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Species introductions promote secondary contacts between taxa with long
histories of allopatric divergence. Anthropogenic contact zones thus offer
valuable contrasts to speciation studies in natural systems where past spatial
isolations may have been brief or intermittent. Investigations of anthropogenic
hybridization are rare for marine animals, which have high fecundity and
high dispersal ability, characteristics that contrast to most terrestrial animals.
Genomic studies indicate that gene flow can still occur after millions of
years of divergence, as illustrated by invasive mussels and tunicates. In this
context, we highlight three issues: (i) the effects of high propagule pressure
and demographic asymmetries on introgression directionality, (ii) the role
of hybridization in preventing introduced species spread, and (iii) the
importance of postzygotic barriers in maintaining reproductive isolation.
Anthropogenic contact zones offer evolutionary biologists unprecedented
large scale hybridization experiments. In addition to breaking the highly
effective reproductive isolating barrier of spatial segregation, they allow
researchers to explore unusual demographic contexts with strong asym-
metries. The outcomes are diverse, from introgression swamping to strong
barriers to gene flow, and lead to local containment or widespread invasion.
These outcomes should not be neglected in management policies of marine
invasive species.

This article is part of the theme issue ‘Towards the completion of
speciation: the evolution of reproductive isolation beyond the first barriers’.
1. Introduction
Human-mediated translocations of species across oceans have been ever
increasing especially since the onset of the twentieth century, owing to
growing international trade [1]. These biological introductions have complex
consequences on the distribution of biological diversity. Introductions of
non-indigenous species (NIS) inherently disrupt natural biogeographic barriers
[2]. Thus, secondary contacts between previously allopatric species are impor-
tant outcomes of biological introductions. Because species boundaries are
often semipermeable, human-mediated translocation of species creates oppor-
tunities for hybridization and introgression [3] which, together with habitat
disturbances, contribute to ‘anthropogenic hybridization’ (for a review and
references, see [4,5]).

Such human-mediated secondary contacts create unique opportunities to
examine the processes enhancing or preventing hybridization and introgression
in detail and in real-time [6]. They offer replicated situations for investigating
the strength of reproductive isolation barriers that accumulated during diver-
gence in allopatry. These insights are of particular relevance for considering
strongly differentiated yet incompletely isolated species that do not have the
opportunity to meet at natural hybrid zones, such as species living in separate
oceans or continents. For instance, Pacific-Atlantic congeners are historically
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Box 1. The sea squirts Ciona spp.: a case study of secondary contact with cyclic and ephemeral breakthrough of the introduced species.

Ascidians are a major component of NIS, particularly in artificial habitats such as harbours, docks and piers, where many of
them appear as cosmopolitan invaders. This is notably the case of Ciona robusta (formerly known as Ciona intestinalis type A,
before an in-depth taxonomic revision [8]). Presumably native to the northwest Pacific C. robusta has been introduced to the
northeast and South Pacific, and to the North and South Atlantic (see map in [9]). The northeast Atlantic (especially, the English
Channel and the Bayof Biscay) is the only areawhereC. robusta had been described living in sympatrywith its native congenerC.
intestinalis (formerly known asC. intestinalis type B), fromwhich it has probably diverged greater than 3 Ma [10]. The introduced
species display variations in abundance over seasons and years, with episodic breakthrough [11,12].

Figure 1. The sea squirts Ciona robusta (top specimen) and Ciona intestinalis (bottom specimen) are living in closed syntopy in harbours and marinas of the English Channel.
They are distinguishable based on subtle morphological criteria. One of them is the red pigmentation of the terminal papillae of the vas deferens in C. robusta (visible in this
picture). Photo credit: Laurent Lévêque.

Interestingly, based on transcriptome sequences, an approximate Bayesian computation framework shows that the two
species have historically hybridized (although when and in which geographical location is unknown) such that there is a dis-
tinct footprint of past introgression in both species [10]. Such multiple contacts may characterize other marine NIS and also
highlight the necessity for detailed historical analyses before presuming that all shared polymorphisms arise solely from
contemporary hybridization [13].

Comprehensive field and experimental studies show that the two species produced gametes synchronously with juveniles
recruited at the same time (twice a year for both species), and are easily crossed in the laboratory with F1 hybrids showing no
signs of outbreeding depression [12,14,15]. Although reproductive isolating mechanisms are expected to scale with diver-
gence times, hybridization has thus been documented at a late stage of speciation following human-mediated species
translocation. However, the use of an ancestry-informative single nucleotide polymorphisms panel shows that introgression
is negligible and only few hybrids had been detected in localities where the two species live in syntopy [13]. Additional
experiments documented that F1 hybrids produce less sperm, and F2 backcross hybrids display a reduced survival as com-
pared to parental species (M. Malfant, F. Viard 2017, unpublished data). Altogether, the empirical patterns observed, notably
the crossing experiments, suggest postzygotic selection in agreement with the prediction of a multigenic determinism based
on Fisher’s geometric model [16].
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separated by 3+ Myr divergence in allopatry [7], yet many
species native to the Pacific have been introduced to the
northeast Atlantic where they encounter their congeners.
This history is typified by the Pacific sea squirt Ciona robusta
(see box 1). When these anthropogenic contact zones involve
taxa with long histories of divergence in allopatry, they offer
valuable contrasts to speciation studies in natural systems
where past spatial isolations may have been brief and inter-
mittent. These long allopatric species probably fall at the
extreme of the speciation continuum and exhibit high levels
of reproductive isolation. Following the rationale proposed
by Hewitt [17] (i.e. hybrid zones as natural laboratories for
evolutionary studies), anthropogenic hybridizations between
such species thus provide in situ laboratories to examine the
fate of co-occurring divergent genomes. These are also excellent
opportunities to examine genomic changes (i) in new
environments for the introduced species, and (ii) in novel gen-
etic backgrounds for both the native and introduced genes
(box 2). Additionally, some recent secondary contact situations
can illuminate our understanding of repeated periods of inter-
taxa gene flow as a mixture between past and contemporary
introgression events, both leaving coexisting footprints at the
genome level ([31] and box 1).

The outcomes of hybridization following human-mediated
secondary contacts are diverse, from extensive asymmetric
introgression (introgression swamping), genome-wide admix-
ture, to semi-permeable barriers to gene flow involving strong
coupling between isolating loci [32]. The specific outcomes
depend on the strength of concomitant endogenous and
exogenous reproductive barriers [32]. In this context, secondary
contacts can have important consequences for the fate of
NIS. They may favour the sustainable establishment of NIS



Box 2. The blue mussel Mytilus galloprovincialis: replicated introductions could support comparative studies.

The Mediterranean blue mussel, Mytilus galloprovincialis has been introduced to many different regions in the world with the
greatest evidence for substantive ecological impacts in South Africa where there is no native congener. First observed in wes-
tern South Africa in 1979, M. galloprovincialis now encompasses over 2000 km of coastline, where it greatly restructured the
intertidal community (e.g. [18]), with at least one documented extinction of a local bivalve [19]. Aside from South Africa, all
other receiving communities for M. galloprovincialis host native congeners, without remarkable ecological influence.

Photo credit: Jessa Thurman.

Where there is a native congener, hybridization has been reported between M. galloprovincialis and the native species. The
hybrid zone between M. galloprovincilis and the native Mytilus trossulus on the East Pacific coast of North America shows a
broad scale cline from north (M. trossulus genotypes) to south (M. galloprovincialis genotypes) [20]. Mussels collected prior to
1900 from the Los Angeles region and further north have exclusively M. trossulus mitotypes, indicating that M. galloprovin-
cialis has displaced M. trossulus from its southern range [21]. The sequential spread from the likely point of introduction,
possibly pausing at dispersal barriers encountered, could be owing to the introduced species being adapted to warmer temp-
eratures [22], or even being intrinsically fitter than the native species whatever the environment. Mytilus galloprovincialis also
hybridizes with M. trossulus in the West Pacific where connectivity and adaptation to temperature might also play a role: in
Hokkaido Island, Japan the distribution of parental types from 2004 to 2006 surveys aligned well with major currents and
their associated temperature regimes, where M. trossulus were most common in the cooler waters of the east [23].

Endogenous reproductive isolation mechanisms seem to limit introgression between M. galloprovincialis and M. trossulus.
In the East Pacific, hybrids are present at low frequencies but primarily consist of F1’s and first-generation backcrosses [20].
Also, consistent with the concept that numerical dominance of the native species and spatial propagation of the invasion
front into the native range could cause introgression of native alleles into the introduced species’ background, a recent geno-
mic study found a small number of M. galloprovincialis backcross individuals and no M. trossulus backcross individuals along
the East Pacific coast of North America [20]. Many hybrids also have anomalous mitochondrial genome compositions by sex
with an overall excess of female mussels [24]. Likewise, in the Hokkaido Island hybrid zone, very high proportions (greater
than 50%) of hybrid mussels failed to produce mature eggs or sperm [23].

Mytilus galloprovincialis has also been introduced to Chile [25], Kerguelen Islands [26], Australia and New Zealand
[27–29]. Intriguingly, a new study finds very recent (less than 50 years) introduction of Mediterranean typeM. galloprovincialis
into several Atlantic harbours accompanied by strikingly parallel clinal hybrid zones where hybrids with a majority Medi-
terreanean type M. galloprovincialis background predominate in the harbours [30]. These ‘dock mussels’ thus seem confined
to harbours conversely to native genotypes (Mytilus edulis and Atlantic M. galloprovincialis) that are found outside the har-
bours [30]. These various contact zones deserve further investigation, as examining replicated situations can foster our
understanding of rules and identify common isolating mechanisms.
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(for instance through adaptive introgression of ‘ready-to-use’
alleles). They can sometimes lead to the emergence of novel
species (i.e. homoploid hybrid speciation) or well-identified
hybrid genetic clusters, as reported particularly for terrestrial
plant species [4,33]. Human-mediated secondary contacts and
subsequent hybridization thus have important implications
for conserving local biota [34,35].

Hybridization has attracted much attention in terrestrial
NIS studies, especially in plants ([36] and references herein),
but is rarely documented in marine ecosystems. Marine
NIS are, however, numerous in coastal marine systems: for
instance, about 1400 NIS are reported in European seas [37].
Admixture and hybridization involving marine NIS are
also likely to be common [38,39], particularly for broadcast
spawners ([11] and references herein). Intra-specific admix-
ture, defined as the mixing between historically isolated
but non-reproductively isolated lineages, has been addressed
elsewhere ([38] and references therein). Yet, only a few
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hybridizing species with strong reproductive isolating mech-
anisms have been examined in marine systems and this will
be the focus of this paper. Two of the best-studied empirical
cases of secondary contacts are presented in boxes 1 and 2,
highlighting the sea squirts Ciona intestinalis (native to the
North Atlantic) and C. robusta (native to the North Pacific)
and similarly the blue mussels Mytilus trossulus (native to
the North Pacific) and Mytilus galloprovincialis (native to the
Mediterranean and East Atlantic).

Demography and migration are pivotal factors influencing
the evolution of hybrid zones, and the natural history attributes
that characterize marine introduced animals will probably
create distinctive demographic and dispersal syndromes.
First, many marine NIS have very high reproductive rates,
releasing hundreds to thousands of eggs or larvae during a
reproductive season [40], or even during a single reproductive
event (e.g. the invasive gastropod Crepidula fornicata [41]).
Second, most marine organisms have a highly dispersive
stage, allowing rapid spread and potentially extensive gene
flow. These inherent characteristics of marine NIS play out
against human-modified conditions where long-distance and
local transport associated with shipping and aquaculture can
serve as ongoing introduction vectors and pathways. Similarly,
restricted openings of ports and harbours might retain many
larvae creating local high abundance of species inhabiting
these artificial habitats [42]. Together these biological and
anthropogenic factors can yield very high propagule pressure,
defined as the numberof individualsmultiplied by the number
of introduction events, which is evidenced by genetic diversity
that is often similar or even higher in NIS than that in native
range populations [39]. High densities of NIS and natives
living sympatrically in novel environments also may dampen
prezygotic isolation, as habitat preferences in natural environ-
ments would normally prevent interspecific gametes from
direct interactions.

These properties, hardly ever encountered in terrestrial
animals, can influence the outcome of human-mediated
secondary contacts. Although anthropogenic marine hybridiz-
ations are starting to receive attention, emerging themes across
studied taxa highlight dynamics that contrast to terrestrial
systems. We outline three pressing questions regarding how
human-mediated secondary contacts affect the trajectory
of marine invasive species spread. We then highlight their
resultant implications for NIS management and marine
conservation of coastal areas.
2. Could propagule pressure counter-balance
demographic asymmetry?

Propagule pressure has been shown to be a good proxy for
invasive success [43] and can be very high for marine NIS
[39]. However, even if numerous propagules are introduced,
census population sizes of NIS are often minute relative to
that of native congeners in the receiving community. This differ-
ence in population size is particularly important at the initial
stage of introduction, leading to a demographic imbalance
between non-native and native species and consequently
affecting introgression when interbreeding occurs. If the NIS
establishes itself and grows in abundance (or propagule
pressure is sufficiently high), hybridization dynamics can
subsequently reverse.
There are three reasons why introgression should mainly
occur from the native into the NIS genome, especially during
two introduction stages: (i) the initial phase when the NIS is
still in low abundance, and (ii) the propagating phase before
the NIS-native hybrid zone halts at an equilibrium point.
First, a barrier to gene flow depends on population densities
and should proceed from the dense into the sparse population
[44]. Second, later along the invasion trajectory, introgression
should travel from the established receding taxon into the
propagating one, with hybrids being dominated by back-
crosses towards the non-native parental genome in the
invasion wavefront ([45] and references herein). This predic-
tion is corroborated in mussels by the slight but detectable
introgression of native M. trossulus alleles into the invading
M. galloprovincialis genome (box 2). Third, given that the
native genome is already adapted to the local environment
whereas the NIS genome is encountering a new environment,
the NIS could use ‘ready-to-use’ adaptive alleles from the
native species (i.e. adaptive introgression).

However, a hybrid zone can subsequently stabilize at a dis-
persal or an environmental boundary. This trapping of hybrid
zones is theoretically expected when the barrier is maintained
by intrinsic and/or extrinsic selection against hybrids ([46] and
references therein). Once the hybrid zone is trapped, hybridiz-
ation will enter a new phase and the direction of introgression
may then reverse. By this time, the invasive population is likely
to have become larger and denser; movement will be inter-
rupted and introgression should proceed from the fittest
(NIS) into the less fit (inbred native) taxon. If some portions
of the native genome contain large numbers of deleterious
mutations, these portions should be replaced by the NIS
counterpart [47] (in other words, genetic rescue proceeds [48]).

Genetic pollution is often feared in invasion biology [49].
However, if there is a semi-permeable barrier between the
native species and the NIS, hybrid zone theory predicts
that deleterious alleles should be filtered out during the
introgression process. Therefore, genetic pollution is a worry
predominantly in a situation when the two interacting taxa
are not isolated by strong reproductive isolation. For loosely
isolated taxa, propagule pressure can induce a sufficient
migration load (introgression of deleterious or locally mala-
dapted alleles) into the native population, analogous to gene
flow from hatchery reared to wild stocks, such as recorded
for salmon [50]. In addition, when reproductive isolation is
weak, the NIS genome hardly resists asymmetric introgression
along the invasion front [45]. Indeed, genetic swamping
(i.e. the admixture of the two genomes) is of concern in this
situation. This is, for instance, possibly what is happening
the Indo-Pacific sergeant major damselfish (Abudefduf
vaigiensis) and its endemic congener Abudefduf abdominalis in
Hawaii [51]. Genetic swampingmight also be the case between
the two lineages of the green crab Carcinus maenas introduced
in northeast America, although their place along the
population-species continuum is unclear [52]. For well-isolated
species, the genetic effect of propagule pressure should mainly
affect NIS populations. High propagule pressure would prob-
ably drive the genetic composition of the introduced
population(s) back to the composition found in the native
range, providing the spread of the invasion front is not too
rapid and quickly halted by a dispersal boundary. This could
be the case in ports of the northeast Atlantic colonized by
admixed ‘dock mussels’ (hybrids between the native blue
mussel Mytilus edulis and the introduced Mediterranean
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musselM. galloprovincialis; box 2), which so far, have remained
confined into ports [30] despite a likely continual influx of new
propagules from shipping traffic.
 lsocietypublishing.org/journal/rstb
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3. Genetic Allee effect, our ally against non-
indigenous species expansion?

The Allee effect, where population growth is slow or negative
when population density is low (demographic Allele effect), is a
cornerstone concept in invasion biology [53]. Therefore, suc-
cessful introductions are expected to rely on high propagule
pressure to push the population density of the founding popu-
lation above the threshold for positive population growth ([43]
and references herein). An Allee effect could also slow, or even
halt, range expansion at the leading front when migration is
low [54]. A reduced growth rate at the leading front also
allows for maintaining high genetic diversity owing to
migration from the core population (pushed wave behaviour,
[55]). In an inspiring model, Mesgaran et al. [56] showed that
hybridization allows NIS to escape the Allee effect, when
mate-limited, by relying on the population dynamics of the
native species (hybridization rescue). However, the demo-
graphic advantage of hybridizing with congeners in an
already established population is expected to work only
when reproductive isolation is weak.

The evolution of intrinsic barriers with bi-stable dynamics
enhances reproductive isolation, which in turn creates a genetic
Allee effect [57]. When at low density, NIS will fail to find
conspecific partners and will produce unfit hybrids when
mating with natives, such that the fitness of NIS is low for gen-
etic reasons rather than for demographic reasons. As with the
demographic Allee effect, a genetic Allee effect requires a suffi-
ciently high propagule pressure in order to initiate a spreading
wave (i.e. pushed wave dynamics of bi-stable variants, [58]).
In [56], taxa can be considered as partially reproductively iso-
lated when the compatibility parameter, β is below 1, then
hybridization opposes colonization rather than facilitating it.
Following initial successful introduction, for example in a
placewith few individuals of the native species, the subsequent
spatial spread can easily and durably be halted by the first
dispersal barrier or density trough encountered [59].

To date, there is no unified theory combining both demo-
graphic and genetic Allee effects to predict invasion success
and spread. However, the available theory suggests that repro-
ductively semi-isolated species should be efficiently confined
when the hybrid zone, formed between the NIS and the
native species stops moving and halts at the first dispersal
barrier. We posit that this could be the case for dock mussels
in ports [30] (box 2), for the present contact between M. gallo-
provincialis and M. trossulus in California [20] (box 2), and for
the cyclic ephemeral breakthroughs of C. robusta within C.
intestinalis populations in marinas of the English Channel
[12,13] (box 1). A hybrid zone identified between two lineages
of the marine snail Stramonita haemastoma in eastern Spain
could also be explained by the trapping of an invading
hybrid zone at the first dispersal barrier it encountered [60].
Often the status of non-native taxa is defined by geographical
isolation rather than specific evidence of reproductive isolation.
The observation of fast introgression and genetic swamping (as
in the aforementioned Hawaiian sergeant major damselfishes
[51] and green crab ecotypes [61]) would indicate that there
is minimal reproductive isolation and thus admixture proceeds
largely unimpeded for these species.
4. What is the relative importance of pre- versus
postzygotic barriers?

A noteworthy aspect of marine introductions is that they fre-
quently occur in artificial habitats, such as marinas, ports and
aquaculture facilities. The proliferation of built structures and
artificial hard substrates (better known as ‘coastal hardening’
or ‘ocean sprawl’) substantially contributes to the establish-
ment of marine sessile NIS [42]. Besides being points-of-entry
for NIS, these artificial habitats are not surrogates of natural
rocky reefs: they are particular habitats hosting numerous
NIS alongside native species. The consequences of these
novel niches and species interactions deserve further scrutiny
especially from an evolutionary perspective.

Because of their biotic (e.g. specific assemblages) and abio-
tic (e.g. substrates, pollutants) specificities, these artificial
habitats will probably select for species pre-adapted to these
particular human-made habitats [62], in contrast to natural
habitatswhere native species have evolved in a specific ecologi-
cal and environmental context. They are also likely to constitute
more homogeneous environments at a global scale. Similarly,
to terrestrial plants [36], we can thus hypothesize that extrinsic
prezygotic barriers will play a less important role than postzy-
gotic barriers in preventing hybridization between species
in these human-made artificial habitats. In addition, the obser-
vation of introgression between broadcast spawners with very
large molecular divergence (at least as evidenced by mtDNA
cytochrome oxidase I gene) is consistent with few or weak
intrinsic prezygotic barriers in externally fertilizing marine
invertebrates [11], although this hypothesis has not yet been
explicitly tested. Investigations of harbour populations of
Ciona spp., for example, show that the native and non-native
species live in closed syntopy, overlap in spawning and recruit-
ment time [12], and F1’s can be artificially created [14]
suggesting minimal prezygotic isolation (box 1).

Importantly, even if postzygotic barriers are particularly
effective following secondary contacts, this does not preclude
extrinsic prezygotic barriers evolving, such as via reinforce-
ment following secondary contacts [63]. Ports and marinas
are indeed heterogeneous habitats at small scales. For instance,
floating pontoons differ from fixed substrate pillars or seawalls
in their species assemblages and NIS contribution [64].
Subtle ecological niche differentiation might thus contribute
to reinforce the isolation, via habitat preference, between
native and non-native species. An important caveat to the
hypothesis of reduced prezygotic isolation is that experimental
crosses to gauge prezygotic isolation are rarely undertaken
because they are difficult to execute. Even more infrequently
is postzygotic isolation estimated from experimental crosses,
given the challenges in rearing planktonic larvae to settlement
and for more than one generation. More commonly, reproduc-
tive isolation is inferred from observed genotypic frequencies
of field populations, where high frequency of F1 hybrids but
low frequency of backcrosses may indicate Dobzhansky–
Muller interactions expressed in the second generation of
hybridization (typifying mussel hybrid zones: see [16] and
box 2).

In general, postzygotic barriers are expected to scale with
species divergence [65], as illustrated by Tigriopus copepods
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[66] or Strongylocentrotus sea urchins [67]. In line with this
expectation, reproductive isolation is substantial between
C. robusta and C. intestinalis (box 1) and similarly high between
M. galloprovincilis andM. trossulus (divergence time of 3.5 Myr,
box 2), whereas reproductive isolation is negligible for taxawith
recent divergence times (e.g. M. galloprovincialis ×Mytilus
planulatus [27]; damselfish in Hawaii [51]; green crabs [61]),
and intermediate between M. galloprovincialis and M. edulis
with a mixture of heterosis and hybrid breakdown owing to
multigenic interactions [31] (divergence time of approx
2.5 Myr [58]). In the context of marine anthropogenic hybridiz-
ation, the observations made in Ciona spp. suggest that
prezygotic isolation may be less important in shaping
evolutionaryand ecological outcomes thanpostzygotic isolation.
il.Trans.R.Soc.B
375:20190547
5. Marine invasive species policies will benefit
from speciation studies

Speciation is a gradual process during which barriers to gene
exchanges are accumulating. However, as pointed out in
the Introductory paper of this issue [68], speciation does not
necessarily follow a linear progression. Sudden change may
arise. One of the most effective barriers to genetic exchanges,
namely spatial barriers, are disappearing instantaneously
with human-mediated secondary contacts. It is thus not surpris-
ing that genetic pollution, hybrid swarm, extinction by hybridization
are phrases commonly encountered in the biological invasion
literature. Marine anthropogenic hybridizations are no excep-
tion; and yet, so far, NIS have largely been overlooked in
conservation planning for Marine Protected Areas [69].

Evolutionary studies can provide valuable insights regard-
ing the future outcomes of anthropogenic hybridization. They
have for instance documented that anthropogenic hybridiz-
ations influence the fate of both native and non-native
species. NIS can threaten native species when hybridization
occurs between two congeners, such as shown in the native
grey ducks in New Zealand following the introduction of the
mallard duck (e.g. [70]). Anthropogenic hybridizations can
lead to the emergence of novel invasive species, as illustrated
by the notorious allopolyploid cordgrass Spartina anglica [71].
Between compatible taxa, hybridization can also facilitate
invasion by reducing mate limitation and overcoming demo-
graphic Allee effects, as suggested in Cakile plant invaders
[56]. However, focusing here on marine systems, we also
have shown that hybridization may dampen NIS spread,
through the establishment of hybrid zones and genetic Allee
effects. This is particularly true for species that have developed
strong, yet incomplete, reproductive isolation mechanisms.
Determining the speciation stage and strength of the isolating
barriers between NIS and native species may indicate whether
hybridization can oppose invasion, and thus contribute to
estimating invasion risks.

Controlling propagule pressure might also be an effective
strategy for limiting the spread of NIS genotypes and alleles,
even if introductions have already occurred. Reducing NIS
propagule pressure, through effective control of introduction
pathways and vectors including ballast water or aquaculture
trade, will increase the asymmetry in hybridization success,
so that if ‘genetic pollution’ should occur, it would be
mostly directed towards the invader. Reducing propagule
pressure might be particularly important when the native
congeners are endangered or rare, hence when the
demographic imbalance between native and non-native
species is low. Many marine introductions are reported in
anthropogenic habitats, a situation best explained by these
structures being hubs of connectivity enduring high propa-
gule pressure along with some kind of pre-adaptation to
similar habitats globally distributed across oceans. In this
context, NIS and natives might have non-overlapping eco-
logical niches in their natural (native) home ranges, but this
could be altered completely in artificial habitats. Using eco-
logical niche modelling based on observation in natural
habitats in the native rangemay thus bemisleading for inferring
future distributions of NIS and associated prezygotic isolation
in no analogue microenvironments. It is however noteworthy
that for species at late speciation stage, reinforcement processes
through prezygotic mechanisms could potentially evolve in the
introduced range. Altogether, any mechanisms aimed at redu-
cing NIS density, containing NIS in anthropogenic habitats,
and minimizing their escape, should be particularly beneficial
for controlling their expansion.

Mirroring issues related to protection of endangered
species [72], considering hybridization in the context of biologi-
cal invasions may also spark difficult debates, such as how to
categorize anthropogenic versus natural hybridization. This
latter debate is particularly acute in a context of on-going cli-
mate change, another category of human-driven range
expansion [73], which may lead to extinction though hybridiz-
ation (although not yet documented [74]). The population-
species continuum, a cornerstone of speciation theories, and
an outcome of recent genomic studies [65], also creates conun-
drums for conservation objectives [75]: should we focus on
protecting genes or phenotypes or fuzzily defined species?
Similar questions are raised with invasive species manage-
ment, as illustrated by recent studies of the invasive green
crab Carcinus maenas. Two lineages, geographically separated
in the native range and both introduced in northeast America,
were shown to be genome-wide divergent and to hybridize
[61]. Introgression occurred in a few locations, suggesting
some reproductive isolation mechanisms at play between
so-called ‘ecotypes’ [61], which may differ by their ecology
(e.g. winter seawater temperature preferences), therefore ques-
tioning that they will spread more or less [61,76]. An opposite
case is illustrated by the cupped oysters Crassostrea gigas
and Crassostrea angulata, both introduced in Europe, which
showed little genome-wide divergence [77]. These case studies,
and those cited in the preceding sections, showcases how pairs
of native versus non-native marine species are spread along the
population-species continuum. Because the outcomes of these
secondary contacts depend on the speciation stage,
evolutionary studies investigating reproductive isolation mech-
anisms can provide valuable information regarding the future
outcomes of anthropogenic hybridization involvingmarineNIS.

Natural hybridization is not well understood and anthro-
pogenic hybridization is a new area of research. It offers
replications of recent contacts that may provide fruitful infor-
mation on the hybridization process. To date, we can foresee
hybridization as probably being as much a problem as a sol-
ution to invasion [35]. It is legitimate to fear the negative
effects of ‘genetic pollution’, but this concern should be
balanced by the positive effects of ‘genetic rescue’ [48]. In a
rapidly changing world, targeting evolutionary processes
including speciation in conservation planning seems a worth-
while approach [75,78]. Hybridization is an evolutionary
process with important consequences for genetic and
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phenotypic diversity. Anthropogenic hybridization does not
necessarily cause negative outcomes and may be important in
some situations for halting invasive species spread. We
should neither favour nor fear it.
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