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Intrinsic postzygotic barriers can play an important and multifaceted role in
speciation, but their contribution is often thought to be reserved to the final
stages of the speciation process. Here, we review how intrinsic postzygotic
barriers can contribute to speciation, and how this role may change through
time. We outline three major contributions of intrinsic postzygotic barriers to
speciation. (i) reduction of gene flow: intrinsic postzygotic barriers can effec-
tively reduce gene exchange between sympatric species pairs. We discuss
the factors that influence how effective incompatibilities are in limiting
gene flow. (ii) early onset of species boundaries via rapid evolution: intrinsic post-
zygotic barriers can evolve between recently diverged populations or
incipient species, thereby influencing speciation relatively early in the pro-
cess. We discuss why the early origination of incompatibilities is expected
under some biological models, and detail how other (and often less obvious)
incompatibilities may also serve as important barriers early on in speciation.
(iii) reinforcement: intrinsic postzygotic barriers can promote the evolution of
subsequent reproductive isolation through processes such as reinforcement,
even between relatively recently diverged species pairs. We incorporate clas-
sic and recent empirical and theoretical work to explore these three facets of
intrinsic postzygotic barriers, and provide our thoughts on recent challenges
and areas in the field in which progress can be made.

This article is part of the theme issue ‘Towards the completion of speciation:
the evolution of reproductive isolation beyond the first barriers’.
1. Introduction
Reproductive barriers are the currency of speciation. These barriers can occur
before or after a hybrid zygote is formed (i.e. pre- and postzygotic), and selec-
tion against hybrids may or may not be mediated by the environment (i.e.
extrinsic versus intrinsic). While intrinsic postzygotic barriers were an initial
focus of speciation research [1–4], recent work has highlighted the importance
of ecology in reproductive isolation, namely prezygotic and extrinsic postzygo-
tic barriers [5–8]. This wave of ecology-focused speciation work, paired with the
observation that prezygotic barriers tend to reach completion before intrinsic
postzygotic barriers (e.g. [9,10]), has led to the prevalent opinion that prezygo-
tic barriers play a more important role in speciation than intrinsic postzygotic
barriers, particularly early on [11–15]. Yet, the fact that intrinsic postzygotic bar-
riers are common across all kingdoms of life, and are a hallmark of most ‘good’
species [16] suggests that their role in speciation may also be essential.

Here, we highlight the contribution of intrinsic postzygotic barriers to spe-
ciation and explore how this contribution may change as speciation proceeds.
While speciation is a continuous process, we refer to early and late stages
based on the degree of reproductive isolation between species, while acknowl-
edging that reproductive isolation is not unidirectional and can be accumulated
or lost (figure 1). While these stages roughly correspond to divergence times;
wherein recently diverged populations or incipient species may represent ear-
lier stages, and more divergent species pairs may represent later stages, it is
not a perfect proxy for reproductive isolation. For example, speciation can be
instantaneous (e.g. polyploid speciation [16,32] or ‘single-gene speciation’
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Figure 1. Intrinsic postzygotic barriers play a dynamic role throughout speciation. Incompatibilities can allow for the build up of divergence, while introgression can reverse
incompatibilities by replacing incompatible allelic combinations with compatible ones (bottom arrow; lighter colour indicates increasing genetic homogenization, while
darker colouring indicates increasing divergence). Three stages of incompatibilities are outlined: polymorphic (involving segregating alleles within species or between
incipient species), simple (involving few interacting alleles), and genetically complex (involving many interacting incompatibility alleles with potential for genetic redun-
dancy). The evolutionary processes that connect these stages are listed below the arrows in italics. Early in the speciation process, various evolutionary forces may generate
polymorphic incompatibilities (outlined in [17–20]). These in turn may become species-wide, genetically simple incompatibilities if incompatibility alleles fix. Simple
incompatibilities can become genetically complex if incompatibility alleles continue to accumulate in a snowball like fashion, in turn creating genetic redundancy
[18,21–30]. Although these are drawn as discrete stages, we note that the path of speciation can be substantially more complex (for example, polymorphic incompatibility
may be genetically complex). If there is sufficient selection against hybrids, and sufficient production of unfit hybrids, processes such as reinforcement can complete
speciation ([31]; note the dotted line between ‘hybridization & introgression’ and ‘reinforcement’). We highlight that divergence is reversible at almost any point
along this continuum (although it becomes increasingly more difficult as incompatibilities become more complex). Also, all of these processes can occur relatively rapidly,
and may not reflect divergence times between incipient species (e.g. incompatibilities may remain polymorphic for long periods of time if they are maintained by local
selection, or reinforcement may happen relatively rapidly if there is strong selection against the production of unfit hybrids).
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[33], but see [34–36]). Alternatively, relatively divergent
species pairs may collapse owing to hybridization [37–39].
2. What do we mean by intrinsic postzygotic
barriers?

Intrinsic postzygotic barriers manifest when hybrids exhibit
lower fitness than either parent, regardless of the environ-
ment. Although many examples of intrinsic postzygotic
barriers can easily be classified as such, this delimitation is
not always clear. For example, barriers that originate prezy-
gotically can also manifest again in hybrids (e.g. [40]). In
addition, extrinsic factors can influence the severity of
expression of intrinsic postzygotic barriers (e.g. [41,42]).
While most research of intrinsic postzygotic reproductive bar-
riers focuses on its most severe forms—hybrid sterility or
inviability—these barriers may also manifest as reduced cog-
nitive [43–45] or physiological ability [46,47], or subtler
declines in fertility or viability (e.g. [48,49]).
3. The role of intrinsic postzygotic barriers may
change throughout the speciation process

Intrinsic postzygotic barriers may be crucial for speciation,
but their role is probably dynamic through time. Whether
intrinsic postzygotic barriers contribute to the onset of specia-
tion is unresolved. Incompatibilities commonly segregate
within species [50–52] and between recently diverged incipi-
ent species [53–64], which may serve as an initial barrier.
However, polymorphic incompatibility alleles can also be
transient, in which case, their contribution to speciation is
unclear. For example, incompatibility alleles may be lost by
drift or selection before reaching fixation, or polymorphic
incompatibility alleles may be polymorphic, because
introgression has replaced incompatible allelic combinations
with compatibles ones (e.g. [62,64–68]; figure 1). Determining
whether polymorphic incompatibility alleles are transient is
challenging (and in some cases impossible), and efforts to
assess the fate of polymorphic incompatibility alleles requires
knowledge of the specific alleles that contribute to reproduc-
tive isolation, large population genomic datasets to infer
patterns of introgression and selection, and/or the ability to
perform crosses. Still, some polymorphic incompatibilities
will ultimately reach fixation (figure 1; box 1) and the obser-
vation that some barrier alleles predate speciation (e.g.
[60,110]) suggests that intrinsic postzygotic barriers may be
present at the onset of speciation.

Strong evidence that intrinsic postzygotic barriers play a
role at low to intermediate levels of divergence stems from
the commonality of these barriers between incipient and
recently diverged species pairs. We amassed data from
eight previously published comparative studies, comprising
nine taxonomic groups, to determine whether significant
intrinsic postzygotic isolation can appear early in divergence
and whether this is common across taxonomic groups
[9,111–117]. In each study, the degree of reproductive isolation
was assessed as a function of genetic distance between species.
However, these studies differ in how reproductive isolation
and genetic distance were measured. Some used categorical
indices of intrinsic postzygotic isolation [9,111–113], while
others measured individual components of intrinsic post-
zygotic isolation [114–117]. Studies also varied in both the
statistic calculated to infer divergence (e.g. Nei’s D [9,111],
phylogenetic distance [116], pairwise sequence distance
[112,113,115], divergence in millions of years [117] or Ks

[114]), as well as the genetic markers used (a small number
of nuclear or mitochondrial genes [112–117] or allozymes
[9,111]). While these methodological differences prevent us
from quantitatively comparing studies, their amalgamation
can qualitatively inform us of general patterns in speciation.



Box 1. The genetic basis of intrinsic postzygotic barriers.

The evolution of intrinsic postzygotic barriers baffled early biologists, as natural selection should never favour the production
of unfit hybrids [69]. We now know that these barriers need not evolve in the face of selection, but often evolve as a bypro-
ducts of divergence between populations at two or more loci (i.e. DMIs; the Dobzhansky-Muller model of genetic
incompatibilities [70–72]). DMIs are common across biological kingdoms [19,20,73], and can underlie both hybrid inviability
and sterility [15,17,74], though there are other causes of intrinsic postzygotic barriers (i.e. changes in ploidy, structural geno-
mic changes, differences in endosymbionts [16], meiosis defects owing to substantial sequence divergence [73], or global
patterns of inappropriate gene expression as a result of gene regulatory divergence [75]). DMIs can involve interactions
between nuclear, or nuclear and organellar genes (reviewed in [16]). They may involve substitutions in two diverging
lineages or multiple derived substitutions in one lineage and a preserved ancestral allele in another (derived–derived
versus derived–ancestral incompatibilities; [76,77]). Many studies have mapped the genetic location of incompatibility alleles,
but few incompatibilities have been resolved to the level of genes [74]. Still, some general patterns have emerged from these
mapping efforts while many questions remain.

First, the number of loci involved in DMIs varies greatly (from simple incompatibilities involving a single pair of interacting
alleles [78]; to complex incompatibilities involving many interacting alleles [79]). The number of loci contributing to DMIs
should increase through time, although the rate of increase is debated [18,21–28]. The number of loci involved in DMIs
does not reflect the severity of the barrier; many severe inviability or sterility phenotypes are controlled by simple incompat-
ibilities [29]. However, as the complexity of intrinsic postzygotic barriers increase, so does the potential for genetic redundancy
(e.g. an increase in the number of incompatibility loci with no substantial increase in reproductive isolation). For example,
hybrid inviability between Drosophila melanogaster and each of Drosophila simulans and Drosophila santomea is equally
strong, but is controlled by roughly six times more loci in the latter cross [24].

Second, a knowledge of the genes responsible for intrinsic postzygotic barriers has provided insight into the underlying
causes for their evolution. Of the incompatibility genes discovered to date, many exhibit genomic signatures of strong posi-
tive selection ([53,80–86], reviewed in [19,87,88]), although others do not [89–92]. Yet, the evolutionary drivers of most
incompatibilities are unresolved. Several evolutionary explanations have been put forth as the underlying cause of incompat-
ibilities, including local adaptation [93–96], hitchhiking [97,98], systems drift (i.e. stochastic evolution of the genetic basis of a
trait without change to the phenotype [99–101]), gene duplication [102–104], intra-genomic conflicts [19,87,88], and host-
pathogen conflict [20,50,105]. Although the original proposals [106,107] were met with skepticism [108,109], of the handful
of incompatibilities for which the underlying genes have been identified, many seem to have evolved via conflicts. Yet, the
relative importance of conflict, other types of selection and other processes, in the evolution of incompatibility alleles remains
unknown.

Third, many species exhibit genetic variation for reproductive isolation. This variation can exist as segregating
incompatibilities within a species [50–52], or as a genetic polymorphism for the ability of a species to cross to a close relative
(e.g. [53–64] reviewed in [18]). The relative importance of polymorphic incompatibilities in speciation has been debated, and
their contribution will depend on the allele frequencies of each incompatibility allele [18].
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We find that substantial intrinsic reproductive isolation
appears relatively early in divergence for most groups
(figure 2). In fact, in eight of nine comparative studies, the
first species pair to reach complete intrinsic postzygotic
reproductive isolation is within the youngest half of species
tested, and the distribution of genetic distances for species
pairs with greater than 50% intrinsic postzygotic isolation
is largely overlapping with the distribution of genetic dis-
tances for species pairs with less than 50% reproductive
isolation (figure 2; we note that centrarchid fishes is the
exception in both of these observations [117]). In addition,
there are many examples of rapid evolution of intrinsic
barriers. For example, hybrid sterility evolves rapidly in
stalk-eyed flies [118], mountain pine beetles [63,119], and sev-
eral plant lineages [120–122], sometimes in the absence of
significant prezygotic barriers (e.g. [123]). Hybrid inviability
has been shown to evolve rapidly in several plant species
[60,124–127], as well as mammals [128]. In line with the
rapid evolution of reproductive barriers is the observation
that diverging populations tend to show a very sharp tran-
sition between freely sharing migrants to exhibiting no
signs of migration [129–131] (although these patterns do
not uniquely support a role of intrinsic postzygotic barriers).
Understanding at what level of reproductive isolation this
transition will happen is a key aim in speciation biology.

Not all species pairs evolve intrinsic postzygotic isolation
rapidly. Variation exists within and between taxonomic
groups for the rate of evolution of intrinsic postzygotic bar-
riers. For example, complete intrinsic postzygotic isolation
is not achieved in centrarchid fishes until approximately
28 Myr [117], while similar levels of isolation can be reached
within approximately 3–5 Myr for birds, Drosophila, and
Streptanthus (figure 2, [9,112,116]). Similarly, intrinsic barriers
tend to evolve faster in mammals than birds or frogs
[4,132,133]. Studies comparing species pairs with and with-
out strong reproductive isolation at comparable levels of
divergence can shed light on the underlying evolutionary
drivers of intrinsic postzygotic barriers. For example,
hybrid male sterility accumulates faster in the tropics in
Drosophila [134]. In plants, mating system [135] and life
history [115] affect the rate of evolution of hybrid inviability
and sterility, respectively.

Lastly, intrinsic barriers probably play an important role
late in the speciation process. Most divergent species show
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Figure 2. Intrinsic postzygotic reproductive isolation can evolve rapidly across many types of taxonomic groups. The rate of evolution of different types of intrinsic
postzygotic reproductive isolation across nine different taxonomic groups. Scatterplots display the rate of accumulation of either hybrid inviability (V), sterility (F) or
an index of both (I) for species pairs of differing divergence times, with the first species pair to achieve complete reproductive isolation (greater than 99.5%
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in each study (the statistic calculated as well as the markers used are listed as individual panel X-axis labels). References for the data are as follows: Birds [112],
Drosophila [9], centrarchid fishes [117], Helianthus and Madiie [115], Streptanthus [116], Lepidoptera [111], Nolana [114], toads [113]. For both Nolana and Strep-
tanthus, multiple components of intrinsic postzygotic reproductive isolation were measured. Here, we display reproductive isolation conferred by the number of
viable seeds produced, as it is one of the earliest acting barriers. (Online version in colour.)
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strong intrinsic reproductive isolation (figure 2). The accumu-
lation of reproductive isolation may simply be a consequence
of time (i.e. a deterministic outcome of genomic divergence).
By contrast, it is also possible that the reason most ‘good’
species have strong intrinsic reproductive isolation is because
strong intrinsic postzygotic isolation is essential to the specia-
tion process. For example, species pairs with strong intrinsic
postzygotic isolation may be less likely to collapse owing
to hybridization upon secondary contact than weakly iso-
lated species (e.g. Templeton effect [136]; reviewed in
[16,37,137]). As species accumulate divergence, genetic
incompatibilities are expected to increase in complexity and
redundancy (box 1; [21,22]). This increased redundancy can
greatly reduce the probability of introgression, and therefore
the probability of species collapse (figure 1). Alternatively,
intrinsic postzygotic barriers may play a generative role via
reinforcement or positive feedbacks between pre- and post-
zygotic barriers [e.g. 138]. Determining whether the
presence of strong intrinsic postzygotic barriers in divergent
species is a deterministic outcome of time, or whether intrin-
sic postzygotic barriers play an essential role in species
persistence are challenging, but essential goals in speciation
biology.
We posit that intrinsic postzygotic barriers may play a
dynamic role throughout the speciation process. Through
time the underlying genetic architecture of intrinsic postzygotic
barriers is expected to change, and this in itself can influence
how these barriers contribute to speciation (figure 1; box 1).
Early on, the evolutionary forces that give rise to intrinsic post-
zygotic barriers will generate polymorphic incompatibilities,
some of which will fix between species (figure 1; box 1).
Through time, these simple incompatibilities are expected to
increase in genetic complexity and redundancy (figure 1; box 1).
As these barriers increase in complexity, so too does the ability
of intrinsic postzygotic barriers to prevent introgression at
genome-wide scales. The presence of strong intrinsic bar-
riers—whether simple or complex—can also generate
reinforcing selection, which can ultimately complete speciation.
4. Intrinsic postzygotic barriers can contribute to
speciation in multiple ways

The contribution of intrinsic postzygotic isolation to specia-
tion is a contentious issue. While there is substantial
theoretical work on this topic, empirical tests are challenging,
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and may require a knowledge of barrier alleles, the ability to
detect genome-wide rates of introgression, large comparative
datasets and/or the ability to perform many controlled
crosses. Here, we outline three important ways that intrinsic
postzygotic barriers can contribute to speciation.

(a) Limiting introgression
The first and most obvious way in which intrinsic postzygotic
barriers contribute to speciation is by dampening gene flow
between diverging populations. By definition, all reproduc-
tive barriers should restrict introgression between species,
but barriers may vary in the rate at which they prevent intro-
gression and the extent to which particular barriers prevent
introgression can be influenced by many factors. Secondary
contact zones—whether natural, synthetic or simulated—
present a unique opportunity to test how effective different
types of barriers are, as well as the factors that affect the abil-
ity of particular barriers to restrict introgression [16,139].
Here, we discuss the efficacy of intrinsic postzygotic repro-
ductive isolation as a barrier to gene flow by comparing
intrinsic postzygotic barriers to other barriers, and discussing
the factors that can influence the ability of intrinsic postzygotic
reproductive barriers to prevent introgression.

(i) How well do intrinsic postzygotic barriers prevent
introgression relative to prezygotic barriers?

Researchers have argued that prezygotic barriers are sufficient
tomaintain species boundaries [140], intrinsic postzygotic bar-
riers are more effective than prezygotic barriers [40,141,142],
both are equally efficient at preventing introgression
[65,143], or that both are necessary to prevent species collapse
[37,144]. Different conclusions mainly stem from differences in
underlying assumptions (e.g. the genetic architecture of repro-
ductive isolation) or what is considered evidence for the
maintenance of species boundaries (e.g. whether hybrid
zones remain ‘bimodal’ [140], or the diffusion of alleles relative
to dispersal [40,141,145]). Empirical studies describe hybrid
zones maintained predominantly by prezygotic barriers
[146–151], postzygotic barriers [152–156] or a combination
[157–163]. Thus, either prezygotic or postzygotic reproductive
barriers may be sufficient to maintain a stable hybrid zone if
sufficiently strong. Conversely, both prezygotic and postzygo-
tic barriers are susceptible to gene flow, and either may
dissolve if sufficiently weak [66,67,145,164].

One approach to estimate the efficacy of different barriers
in preventing introgression is to assess how easily specific
barrier alleles cross species boundaries relative to the rest of
the genome. Alleles that play no role in reproductive isolation
should diffuse across a secondary contact zone in a manner
that is proportional to the migration rate, and as such
should exhibit generally low differentiation [145,165]. By con-
trast, alleles that maintain species boundaries should show
sharper clines [145,166], and should represent differentiated
regions of the genome (although we note that this is not a
valid assumption for single allele mate preference [167]). By
comparing the rate of diffusion of alleles that contribute to
pre- versus intrinsic postzygotic isolation, we may begin to
understand how effective each of these types of barriers
are. While seemingly straightforward, only a handful of
studies have assessed the outcome of known barrier loci in
hybrid zones (e.g. [62,64,168,169]), and studies comparing
clines of known pre- versus intrinsic postzygotic barriers
are lacking. Genomic scans for highly differentiated loci
have been used to identify regions of the genome that
appear resistant to gene flow and thus may contribute to
reproductive isolation (e.g. [170–173]), but these analyses
are also likely to contain regions of high differentiation that
are unrelated to speciation [165,174,175]. In addition, geno-
mic scans can only assess what alleles resist introgression.
Barrier alleles that introgress between species cannot be
identified using this approach. In order to holistically assess
what alleles maintain species boundaries and which ones
succumb to introgression, we suggest that researchers use
both sympatric and allopatric populations to understand
the distribution of both reproductive barriers (e.g. [68,176]),
as well as the underlying alleles. While certainly a challen-
ging endeavour, integrating quantitative genetic mapping
methods to identify barrier loci in allopatric populations
with population genomic tools to assess their fate in sympa-
try is a powerful approach to determine how different types
of barrier loci fair in secondary contact.

Ultimately, speciation biologists are interested in under-
standing how reproductive barriers can allow for divergence
to accumulate, and for gene flow to be prevented not just at
specific barrier loci, but genome-wide. Theory predicts that
even moderate intrinsic postzygotic isolation can substantially
decrease the rate of introgression of both barrier and linked
neutral loci [40,65,166]. One valuable test of the relative effi-
cacy of pre- versus intrinsic postzygotic barriers in nature
would be to characterize the extent of introgression and the
distribution of introgressed alleles in secondary contact
zones when the involved species are reproductively isolated
via prezygotic, postzygotic or both types of barriers. With
the advent of inexpensive sequencing technologies in combi-
nation with advanced computational methods for ancestry
assignment (e.g. [158,177–179]), detecting and quantifying
introgression across a wide variety of secondary contact
zones is an achievable task, and in fact has been done to
assess the genomic outcomes of hybridization, as well as
map incompatibility loci in hybrid zones (e.g. [180,181]).
(ii) What factors affect the ability of intrinsic postzygotic barriers
to impede introgression?

A rich theoretical literature suggests that the ability of intrin-
sic postzygotic barriers to prevent introgression depends on
three aspects of barrier loci: (i) the genetic architecture,
(ii) the genetic context, and (iii) the mechanism of evolution.
We discuss each of these in turn.

Genetic architecture- or simply, the number and location
of incompatibility loci, and their mode of action (i.e. domi-
nance, additivity) can effect rates of introgression. Polygenic
intrinsic postzygotic barriers should be more efficient than
simple incompatibilities at hampering introgression across
the genome (although this will also depend on the domi-
nance, additivity and effect size of the loci involved;
[67,145,166,182,183]). The rate of introgression for a neutral
locus will depend on both the degree of linkage with and
the amount of selection against linked incompatibility alleles.
Therefore, if incompatibilities are randomly distributed
throughout the genome, then as the number of incompatibil-
ity loci increases, so does the proportion of the genome that is
linked to an incompatibility allele, and is thus protected
against introgression (although, selection against any particu-
lar incompatibility locus will be lower for polygenic
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incompatibilities than simple ones if selection against hybrids
is equal). Curiously, the proportion of the genome that is pro-
tected against introgression may increase nonlinearly with
time, as the number of loci involved in incompatibilities is
expected to increase nonlinearly (assuming that an increase
in the number of loci involved in an incompatibility also
increases reproductive isolation or the genetic redundancy
of strong intrinsic postzygotic barriers; [22,24,25,30]).

In addition, the dominance of incompatibility alleles, as
well as whether they are sex-linked or autosomal will influence
the generation (i.e. F1, F2 or later) that an incompatibility is
revealed and the proportion of hybrids that are afflicted by
the incompatibility. In theory, incompatibilities that manifest
in the first generation of hybrids, or involve more dominant
loci should be more effective at preventing introgression
[30,67]. While there are few empirical tests of this prediction,
recent work has shown that hybrid lethality involving two
recessive alleles is relatively ineffective at preventing gene
flow in sympatric populations of Mimulus [62]. Dominance
and linkage can interact to influence the manifestation and
maintenance of barriers. For dominant incompatibility loci,
linkage between interacting alleles can maintain reproductive
isolation in the face of substantial gene flow [164,184]. How-
ever, for incompatibilities involving two recessive loci, tight
linkage among themwill ensure a low probability that hybrids
are homozygous for both incompatibility loci, and therefore
the incompatibility will rarely manifest.

The genomic context of barrier loci can also impact pat-
terns of introgression. Gene density and recombination can
interact to influence rates of introgression such that regions
of low recombination are more protected against introgression
than regions of high recombination. This is because regions of
high recombination have an increased probability that neutral
alleles will recombine away from incompatibility alleles, par-
ticularly in gene-rich regions which are more likely to house
incompatibility loci [180]. This has been shown theoretically
[145] and empirically across scales: including variation in
local recombination rate along the genome [180,181], within
versus outside of structural changes that reduce recombination
(e.g. inversions [185–187]), and between chromosomes that
vary in the extent of recombination they experience (e.g. sex
chromosomes versus autosomes: [168,188], although reduced
introgression on sex chromosomes may also be a function of
the higher density of incompatibility loci on sex chromosomes
than autosomes; reviewed in [189]). The recombination land-
scape can vary within and between populations [190,191],
and this may have implications for population or individual
differences in the rates and landscape of introgression.

Finally, the degree to which intrinsic postzygotic barriers
can prevent gene flow is also a product of the evolutionary
drivers responsible for incompatibilities. Most theory
suggests that incompatibility alleles that evolved neutrally
are unlikely to be maintained in secondary contact [67,145].
This is because derived incompatibility alleles will experience
a fitness cost when in the wrong genomic background, while
ancestral alleles should be equally fit on all genomic back-
grounds. By contrast, if incompatibilities have evolved via
selection, the selective benefit of each incompatibility allele
may outweigh the fitness cost when those alleles are found
in the wrong genetic background. Yet, little work has been
done to explore how different evolutionary drivers of incom-
patibilities can influence the stability of incompatibility alleles
under scenarios of gene flow. It has been argued that
incompatibilities which have evolved as a byproduct of adap-
tation to the same or similar selective pressures (e.g.
mutation-order speciation) are unlikely to be maintained in
the face of gene flow, as allelic combinations that have the
highest global fitness will eventually spread to both species
[15,192,193]. While this is intuitive for situations in which
incompatibilities arise when populations are adapting to the
same optima (e.g. [194]), it may not accurately describe
incompatibilities that result from other selective processes
(such as genomic conflicts and other co-evolutionary pro-
cesses). Yet, to our knowledge, this has not been explicitly
modelled. Therefore, new theory and simulations assessing
how different evolutionary drivers affect the stability of
different barriers in secondary contact are needed.

(b) Early onset of species boundaries via rapid evolution
The second major contribution of intrinsic postzygotic barriers
to speciation is that these barriers can play a prominent role
when they evolve early in the speciation process. Above, we
point out that hybrid sterility and inviability often evolve
rapidly and many incompatibility alleles exhibit signatures of
rapid evolution (box 1). The rapid evolution of intrinsic bar-
riers is perhaps unsurprising in light of the potential
evolutionary drivers of incompatibilities. While only a handful
of studies have determined the evolutionary drivers of
incompatibility alleles, of the few examples amassed, co-
evolutionary, conflict-driven processes appear to dominate
(reviewed in [19,87,88]). Theory predicts that conflict-driven
evolution should promote arms-race dynamics [195,196],
which in turn would result in rapid evolution that is detectable
at the molecular level. Several intrinsic reproductive barriers
that are thought to evolve via conflict-driven processes also
exhibit rapid evolution—either by appearing in recently
diverged species [118,126] or by showing signals of positive
molecular evolution [50,53,83,85].

While this reviewhas focused onmore severe hybrid defects,
there is a host of less obvious intrinsic hybrid deficiencies that
may appear even earlier in the speciation process. For example,
in animals, hybrids have been shown to display transgressive
metabolic phenotypes [46,47,197–199], and neurological defects
[43–45,200]. In plants, many closely related crop varieties exhibit
reduced vegetative growth, malformed roots and/or reduced
fertility (sometimes referred to as ‘hybrid weakness’; e.g. [201–
204]; synthesized in [20]). The fitness consequences of these
defects have rarely been studied (though see [197,200]), but
may impose substantial selection against hybrids between
recently diverged taxa (e.g. in crop plants, hybrid weakness
has evolved within thousands of years). Determining the
timing ofwhen these types of barriers evolve, their commonality
in natural populations, the degree of selection against them, and
the evolutionary drivers responsible for them are all essential
aims for speciation biologists.

(c) Reinforcement
Lastly, the third major role intrinsic postzygotic reproductive
isolation can play in the speciation process is the generation
of subsequent reproductive isolation. Specifically, the pres-
ence of strong intrinsic postzygotic barriers between
sympatric taxa can lead to selection favouring increased pre-
zygotic reproductive isolation owing to low fitness hybrids
(reinforcement; [138,205]). While we focus on examples and
theory in which reinforcing selection results from intrinsic



Box 2. Outstanding questions in speciation biology.

question potential approach(es)

origin, commonality, and

importance of intrinsic

postzygotic barriers

1. what are the major evolutionary drivers

of intrinsic barriers and how frequent

are they in nature?

a. genetically dissect reproductive barriers to determine if

genes involved provide information of the evolutionary

drivers (such as [50,85,91])

b. compare the extent of reproductive isolation or

diversification rates between groups that are known to

differ in proxies for particular evolutionary drivers (e.g.

mating system as a proxy for parental conflict and the

evolution of hybrid seed inviability, circa [135]

2. how common are less obvious intrinsic

barriers (e.g. deficits in hybrid

metabolism, neurology, or general

‘hybrid weakness’)? At what stage are

these barriers important?

a. case studies quantifying hybrid defects, and when

possible, the amount of selection against hybrids who

carry them [e.g. 200]

b. comparative studies that analyse the relative age of

species pairs that produce hybrids with ‘hybrid

weakness’ or other transgressive phenotypes

3. is there interplay between intrinsic

barriers and ecology? How important is

this for speciation?

a. generate hybrids under multiple biologically realistic

environmental conditions and measure viability or

sterility [e.g. 41]

b. assess hybrid sterility of viability in natural

populations across an environmental gradient

intrinsic postzygotic barriers and

introgression

4. how effective are intrinsic barriers at

preventing introgression in nature?

a. map the genetic basis of incompatibility loci in allopatric

populations, assess the fate of incompatibility alleles in

contact zones (e.g. whether or not they are still present,

or assess the steepness of clines across a hybrid zone for

incompatibility loci versus neutral loci). Genetic mapping

will of course be easiest in model systems in which

laboratory crosses are possible. Although not as robust, if

researchers are using non-model systems in which

laboratory crosses are unattainable, using field collected

hybrids for admixture mapping or RNAseq of barrier

tissues (e.g. gametes) may be informative. We caution,

however, that these natural hybrids may represent a non-

random collection of incompatibility alleles

b. experimentally evolve hybrid swarms between parental

species with different types of reproductive barriers.

Assess the prevalence of reproductive isolation through

time and determine how quickly different types of

barriers are lost from hybrid populations (or whether

some persist)

c. simulate genome-wide patterns of introgression for

species pairs with differing types of reproductive barriers

5. what is the relationship between the

amount of introgression (or the

composition of introgressed alleles) and

divergence time?

a. assess rates and timing of introgression in natural or

synthetic contact zones from species pairs of differing

ages

(Continued.)
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Box 2. (Continued.)

question potential approach(es)

b. the same as above, but can use genomes of broadly

sympatric taxa rather than explicit contact zones

c. simulate genome-wide patterns of introgression

between pairs of populations with differing divergence

6. how do different evolutionary drivers

that are responsible for the evolution

of intrinsic barriers influence the

stability of these barriers in the face of

gene flow?

a. simulate secondary contact when incompatibilities are

driven by different evolutionary mechanisms (e.g.

neutrality, local adaptation, systems drift, conflict or

other co-evolutionary dynamics), and assess the

stability of simulated incompatibility alleles

intrinsic postzygotic barriers and

species persistence and

diversification

7. how important are intrinsic postzygotic

barriers for species coexistence and

diversification?

a. compare rates of accumulation of postzygotic intrinsic

barriers in allopatry versus sympatry to determine if

sympatric taxa are more likely to be strongly isolated

(consistent with Templeton effect [136])

b. simulate secondary contact between populations that

are weakly or strongly reproductively isolated with

pre- and/or postzygotic reproductive barriers and

determine the probability of extinction

c. determine whether levels of reproductive isolation are

correlated with diversification rates [such as 244]
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barriers, reinforcement may also be a consequence of extrinsic
postzygotic reproductive isolation (reviewed in [31]).
Reinforcement has primarily been studied in the context of
increased mate preference in sympatry ([206–209]; or simi-
larly, pollinator shifts in plants; [210–213]), but can manifest
as any reproductive barrier that prevents parental investment
in unfit hybrids, including increased gametic incompatibil-
ities [214,215], ecological divergence that decreases the
probability of heterospecific matings [216], or early embryo
abortion in systems with substantial parental care [217].
Reinforcement can also have more direct consequences of
the generation on biodiversity through processes such as
cascading reinforcement (the increase in reproductive isola-
tion between parapatric conspecific populations as a result
of reinforcing selection between sympatric heterospecific
interactions; e.g. [209,218–220]).

Reinforcement may be a common phenomenon across taxo-
nomic groups, and is considered by some to be an essential step
in speciation [205,221]. Patterns consistent with reinforcement
have been described in a number of natural systems (e.g.
[9,206–208,210–213,218,219,222–227]), and reinforcement has
been experimentally evolved many times (e.g. [228–232];
reviewed in [233]). Reinforcement is often considered a final
step in the speciation process; reinforcing selection can cause
an increase inprezygotic reproductive isolation that finalizes spe-
ciation andallows coexistencebetweenclose relatives. Becauseof
its association with the completion of reproductive isolation,
there is a connotation that reinforcement may take a long time
to evolve (e.g. [144,234]). However, three classes of empirical
results show that reinforcement need not be a process that
occurs only between highly divergent species. Firstly, in many
experimental evolution studies of Drosophila, reinforcement can
evolve in fewer than 10 generations [228–231]. Secondly, in
large surveys of the accumulation of reproductive isolation
through time (such as [9,222,235]), evidence for reinforcement
rests on the observation that prezygotic barriers evolves more
rapidly in sympatry than allopatry. In Drosophila, allopatric
species pairs often exhibit strong prezygotic isolation at low to
moderate levels of divergence [9,222]. Therefore, evidence of
reinforcement in Drosophila stems from the observation that
strong prezygotic reproductive isolation evolves between very
recently diverged sympatric species pairs [9,222]. Of course,
studies which have scored both pre- and postzygotic reproduc-
tive isolation for a large number of sympatric and allopatric
species pairs are scarce, and so broad conclusions about the
rate of evolution of reinforcement from large-scale comparative
work are limited. Thirdly, reinforcement has been documented
between recently diverged species pairs, such as in theDrosophila
subquinaria species complex [208,236]. Thus,while reinforcement
may signify later stages of speciation, the presence of reinforcing
selection is not restricted to highly divergent species pairs.

Reinforcement may also manifest as ecological divergence
that decreases the probability of heterospecific matings. This
phenomenon is well described in the context of polyploids
and their diploid progenitors (‘minority cytotype principle’;
[216]), but can also extend to diploid species. In essence,
when two species co-occur and one is substantially less
common than the other, the less common species can experi-
ence a potential cost to reproduction as it is more likely to
engage in heterospecific matings than the more common
species. Selection to reduce interspecific mating can result
in ecological divergence [216]. In the context of polyploids
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and their diploid progenitors, ecological divergence is
common [237–241] and perhaps immediate [242]. Patterns
of ecological divergence as a consequence of strong intrinsic
postzygotic barriers among diploids are less established,
but have been described in Mimulus [243].
publishing.org/journal/rstb
Phil.Trans.R.Soc.B
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5. Moving forward as a field
We outline three contributions of intrinsic postzygotic barriers
to speciation and highlight how their role may change through
time. Still, there aremany remainingquestionswhich can further
our understanding of the role of intrinsic postzygotic barriers in
speciation (box 2). Gaps in our knowledge can be categorized as
questions pertaining to the origin, commonality, and strength of
different types of intrinsic postzygotic barriers, the relationship
between intrinsic postyzogtic barriers and introgression, and
the role of intrinsic postzygotic barriers in species persistence
and diversification. Answering these questions will require the
integration of new theory and simulations, as well as the collec-
tion of more datasets that address both broad scale patterns of
reproductive isolation and detailed dissections of specific bar-
riers. Below we highlight how integrative studies can further
our understanding of intrinsic postzygotic barriers.

Several questions remain on the origin, commonality and
strength of different types of intrinsic barriers (box 2, questions
1–3). A potential major contributor to intrinsic postzygotic iso-
lation are subtle intrinsic postzygotic barriers that affect hybrid
physiological or cognitive ability, or general ‘hybrid weakness’
(box 2, question 2). Case studies that detail the diversity of
hybrid defects with measurements of selection against these
transgressive phenotypes, as well as comparative studies that
assess the rate of accumulation of these types of barriers
(such as [9,235]) can inform us of the commonality, strength,
and timing of these types of barriers in nature.

While there is substantial theory highlighting the efficacy of
intrinsic postzygotic barriers against introgression, explicit
empirical work is needed (box 2, question 4). One approach is
to combine quantitative genetics to map the genetic basis of
reproductive isolation andpopulationgenomics to infer patterns
of introgression of these alleles. Another approach is to pair
large-scale quantifications the accumulation of intrinsic postzy-
gotic isolation through time (as in [9,111–117,245–247]), with
comparative population genomic studies to assess how the
extent of introgression tracks with divergence times (as in
[130]) and the accumulation of reproductive isolation. The later
approach can also be used to testwhether the extent of introgres-
sion is also nonlinear through time (box 2, question 5; [21,22,30]).

Lastly, intrinsic postzygotic barriers may be essential for
species persistence [37,234], but empirical tests are needed
(box 2, question 7). For example, the Templeton effect posits
that only strongly isolated species pairs can persist in sympatry,
as weakly isolated species pairs are more likely to go extinct or
collapse via introgression [37,136,137,234]. One approach to
test this would be to use large-scale comparative datasets to
assess the rate of accumulation of intrinsic postzygotic isolation
insympatric andallopatric speciespairs,with theprediction that
sympatric species pairs should show higher intrinsic postzygo-
tic isolation than similarly divergent allopatric speciespairs. The
role of reproductive barriers in speciation atmacro-evolutionary
time scales is also not well understood. For example, reproduc-
tive isolation is often abundant, but may not predict patterns of
diversification [244,248]. Understanding if intrinsic postzygotic
barriers contribute to macroevolutionary patterns of diversity,
and what factors affect this process, is an important, but rarely
studied aspect of speciation.
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