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Simpson’s fossil-record inspired model of ‘adaptive zones’ proposes that evol-
ution is dominated by small fluctuations within adaptive zones, occasionally
punctuated by larger shifts between zones. This model can help explain why
the process of population divergence often results in weak or moderate repro-
ductive isolation (RI), rather than strong RI and distinct species. Applied to
the speciation process, the adaptive zones hypothesis makes two inter-related
predictions: (i) large shifts between zones are relatively rare, (ii) when large
shifts do occur they generate stronger RI than shifts within zones. Here, we
use ecological, phylogenetic and behavioural data to test these predictions
in Timema stick insects. We show that host use in Timema is dominated by
moderate shifts within the systematic divisions of flowering plants and coni-
fers, with only a few extreme shifts between these divisions. However, when
extreme shifts occur, they generate greater RI than do more moderate shifts.
Our results support the adaptive zones model, and suggest that the net con-
tribution of ecological shifts to diversification is dependent on both their
magnitude and frequency. We discuss the generality of our findings in the
light of emerging evidence from diverse taxa that the evolution of RI is not
always the only factor determining the origin of species diversity.

This article is part of the theme issue ‘Towards the completion of speciation:
the evolution of reproductive isolation beyond the first barriers’.
1. Introduction
A number of evolutionary models, such as Simpson’s adaptive zones model of
quantum evolution [1,2], propose that small evolutionary changes within adap-
tive zones (i.e. changes within a broad resource or habitat category, sensu [3,4])
are common, but that more extreme evolutionary change occurs rarely [5,6].
Most evidence for such models stems from deep macro-evolutionary timescales
and high taxonomic levels, such as orders or families [1,2,5]. Thus, the processes
and mechanisms generating these patterns are not well understood. For example,
the roles of random drift, fluctuating selection and macro-mutation (e.g. ‘hopeful
monsters’ [7]) in generating patterns consistent with these models remain unclear,
but must be resolved to understand whether and which micro-evolutionary
processes best explain broad-scale macro-evolutionary patterns.

Here, we specifically apply the adaptive zones model to the speciation pro-
cess, which often occurs by populations diverging into partially reproductively
isolated ecotypes or subspecies, and eventually into strongly reproductively iso-
lated species [8–15]. Such a differentiation process or ‘speciation continuum’

http://crossmark.crossref.org/dialog/?doi=10.1098/rstb.2019.0541&domain=pdf&date_stamp=2020-07-13
http://dx.doi.org/10.1098/rstb/375/1806
http://dx.doi.org/10.1098/rstb/375/1806
http://dx.doi.org/10.1098/rstb/375/1806
mailto:patrik.nosil@cefe.cnrs.fr
https://doi.org/10.6084/m9.figshare.c.5008883
https://doi.org/10.6084/m9.figshare.c.5008883
http://orcid.org/
http://orcid.org/0000-0002-8271-9005


flowering plant
(oak)

flowering plant
(manzanita)

conifer
(pine)

peak shifts and species formation

flowering plant
(California lilac)

weak
reproductive

isolation

weak
reproductive isolation

stronger
reproductive isolation

Figure 1. Ecological shifts and the process of speciation. A schematic depiction of how large peak shifts between flowering plant and conifer hosts, although
relatively rare, generate greater RI than more moderate host shifts among flowering plant families.
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has been observed in fish [16–19], amphibians [20], birds [21],
plants [22] and insects [13,14,23–25]. However, it is often
unclear why populations differ in levels of reproductive
isolation (RI) [9–11,26]. How such differences affect the diver-
sification of a clade is then further complicated by the relative
frequencies with which different levels of RI are reached. The
adaptive zones hypothesis can be applied to explain this vari-
ation, making two inter-related predictions: (i) shifts between
zones are relatively rare and (ii) when large shifts between
zones do occur, they generate stronger RI than shifts within
zones (figure 1).

Note that even without invoking the adaptive zones
model per se, these predictions should hold; large ecological
shifts that generate strong RI may be rare. Moreover, although
we here test the adaptive zones model using discrete
categories of ecological divergence, similar logic could be
applied to continuous scenarios. Just as one may ask whether
shifts between more extreme categories generate more RI, one
could test whether more extreme quantitative shifts in ecol-
ogy (e.g. temperature, elevation, aridity) generate more RI.
For example, it has been shown that more extreme differen-
tiation in quantitative ecological variables is associated with
stronger RI across disparate plant and animal taxa, although
this work did not consider phylogenetic shifts per se [27,28].

Testing these predictions is challenging because it requires
integration ofmacro-evolutionary patterns, for example, at phy-
logenetic timescales,with data onmicro-evolutionary processes
and the evolution of RI.Most generally, such studiesmight help
connect broad diversification patterns (i.e. defined as the net
result of the speciation and extinction processes over time) to
micro-evolutionary processes. We provide such a study here
by integrating phylogenetically based inferences on rates of
host shifts for greater than 100 host-associated populations of
11 Timema stick insect species with experimental estimates of
host-plant preference. Because Timema feed, mate and spend
most of their lives on their hosts [29,30], host preferences are
likely to translate to premating isolation in nature. Thus, we
here use results from host preference experiments in the labora-
tory as a proxy for RI, with the understanding that future work
testingRI in nature iswarranted.Notably,Timema feed onavery
wide range of hosts [29,30], but the frequency of host shifts of
different magnitude over the approximately 30Myr old history
of this group has yet to be quantified [25].
We thus here study Timema taxa that use a wide range of
conifer (e.g. pine, cedar, redwood and fir) and flowering
plant (e.g. oak, roses andmanzanita) hosts (figure 2; electronic
supplementary material, table S1; a host-plant population is
defined as conspecific individuals collected from a common
host genus at a geographical locality). In this context, we con-
sider conifer and flowering plant hosts to represent different
adaptive zones and thus shifts between them to be large rela-
tive to those within plant divisions, based on: (i) the fact that
few insect species (or even sets of closely related species) use
both these plant divisions as hosts [31] and (ii) the deep phylo-
genetic divergence between these two divisions and their great
differences in chemistry, physical structure and evolutionary
dynamics [32–36].

We first used phylogenetic information and host-plant use
to infer the frequency of shifts between conifer and flowering
plant hosts [25], relative to shifts between hosts within each
division. An adaptive zones model would be supported by
host shifts overall being common, but those between conifers
and flowering plants being rare. Second, we tested for an
association between the magnitude of a host shift (i.e. within
or between plant divisions) and divergence in host preference,
a form of premating RI for insects such as Timema that mate on
their host plants [37–39]. Our results support the adaptive
zones model, and suggest that the net contribution of ecologi-
cal shifts to RI can depend on the shifts’ magnitude. When
larger shifts occur less often, their rarity increases waiting
times to speciation. Thus, our findings add to emerging evi-
dence that although the evolution of RI is a key component
of the speciation process, it may not always be the factor con-
trolling the frequency at which new lineages originate [40–42].
2. Material and methods
(a) Analysis of transition rates between hosts
Our sampling effort covered regions where Timema have been sys-
tematically studied over the last two decades [25,43], and searches
were done of the known common hosts of each species. Missing
host taxa would be problematic for our study only if this sampling
was not random (i.e. systematically missing populations on coni-
fers), which is unlikely. Details of the populations studied here are
contained in [25] and in electronic supplementarymaterial, table S1.
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Figure 2. Timema species and populations, and host-plant use. (a) Timema species ranges (from [25]). (b) Host-plant species used by Timema populations used in
this study (conifers have blue labels, flowering plants have orange labels).
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We first tested whether shifts between conifers and flowering
plants occurred multiple times. We used the reduced-represen-
tation sequence data from the 57 geographical populations
previously studied in [25] to infer phylogenetic relationships
among Timema species and populations. This was done using
data deposited in the Dryad Digital Repository (https://doi.org/
10.5061/dryad.nq67q; linkage-group multiple alignments under
the section ‘Phylogenetic inference and molecular dating’) to pro-
duce two new multiple alignments: selecting only the sites with
at least two different nucleotides (‘strict-ASC’; 5797 variable sites),
which allows using ascertainment bias models for inferences, and
selecting also the sites with at least one ambiguity (‘relaxed’;
19 556 variable sites). We used IQTREE 1.6.2 [44] to carry out auto-
matic substitution and partitioning model selection and to infer
maximum-likelihood trees using topological constraints in order
to test five different hypotheses: clustering by host-plant division
(‘division’, implies a single shift between conifers and flowering
plants), clustering by Timema species (‘species’, allow for multiple
shifts within species), clustering by Timema species and host-plant
division within Timema species (‘division within species’, allows a
single shift within each species), using the previous Bayesian infer-
ence from [25] (BEAST) and a maximum-likelihood tree inferred
with IQTREE for this study (‘free’, no topological constraint what-
soever). Then, we estimated site-wise log-likelihoods and
performed Shimodaira–Hasegawa (SH, [45]), weighted Shimo-
daira–Hasegawa (WSH, [45]) and approximately unbiased (AU,
[46]) tests using IQTREE and consel 1.20 [47].

Subsequently, we reconstructed ancestral states using the func-
tion rayDISC from the R package corHMM 1.24 [48] in R v. 3.4.4
[49]. This function allows estimates of transition rates and ancestral
states for multistate traits given a tree, allowing for polymorphism
on the tips (i.e. assigning equal likelihoods to several hosts for a
given population in our case), and recognizing both gains and
losses of host-plant genera. First, we estimated ancestral states
using the Bayesian maximum credibility tree from [25], coding
the hosts of each of the 57 geographical populations as conifer, flow-
ering plant or both, and estimating the root probability with the
method described in [50,51]. This allowed us to visualize ancestral
state marginal probabilities on the nodes of the tree (figure 3).

Additionally, however, we were interested in comparing the
transition rates between hosts in different genera or families
belonging to the same division (‘within’, i.e. conifer to conifer or
flowering plant to flowering plant) to those between different div-
isions (‘between’, i.e. conifer to flowering plant or vice versa).
Therefore, we used the host genera as states and fit five different
models (figure 4): (i) r1: all transitions forced to have the same
rate, (ii) r2: one rate from transitions between conifers
and flowering plants and vice versa, and another rate for tran-
sitions within conifers or within flowering plants; (iii) r3a: one
rate for transitions within either conifers or flowering plants,
one rate for transitions from conifer to flowering plant and another
rate for flowering plant to conifer; (iv) r3b: one rate for transitions
within conifers, one rate for transitions within flowering plants
and another rate for transitions between conifers and flowering
plants and vice versa; and (v) r4: one rate for transitions from con-
ifer to flowering plant, another rate for flowering plant to conifer,
another rate for transitions within conifers and another rate for
within flowering plants.

To assess the robustness of our results, we used five priors for
the root: sameprobability for all host genera (flat), root probabilities
weighted using estimated transition rates following [52] (yang) or
[50,51] (madd), same probability for all conifer host genera (con)
and same probability for all flowering plant genera (flo).

The results were similar in most of the cases, but we focus our
description of the results on the inferences using the method
of [50,51]. We ran the analyses on 1000 trees taken randomly
from the posterior distribution of time-calibrated trees (from [25])
to account for phylogenetic uncertainty. Rates and states were
estimated jointly (node.states = ‘joint’, state.recon = ‘estimate’),
because such an approach is less prone to getting stuck in local
optima [53]. However, most other studies commonly carry out
marginal reconstructions (i.e. rate inference followed by ancestral
states estimation), and we also did that here for comparative
purposes (node.states = ‘marginal’, state.recon = ‘subsequently’).

(b) Host preference trials
We carried out host preference experiments with 3492 individuals
from 70 populations (35 pre-determined population/species
pairs; see electronic supplementary material, table S2 for details
of species, populations, sample sizes, hosts tested, etc.). Tested indi-
viduals were captured with sweep nets and placed in plastic cups
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Figure 3. Timema species phylogenetic relationships and host-plant use, including ancestral use inferences using conifers and flowering plants as states. The bars on
the periphery depict the host-plant use of each population. The pie charts on the internal nodes represent the proportional likelihoods of conifers (blue) and
flowering plants (orange) for reconstructed ancestral states. Ma, million years.
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containing cuttings of two plant species: (i) the plant species that
individual was collected on (native host) and (ii) a different plant
species, usually the plant species used by the alternate pairedpopu-
lation (alternative host). In the morning, the plant species that each
individual was found to be resting on after overnight incubation
was recorded as the preferred plant species. Each individual was
used only once and trials where individuals did not choose a host
were excluded from analysis. We quantified host preference differ-
ences between paired populations using different host plants in
nature (electronic supplementary material, table S2).
(c) Host preference differentiation as a function of
host-plant use

The goal was to test if population pairs on more phylogenetically
distant hosts (i.e. conifers versus flowering plants) exhibited
greater divergence in host preferences than those using more
similar hosts. The pairs were chosen primarily to represent a
range of divergence in host-plant use, including pairs using the
same genus, different genera in the same plant division and
different plant divisions. In addition, the taxa compared were
generally not distantly related to one another, encompassing
also the practical component of access to taxon pairs across dis-
parate parts of the widespread species ranges. Accordingly, 24
pairs were analysed (the remainder used the same host, and
were thus not relevant here, but were used for tests of phyloge-
netic conservatism using individual populations described
below). These pairs represented both those where one population
used a conifer host and one used a flowering plant host (n = 8
pairs, mean number of individuals tested per population = 37)
and those using two different flowering plants hosts (n = 16
pairs, mean number of individuals tested per population = 46).

The mean preference for individual populations was calcu-
lated as the proportion of trials that one of the offered hosts
was chosen, a value that ranges from zero (focal host never
chosen) to one (focal host always chosen). We then calculated
host preference divergence between pairs as the absolute differ-
ence in the mean preference between pairs, a value that also
ranges from zero (identical preferences of the two populations)
to one (completely divergent preferences between the two popu-
lations, i.e. 100% preference divergence). Note that this value of
host preference divergence is identical when either of the two
offered hosts is used to calculate the mean preference for
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individual populations. Phylogenetic distance between hosts was
grouped into two categories: moderate for the pairs on two
different flowering plants and large for the pairs on a conifer
versus a flowering plant host (see Introduction for justification
of these categories).

Because preference divergence was bounded between zero
and one, we employed β regression to model the influence of
divergence in host-plant use on divergence in host-plant prefer-
ence (dependent variable) using the betareg function in the
package betareg 3.1-2 [54] in R, specifying ‘logit’ as link function.
We performed analyses with the complete dataset of 24 compari-
sons, and two subsets including either only conspecific
population pairs (n = 18 pairs) or only conspecific population
pairs from the same geographical site (n = 13 pairs). We obtained
congruent results from all three analyses (see Results).

(d) Phylogenetic conservatism of host preference
Phylogenetic relatedness of taxa generates non-independence of
data points obtained from multiple populations or species. To
assess the need to account for this effect in the analysis of host
preference in Timema, we tested for the presence of phylogenetic
signal in the strength of the preference for the native host. We
analysed the host preference data described above (see also elec-
tronic supplementary material, table S2) in combination with the
population-level Bayesian time-calibrated maximum credibility
tree from [25] pruned to represent the 48 populations for
which host preference data were available (corresponding to 28
geographical localities on the tree). Host preference of each of
these individual populations was estimated as the proportion
of trials the native host was picked over the alternative host. In
cases where a population with host preference data was not rep-
resented in our phylogeny (n = 25), we chose the geographically
closest population of the same species as its representative in the
phylogeny (mean distance to the nearest population was not
overly large, being 17.7 km).

As several populationswith host preference datamapped to the
same tip in the phylogeny, we used two approaches to assign trait
values to those tips: (i) we used the mean of host preference for
populationsmapping to the same tip and (ii) foreach tip represented
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by multiple populations, we sampled a trait value randomly from
those populations 1000 times to generate a sample distribution of
host preference for those populations. Results were congruent
between the two approaches (see Results). We used the function
phylosig in thepackagephytools 0.6–99 [55] inR to calculateBloom-
berg’sK statistic [56] and its statistical significance. Higher values of
K indicate successively stronger phylogenetic signal, with K = 0 in
the absence of phylogenetic signal, K = 1 under a Brownian
motion model of trait evolution and K > 1 when trait evolution is
more constrained. In general, we found a lack of phylogenetic
signal for the strength of host preference (details below).
3. Results
(a) Frequency and magnitude of host shifts
We found that large ecological shifts between conifer and
flowering plant hosts have occurred multiple times among
our study populations, including shifts within species (elec-
tronic supplementary material, table S3, AU test, p < 0.001
for both clustering by host divisions, and clustering by host
divisions within Timema species). Indeed, host shifts in gen-
eral appear common in Timema, likely facilitated by
standing genetic variation in the ability to use novel hosts
[30].

Phylogenetic analyses of transition rates between hosts
support a key prediction of the adaptive zones model, i.e.
that large host shifts between conifer and flowering plant
hosts are relatively rare. Specifically, we compared the fit of
five transition-rate models by maximum likelihood (figure 4).
Our main interest was on the support for a ‘one-rate model’
that enforced a single transition rate irrespective of whether
shifts were within or between plant divisions, relative to
models that allowed rates to vary between different types
and magnitudes of host shifts. Our analyses revealed that
the one-rate model was consistently the least supported one
(figure 5; electronic supplementary material, table S4, differ-
ence in Akaike information criterion values corrected for
sample size (ΔAICc)). The best-fit model allowed for
transitions within each division and between them (three-
rate model b). However, the most notable increase in support
was observed when moving from the one-rate model to a
two-rate model that allowed the rates for transitions between
divisions to differ from those within divisions (figure 5).
Notably, these results were robust to using multiple root
probabilities and inference methods (electronic supplemen-
tary material, figure S1 and table S4). Thus, we found that
transition rates within divisions were approximately five
times higher than those between divisions (figure 5; range
approx. 3–10× higher using different inference methods and
root probabilities, electronic supplementary material, figure
S2–S3 and table S5).

(b) The evolution of premating isolation due to host
preference

Next, we were interested in the evolutionary consequences of
extreme host shifts. For 24 population pairs (2252 trials) that
use different hosts, we found that host preference was
approximately two to three times more differentiated
between Timema taxa feeding on different divisions than
between those feeding on different families within divisions
(figure 6). This result was robust to whether we considered
all 24 taxon-pairs (z = 3.50, p = 0.0005, β regression; electronic
supplementary material, table S6), the 18 within-species com-
parisons (z = 2.72, p = 0.0065) or the 13 within-species within-
locality comparisons (z = 2.49, p = 0.0128).

(c) Phylogenetic conservatism of host preference
We found little to no evidence for phylogenetic conservatism
of host preference, justifying the population-level analyses
above. Specifically, Blomberg’s K was found to be low and
non-significant in the core analysis using the mean as the
trait value for tips represented by more than one population
(K = 0.101, p = 0.747). This result was robust to the approach
of considering the mean, because randomizing the trait
value to be equal to that from one of the populations when
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multiple populations represented one tip always resulted in a
K smaller than 0.2. Furthermore, only 7 out of 1000 permu-
tations yielded a p-value lower than 0.05, all being non-
significant after correction for multiple comparisons.
4. Discussion
We use ecological and behavioural data in a phylogenetic
comparative framework to test general predictions about
adaptive zones and the speciation process. Although
Timema stick insects use a wide breadth of host plants, we
found that host use is dominated by moderate shifts between
families within flowering plants or conifers, with only a few
extreme shifts between these plant divisions. When extreme
shifts do occur, however, they likely generate greater premat-
ing isolation (via host preference) than do moderate shifts
(figure 1). These results are consistent with the adaptive
zones model and suggest that the net contribution of ecologi-
cal shifts to diversification can reflect a balance between their
magnitude and frequency.

As in many correlational or comparative studies, which
abound in evolutionary biology, causation is difficult to defini-
tively infer. Thus, it is possible that host preference itself affects
the frequency of extreme shifts. However, we consider it more
likely that preference evolution is a consequence (rather than
cause) of extreme shifts because: (i) host preferences are generally
quite modest in absolute terms such that they are unlikely to
strongly constrain host shifts (figure 6; electronic supplementary
material, table S2) and (ii) they appear evolutionarily labile, with
no evidence for phylogenetic conservatism. Belowwediscuss the
causesofobservedpatternsofhost shift, the completionof specia-
tionandlimits todiversification (i.e. thenet resultof thespeciation
and extinction processes over time). Future work could usefully
consider whether this pattern applies to other forms of RI.

(a) Causes of observed patterns of host shift
We have shown that several large ecological shifts between
conifers and flowering plants have occurred during the diversi-
fication of Timema, although their frequency ismuch lower than
shiftswithin thedivisions. There are at least two core factors that
could limit the frequency of shifts between evolutionary distant
host plants. First, there could be inherent adaptive constraints,
as highly different host plants are likely to constitute distant
adaptive peaks. For example, specialization can involve trade-
offs resulting in metabolic constraints, in turn making shifts to
new hostsmore difficult [31,57]. Performance experiments indi-
cate that this is not strongly the case in Timema in terms of the
physiological ability to digest new hosts [30], but the existence
of trade-offs associated with crypsis and predation is likely
[58,59].

Second, the geographical distribution of the plants can put
constraints on the colonization of new hosts. Opportunities to
shift between conifers and flowering plants may have been
ample for Timema, as both kinds of host plants are found com-
monly intermixed throughout California currently, and were
so during most of the Timema diversification history [60,61].
Nonetheless, this geographical overlap has not been formally
quantified for the populations studied here. Further work is
thus required to quantify the contribution of inherent biologi-
cal constraints versus the geographical arrangement of plants
on the host shifts, but either way shifts between divisions
are rare. Future insights on the role of syntopy of host plants
would need to consider their past distributions over long
time periods, and at a fine geographical scale. One methodo-
logical consideration is that most Timema species not
included in our analysis feed on conifers (i.e. those outside
of California) [29,62–64]. If most of these constitute a sister
group to Californian species, our results would hold valid,
but could be limited to the Californian lineage.

Interestingly, when each plant division is considered, tran-
sition rates between conifers were higher than rates between
flowering plants. Gymnosperms are known to have lower mor-
phological and chemical diversity than angiosperms, as well as
lowermorphological andgenomic evolutionary rates [31,65,66].
This could translate into different conifers representing rela-
tively closer adaptive peaks when compared with flowering
plants, thus making shifts between them easier. In addition,
mixed conifer forests are common in California, but tend to be
restricted to particular altitudinal bands and separated in geo-
graphical space [66–68], which may have favoured repeated
parallel shifts between conifers. Lastly, we cannot discard a
potential effect derived from our choice of taxonomic level
(i.e. genus). For example, for most of the conifer genera that
Timema use, the use is restricted to a single species, whereas
for flowering plant genera, there are usually several species
per genus used [30,62]. This could result in reduced transition
rates within flowering plants. In other words, our conclusions
hold well for transition rates between genera, but further
work on transitions between species is warranted.

(b) Evolution of host preferences, premating isolation
and completing speciation

Studies of T. cristinae have shown that host preferences are
likely partially heritable, with ‘hybrids’ between host-plant
ecotypes exhibiting preferences intermediate between the par-
ental forms [69–71]. However, further work is required to
determine the relative contribution of genetic versus induced
environmental factors to this form of RI during the diversifica-
tion of Timema, and to RI in general across taxa. Induced
effects on RI have been reported for imprinting of song in
birds [72], cultural differences among killer whale ecotypes
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[73], and host or mate preference in other insects [74,75]. On
the other hand, if environmental effects can be reversed, this
could decrease RI. Further work on the role of genetic and
environmental effects in speciation is warranted.

In contrast with previous work on patterns of host use in
nature [29], we did not find evidence for phylogenetic conser-
vatism of behavioural host preference. This is likely because
phylogenetic relationships in past work were based on a
single marker (mitochondrial DNA) and not as accurate as
those used here, and because host use in nature does not
necessarily correspond to behavioural host preference (i.e.
less preferred hosts may be used in nature due to availability,
necessity or convenience) [70]. Moreover, our results are
in agreement with recent experiments showing that most
populations retain plasticity in host use [30].

Finally, we note that even themost extreme host preferences
documented here were not perfectly divergent between any of
the tested taxon pairs (i.e. we never observed a 100% difference
between a pair). Thus, RI due to host preference does not
appear to reach completion. In part, this could reflect that our
experimental design in the laboratory underestimates host
preferences innature, but even so it seemsunlikely that host pre-
ferences alone can complete speciation inTimema.Moreover, the
frequencyof shifts between very different hosts is very low such
that they alone are unlikely to explain late stages of speciation
and the diversification of Timema. Thus, the completion of
speciation likely requires other factors, such as periods of geo-
graphical isolation and restricted gene flow [25], and the
evolution of additional forms of RI. Indeed, there is evidence
for RI due to chemical-mediated mate choice [25,71,76–78],
selection against immigrants onto new hosts and hybrids
[58,59,76,78], and postmating, prezygotic isolation [71,79].
Further work is required to test how moderate versus extreme
host shifts affect these forms of RI, if they do at all.

(c) Limits to the rate of speciation
The evolution ofRI is generally thought to be a key component of
the speciation process [9,80–84]. However, several recent studies
suggest that the evolution of RI is not the step limiting speciation
rates, particularly over long timescales. For example, the rate of
the evolution of RI in birds and flies, estimated experimentally,
is uncoupled from speciation rates estimated using phylogenies
[42]. Likewise, the diversification of Himalayan songbirds
appears limited by the rate of niche filling, not the acquisition
of RI [40]. In insects, host shifts usually result in an increase
in RI and can initiate speciation processes, but their relative
contribution to insect diversification is unclear [3,38,57,85,86].

Our results inform this issue by showing how a key factor
other than RI, i.e. the rate at which new niches are colonized,
can be important for understanding diversification. In particu-
lar, ecological shifts large enough to generate substantial RI
may be rare. Thus, the total contribution of an ecological shift
of particular magnitude to the diversification of a clade might
be the net result of the amount of RI it confers and its frequency.
These two factors might be opposing and are potentially inter-
linked, and consequently, the empirical role of ecological shifts
in speciation requires further work. Further studies that exam-
ine a range of closely related taxa that vary both in RI and the
magnitude of ecological shifts they underwent are warranted.
5. Conclusion
Our results provide evidence that the ecological magnitude of
a host shift can affect levels of RI. Shifts themselves appear
common in Timema and this is likely facilitated by standing
genetic variation in the ability to use novel hosts [29,30],
which is likely maintained at least in part by gene flow
[71,78,87,88] and balancing selection [43,89,90]. Finally, the
results inform limits to divergence, as they show that shifts
between ecologically distant host plants are rare, and there-
fore unlikely to explain diversification on their own. Thus,
the rate of species formation could largely be the result of
the waiting time for shifts between distant adaptive peaks
coupled with events that create geographical isolation.
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