrum influenced by several factors potentially affecting recombination rate (r) among loci. D’ is a normalized metric of LD. 
For positive LD it is represented by the function D’ = (xaa − pa × qa)/min(xab, xba), whereby x is haplotype frequency and p and q are allele frequencies for two 
polymorphic loci with 2 alleles (a, b) each. Rather than a mechanistically accurate diagram, consider this figure as a roughly organized corkboard onto which the 
various factors and conditions have been pinned.
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eliminating this barrier (Box 2). Other barriers to integrating linkage 
into eco-evolutionary models include a lack of understanding of the 
potential fitness effects of regions of high LD (e.g., partial sterility of 
heterozygotes, accumulation of deleterious mutations; Box 2).

Linked Polygenic Architectures Are Ubiquitous and 
Exist Along a Continuum of LD
Linked regions are often identified in population genomic studies 
as “genomic islands of divergence” (regions that exhibit greater 

differentiation than expected under neutrality; Wu 2001), although 
the degree of linkage varies depending on the mechanism of recom-
bination suppression (Figure 1). For example, genic modifiers might 
only partially reduce recombination, leading to low or moderate 
levels of LD (Butlin 2005).

In contrast, extreme cases of tightly linked coadapted gene 
complexes associated with discrete complex phenotypes, known 
as supergenes, underlie key life-history traits in a variety of spe-
cies (Schwander et al. 2014). Supergenes are often associated with 

Figure 2.  Hypothetical genomic trait architectures (top row), corresponding model parameters (middle row), and evolutionary simulations (bottom row) for a 
population of diploid individuals with 2 chromosomes that is under a temporary period of directional selection (gray bars in the bottom row): (a) a single locus of 
large effect, (b) 10 loci of small effect with negligible LD , and (c) 10 loci of small effect with strong LD. In the top row, bars indicate the position of individual loci along 
a chromosome. Model parameters include the number of loci (Nloci), their effect sizes, and the degree of LD among them (when applicable), whereby continuous 
dashed lines indicate negligible levels of LD and continuous solid lines indicate strong LD. Individual black lines represent hypothetical replicate simulations (N = 3).
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structural genomic variation, which underlies complex pheno-
types and adaptive processes in a wide variety of non-model taxa 
(Wellenreuther et  al. 2019; Mérot et  al. 2020a). Nonrecombining 
sex chromosomes are extreme examples of supergenes extending 
entire chromosomes, many of which evolved through structural 
genomic mutations (e.g., the mammalian Y chromosome evolved 
through a series of inversions following the formation of the Sex-
Determining Region Y gene) (Lahn & Page 1999; Bachtrog 2013). 
There is emerging evidence that structural genomic variants might 
comprise the most important source of genomic variation in nat-
ural populations (Mérot et al. 2020a), as they have been found to 
account for several times more variation, in terms of the number of 
affected nucleotides, than SNPs (e.g., 3× in the Australasian snapper 
[Chrysophrys auratus; Catanach et al. 2019], 12× in Homo sapiens 
[Pang et al. 2010]).

One of the most well studied types of structural variant is the 
chromosomal inversion (Sturtevant 1921; Wellenreuther et  al. 
2019). Inversions prevent recombination within the inverted region 
by displacing crossovers away from breakpoints during meiosis (at 
least in Diptera flies) or by producing lethal meiotic products (if the 
inversion does not include the centromere) or inviable gametes (if 
the inversion spans the centromere) in heterokaryotypes, resulting in 
the selective recovery of nonrecombinant chromosomes (Rieseberg 
2001; Hoffmann and Rieseberg 2008; Wellenreuther and Bernatchez 
2018).

Other types of structural variation, such as chromosomal fusions 
and fissions, translocations, and copy number variants (CNVs), can 
also generate unbalanced gametes (Rieseberg 2001), which is ex-
pected to have similar implications for recombination rate reduction. 
Chromosomal fusions reduce recombination to a lesser extent than 
inversions, but to varying degrees in both heterozygotes and fused 
homozygotes (Bidau et al. 2001; Guerrero and Kirkpatrick 2014). 
There is also at least one example of a complex CNV maintaining 
linkage among candidate genes associated with multiple traits, ef-
fectively acting as a supergene (Tigano et  al. 2018). Although the 
precise mechanisms for reducing recombination are not yet clear for 
many types of structural variation, the field is poised for major ad-
vances (Mérot et al. 2020a).

Linked Architectures Play a Large Role in Adaptation 
to Rapid Change
Linked architectures are hypothesized to facilitate rapid adapta-
tion by enabling inheritance of coadapted gene complexes. Instead 
of accumulating beneficial alleles over multiple generations, they 
come as a package that has the potential to spread rapidly through 
a population, similar to a single large-effect gene (Kirkpatrick and 
Barrett 2015). Therefore, although the extent of recombination in 
linkage blocks can vary, a linked genomic architecture would enable 
single-locus-like modeling of polygenic adaptation. Their prevalence, 
especially the rising ubiquity of structural variation, necessitates a 
reassessment of common assumptions regarding the degree to which 
genes contributing to a polygenic trait are likely to be physically 
linked and/or experience reduced recombination.

“Mixed-Effect” Architectures Only Partially Alleviate 
Uncertainty
There are numerous examples of single loci (e.g., Carter 1977; 
Daetwyler et al. 2014; Carlson et al. 2016; Barrett et al. 2019) and 
blocks of tightly linked loci (e.g., supergenes; Schwander et al. 2014) 

controlling alternative phenotypes in a seemingly discrete, “mono-
genic” manner. Yet, mixed architectures consisting of a large-effect 
locus, supergene, or haploblock in addition to numerous small-
effect, potentially unlinked, loci are likely common as well (herein, 
referred to as “mixed-effect architectures”). Small-effect variants 
accompanying those of large effect are challenging to detect using 
common approaches (e.g., genome-wide and gene–environment as-
sociations) given the difficulties of distinguishing weak signatures 
of selection from demographic processes or selection on other traits 
(Hoban et al. 2016; Stephan 2016). Thus, whether large-effect vari-
ants are truly monolithic is especially difficult to confirm outside 
of domesticated and model species owing to diverse genomic back-
grounds and environmental influences.

Sinclair-Waters et  al. (2020) recently characterized the mixed-
effect architecture of age-at-maturity in Atlantic salmon, using an ex-
tensive genome-wide association study of 11,166 males from a single 
aquaculture strain, combined with high-density SNP arrays and 
pedigree information. Including the previously known large-effect 
vgll3 and six6 loci, they identified 120 genes contributing to age-at-
maturity with various effect sizes. One would expect such mixed-
effect architectures to exhibit evolutionary dynamics intermediate to 
those of single locus and highly polygenic scenarios: the addition of 
many small-effect loci along with a large-effect locus should reduce 
the stochasticity and trait variance within and between populations. 
Indeed, Kardos and Luikart (2020) simulated a range of mixed-effect 
architectures underlying a phenotypic response to a sudden environ-
mental shift and obtained intermediate levels of average phenotype, 
population viability, and extinction rate relative to the single locus 
and highly polygenic models. Therefore, although mixed-effect archi-
tectures seem to generate somewhat more predictable evolutionary 
dynamics compared with single-locus architectures, they are unlikely 
to completely alleviate the concerning degree of stochasticity that 
seems to be characteristic of architectures with major effect loci. 
Therefore, the evolution of age-at-maturity in Atlantic salmon is still 
likely to exhibit increased variability relative to the classical multi-
locus model of genomic architecture, but unlikely to be as extremely 
varied as the hypothetical single-locus scenario presented previously 
(Kuparinen and Hutchings 2017).

Unfortunately, such large-scale, high-throughput approaches as 
used for Atlantic salmon (Sinclair-Waters et al. 2020) are not feasible 
for most non-model species, which typically lack pedigree informa-
tion and sufficient sample sizes and genomic resources, especially 
when they are of conservation concern. When the precise architec-
ture is unknown, the genomic background (e.g., population or eco-
type) in which a large-effect variant occurs can be considered as to 
whether it potentially influences expression of the focal variant for 
the trait of interest, but only if the variant is polymorphic within dif-
ferent genomic backgrounds. If the genomic background alters trait 
expression within particular genotypes of the focal variant (and in-
dependently of environmental factors), then there must be additional 
loci affecting the trait. How best to model mixed-effect architectures 
when they can be characterized requires further investigation and we 
encourage research in this direction. Nonetheless, in the next section, 
we seek to highlight the broad potential of modeling tightly linked 
architectures as single loci for the purpose of predicting responses of 
natural populations to environmental disturbance. Acknowledging 
the prevalence and ubiquity of large-effect linked architectures, in 
addition to single loci of large effect and mixed-effect architectures, 
is a critical next step towards modeling the full spectrum of genomic 
architectural complexity.
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Linked Genomic Architectures Underlie 
Diverse Traits in Natural Populations That Are 
Directly or Indirectly Under Environmental 
Selection

In recent years, linked genomic architectures have been associated 
with a variety of adaptive traits in natural populations (Table  1). 
Although inversions appear to be the most commonly studied 
(Wellenreuther and Bernatchez 2018; Wellenreuther et  al. 2019), 
chromosomal fusions (Wellband et al. 2019) and complex architec-
tures involving multiple rearrangements (Tigano et al. 2018; Pearse 
et al. 2019) are also associated, directly or indirectly, with traits rele-
vant for adaptation. In some cases, SNPs located in proximity to one 
another are found to be in LD and the structural architecture is yet 
to be determined (e.g., Micheletti et al. 2018). Considering that the 
cataloguing of structural genomic variation is still in its infancy and 
that our understanding of recombination rate variation is lacking 
(Mérot et al. 2020a), we adopt an inclusive approach regarding the 
examples discussed.

Linked Architectures Are Favored by Selection 
Under Gene Flow
Theoretical work has implicated the genetic and genomic architec-
ture of adaptive traits as the key element in determining whether 
they will be lost under gene flow (Bürger & Akerman 2011; Yeaman 
and Whitlock 2011; Yeaman 2013; Aeschbacher and Bürger 2014; 
Akerman and Bürger 2014). Alleles with large effect sizes are less 
likely to be overwhelmed by gene flow (Yeaman and Otto 2011), 
as are tightly linked polygenic architectures because they effectively 
act as a single large-effect locus (Griswold 2006; Yeaman and Otto 
2011). Gene flow increases the risk of breaking up coadapted alleles, 
thereby selecting for reduced recombination and increased linkage 
(Nosil et al. 2009; Tigano and Friesen 2016).

The evolution of linked architectures under gene flow might ex-
plain why they appear to be common in species with high dispersal 
capabilities: flying insects, birds, and fishes (Table 1; Wellenreuther 
and Bernatchez 2018). Many examples of extremely tight linkage 
derive from systems in which closely related species or ecotypes are 
living in sympatry (Nosil et al. 2009; Hooper 2016). Yet, high gene 
flow is pervasive in the natural world, including many plants with 
high seed dispersal and marine organisms with pelagic early life 
stages. Therefore, linked architectures are likely common.

Linked Architectures Are Often Directly Associated 
With Environmental Adaptation
Linked architectures associated with adaptation to local environ-
mental variables seem particularly common among flies and fishes 
(Table  1; Wellenreuther and Bernatchez 2018). Flies in the genus 
Drosophila provide numerous examples of inversions associated 
with environmental adaptation, including those exhibiting latitu-
dinal (Krimbas and Powell 1992; Anderson et al. 2005; Rane et al. 
2015; Fuller et al. 2016; Kapun and Fabian 2016; Fuller et al. 2017; 
Kapun and Flatt 2019) and altitudinal (Kapun and Flatt 2019) clines, 
as well as adaptation to a desert environment (possibly through the 
host plant; Guillén and Ruiz 2012). Of particular interest from a 
human health perspective, environmentally structured inversion 
polymorphisms are common among Anopheles spp. mosquitos, 
potentially enhancing the adaptability and vector potency of these 
primary malaria vectors (Ayala et  al. 2014, 2017). Inversions in 
Anopheles spp. vary in karyotype frequencies across latitudinal 

clines and between mountain forests and lowland savannahs (Ayala 
et al. 2017), and are associated with aridity tolerance.

Inversions and blocks of differentiation (which may or may not 
be associated with inversions) appear to underlie adaptation to 
salinity (Jones et al. 2012; Berg et al. 2015) and vary in frequency 
across latitudinal clines in marine fishes, suggesting an association 
with temperature or growing season length (Pettersson et al. 2019; 
Therkildsen et al. 2019; Kess et al. 2020). Chromosomal transloca-
tions and fusions are common among salmonids (Phillips 2005). 
Their adaptive significance, if any, is not generally known, although 
a fusion in Atlantic salmon (Ssa08/Ssa29) is associated with summer 
precipitation in a Canadian river system (Wellband et al. 2019).

Although we have focused on adaptation to abiotic environ-
mental variables, traits controlled by linked architectures can also be 
associated with the biotic environment. For example, cryptic color-
ation in timena stick insects (Lindtke et al. 2017; Lucek et al. 2019) 
and mimicry patterns in butterflies (Joron et  al. 2013; Nishikawa 
et al. 2015), associated with a large haploblock and inversions, re-
spectively, are under selection via local host plants and predators 
associated with particular environments. Changes in these environ-
ments can alter camouflage substrates and predator distributions. 
Adaptation will therefore depend partly on the evolutionary dy-
namics of the linked regions.

Linked Architectures Are Also Indirectly Associated 
With Environmental Adaptation
Architectures that link genes controlling several types of co-adapted 
traits can result in indirect selection on traits associated with envir-
onmental adaptation. The inversions in Anopheles spp. associated 
with differences in aridity tolerance (Cheng et al. 2018) are also as-
sociated with morphology and behavior (reviewed by Ayala et  al. 
2014). Inversions underlie alternative reproductive phenotypes in 
some birds (Thomas et al. 2008; Horton et al. 2014; Küpper et al. 
2016; Zinzow-Kramer et al. 2015), simultaneously controlling mor-
phological (e.g., plumage coloration), behavioral (e.g., mating tactic), 
and life history (e.g., maturation, growth rate) traits. Common 
murres (Uria aalge) have a complex CNV maintaining linkage 
among genes associated with plumage coloration and thermal toler-
ance despite random mating (Tigano et al. 2018).

Alternate behavioral or life history strategies often impose dif-
ferent environmental selection pressures. Fish populations that 
migrate between freshwater and saltwater for reproduction and 
feeding require different temperature and salinity adaptations com-
pared to resident populations that do not migrate. Consequently, 
linked architectures in marine and freshwater fishes are associated 
with coexisting migratory ecotypes experiencing different environ-
ments (Table 1; Pearse et al. 2014; Berg et al. 2016; Kirubakaran 
et  al. 2016; Arostegui et  al. 2019; Kess et  al. 2019; Pearse et  al. 
2019). For example, a double inversion in steelhead/rainbow trout 
(Oncorhynchus mykiss) varies in frequency between anadromous 
(maturing at sea) and resident populations, as well as between flu-
vial (maturing in rivers) and adfluvial (maturing in lakes) popula-
tions, and exhibits latitudinal- and temperature-associated frequency 
clines (Pearse et al. 2014; Arostegui et al. 2019; Pearse et al. 2019).

Variation in reproductive timing can require adaptations to dif-
ferent environmental conditions, such as different temperatures 
experienced during early life (Oomen and Hutchings 2015, 2016), 
which could favor architectures that link genes associated with en-
vironmental and life history traits. An inversion in Atlantic herring 
(Clupea harengus) is associated with both temperature and timing 
of reproduction (Fuentes-Pardo et al. 2019; Pettersson et al. 2019), 
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whereas linked regions in Chinook salmon (O. tshawytscha; Narum 
et al. 2018) and steelhead (Micheletti et al. 2018) are associated with 
the timing of arrival to spawning grounds.

Many social traits in insects, birds, fishes, and plants are con-
trolled by linked architectures due to bidirectional influences be-
tween social behavior and genome architecture (reviewed by 
Rubenstein et al. 2019). For example, a supergene containing mul-
tiple chromosomal rearrangements underlies several social traits in 
the fire ant (Solenopsis invicta; Huang et al. 2018). The connection 
between social traits and linked architectures has broad relevance 
for predicting responses to environmental change, as sociality itself 
is often under environmental selection. For example, thermal stress 
and resource scarcity select for more or less sociality in different spe-
cies and contexts (Doering et al. 2018; Kao et al. 2020). Further, so-
cial traits are often correlated with phenotypes that might be under 
selection from anthropogenic stressors such as climate change and 
harvesting (e.g. alternative mating tactics and growth rate in sword-
tail fish [Xiphophorus spp.; Lampert et al. 2010]).

Theory predicts that supergenes are also likely to arise when 
there is coevolution between social traits and dispersal, because dis-
persal will be selected against in benevolent individuals so that they 
tend to interact with relatives and selected for in selfish individuals 
so that they tend to interact with nonrelatives (Mullon et al. 2018; 
Rubenstein et al. 2019). Therefore, linkage between genes for dis-
persal traits (e.g., locomotion, physiology) and social behavior is ex-
pected to evolve under a variety of circumstances (Rubenstein et al. 
2019). As dispersal is one of the primary mechanisms of organismal 
responses to environmental change, control by linked architectures 
will likely alter predictions of responses to disturbance in a wide 
array of taxa.

Therefore, selection on diverse traits could indirectly impose 
selection on traits associated with environmental adaptation and 
incorporating linkage when modeling environmental responses has 
broad taxonomic utility.

Flexible Ecogenetic Models Can Reflect a 
Diversity of Genomic Architectures

The best modeling strategy will depend on what is known regarding 
the genomic trait architecture. For most traits, the precise architec-
ture is not known and is often estimated to consist of between 10 and 
100 unlinked loci of equal effects (e.g., Kuparinen and Hutchings 
2012). Given the rising prevalence of major effect loci and tightly 
linked architectures, exploring both extremes—single locus, repre-
senting both major effect and tightly linked loci, and highly poly-
genic, unlinked loci—is warranted. In reality, mixed architectures are 
likely common and are expected to produce intermediate levels of 
stochasticity (Kardos and Luikart 2020). Yet, the output of these ex-
treme scenarios will be informative about the range and distribution 
of possible outcomes and the sensitivity of the model to the genomic 
architecture in a particular case (e.g., life history or selection regime). 
As genomic information becomes available, more precise estimates 
of the number of loci, their effect sizes, and the degree of linkage 
among them can be incorporated into eco-evolutionary models.

Conclusion

The challenges of obtaining estimates of LD are being rapidly over-
come by high-throughput sequencing and advances in statistical 
genomics (Peñalba and Wolf 2020; Box 2). Our understanding of Sp
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the fitness effects of linked genomic architectures is also poised 
for great improvements in the near future due to increased quality 
and accessibility of genomic resources for non-model species and, 
consequently, heightened interest in the topic (Wellenreuther et al. 
2019; Mérot et al. 2020a; Box 2). Nonetheless, simple approxima-
tions can be obtained in the meantime by treating tightly linked 
genomic architectures as single loci of large effect. Although this 
approach is likely too simplistic for some purposes, it has been 
shown to be more powerful for detecting genotype–environment 
associations with linked haploblocks compared to characterizing 
genotypes based on SNPs within the blocks (Todesco et al. 2020). 
Ultimately, we view single-locus approximations of tightly linked 
architectures as a useful counterpoint to the conventional way 
of thinking about and modeling polygenic architectures (i.e., the 
quantitative genetics paradigm, which should be continually re-
visited in light of genomic data; Nelson et  al. 2013). Therefore, 
when the genomic architecture is not known, a precautionary ap-
proach considers the greater variability and higher uncertainty 
that appears to be characteristic of a single-locus scenario (also 
see Kardos and Luikart 2020). Rapid developments in the fields 
of recombination rate variation and the population genomics of 
structural variants will continue to improve predictions borne 
from genomic data.

Implementing genomic architecture into spatially or tempor-
ally explicit conservation and management plans presents add-
itional considerations. For example, variable rates of gene flow 
within species could result in different genomic architectures 
underlying adaptation at different spatial and temporal scales 
(Nosil et al. 2009; Oomen 2019). The same trait could be under 
selection at both scales, as contrasting genomic architectures can 
produce similar phenotypic outcomes (Therkildsen et al. 2019). 
The diversity of genomic architectures underlying the same or 
different traits also complicates the process of delineating evo-
lutionarily significant units for conservation, particularly when 
the relative fitness consequences of trait variation is unclear 
(Waples and Lindley 2018; Waples et  al. 2020). Nonetheless, 
it is clear that we must consider linked genomic architectures 
underlying adaptive traits when predicting the consequences of 
environmental disturbance to natural populations. Otherwise, 
by overestimating the complexity (e.g., number of independent 
loci) of the genomic architecture of traits under selection, we 
risk underestimating the complexity (e.g., nonlinearity) of their 
evolutionary dynamics.
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