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Abstract

Microsatellite instability determines whether patients with gastrointestinal cancer respond 

exceptionally well to immunotherapy. However, in clinical practice, not every patient is tested for 

MSI, because this requires additional genetic or immunohistochemical tests. Here we show that 

deep residual learning can predict MSI directly from H&E histology, which is ubiquitously 

available. This approach has the potential to provide immunotherapy to a much broader subset of 

patients with gastrointestinal cancer.

Although immunotherapy now represents a cornerstone of cancer therapy, patients with 

gastrointestinal cancer usually do not benefit to the same extent as patients with other solid 

malignancies, such as melanoma or lung cancer1, unless the tumor belongs to the group of 

microsatellite instable (MSI) tumors2. In this group, which accounts for approximately 15% 

of gastric (stomach) adenocarcinoma (STAD) and colorectal cancer (CRC)3, immune 

checkpoint inhibitors demonstrated considerable clinical benefit4, resulting in recent 

approval by the Food and Drug Administration (FDA). MSI can be identified by 

immunohistochemistry or genetic analyses5, but not all patients are screened for MSI except 

in high-volume tertiary care centers6. Accordingly, a substantial group of potential 

responders to immunotherapy may not be offered timely treatment with immune checkpoint 

inhibitors, missing chances of disease control.

Deep learning has outperformed humans in some medical data analysis tasks7 and can 

predict patient survival and mutations in tumors using images of lung8, prostate9 and 

brain10,11 tumors. To facilitate universal MSI screening, we investigated whether deep 

learning can predict MSI status directly from H&E-stained histology slides. First, we 

compared five convolutional neural networks on a three-class set of gastrointestinal cancer 

tissues (n = 94 slides, n = 81 patients, Fig. 1a–c, Extended Data Fig. 1). Resnet18, a residual 

learning12 convolutional neural network, was an efficient tumor detector with an out-of-

sample area under the curve (AUC) > 0.99, which represented an improvement on the 

current state of the art13,14. Another resnet18 (Fig. 1d) was trained to classify MSI versus 

microsatellite stability (MSS, Fig. 1e) in large patient cohorts from The Cancer Genome 

Atlas (TCGA): n = 315 formalin-fixed paraffin-embedded (FFPE) samples of STAD15 

(TCGA-STAD), n = 360 FFPE samples of CRC16 (TCGA-CRC-DX) and n = 378 snap-

frozen samples of CRC (TCGA-CRC-KR; Supplementary Table 1).

Tumor tissue was automatically detected and subsequently tessellated into 100,570 (TCGA-

STAD), 60,894 (TCGA-CRC-KR) and 93,408 (TCGA-CRC-DX) color-normalized tiles, in 

which the deep learning model scored MSI. In the TCGA-CRC-DX test cohort, true MSI 

image tiles (as defined in Supplementary Table 2) had a median MSI score of 0.61 (95% 

confidence interval (CI), 0.12–0.82; Fig. 2a), whereas true MSS tiles had an MSI score of 

0.29 (95% CI, 0.08–0.57; two-tailed t-test P = 1.1 × 10−6; Fig. 2b). In the TCGA-CRC-KR 

test cohort, the MSI score was 0.50 (95% CI, 0.17–0.80) for MSI tiles and 0.22 (95% CI, 

Kather et al. Page 2

Nat Med. Author manuscript; available in PMC 2020 August 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



0.06–0.60; P = 7.3 × 10−11) for MSS tiles, indicating that our approach can robustly 

distinguish features that are predictive of MSI in both snap-frozen and FFPE samples. 

Patient-level AUCs for MSI detection were 0.81 (95% confidence interval, 0.69–0.90) in 

TCGA-STAD, 0.84 (95% CI, 0.73–0.91) in TCGA-CRC-KR and 0.77 (95% CI, 0.62–0.87) 

in TCGA-CRC-DX (Extended Data Fig. 2a; MSI frequency is listed in Supplementary Table 

3).

The multi-center DACHS study17,18 was used as an external validation set (n = 378 

patients). Using the automatic tumor detector and the MSI detector trained on TCGA-CRC-

DX (Fig. 2c), the patient-level AUC was 0.84 (95% CI, 0.72–0.92) (Fig. 2d). The model that 

was trained on FFPE samples and used on FFPE samples was superior to a model that was 

trained on frozen samples and used on FFPE samples. Similarly, a model that was trained on 

CRC samples and used on CRC samples performed better than a model that was trained on 

STAD samples and used on CRC samples (Extended Data Fig. 2a). To analyze the limits of 

our proposed method, we validated the MSI detector on n = 185 patients with gastric cancer 

from Yokohama, Japan (KCCH cohort)19. Gastric cancer in Asian individuals has a very 

different histology and clinical course than gastric cancer in non-Asian individuals20. A 

classifier trained on TCGA-STAD (approximately 80% non-Asian) achieved an AUC of 

0.69 (95% CI, 0.52–0.82) in the KCCH cohort (0% non-Asian; Extended Data Fig. 2a). 

Because MSI is a pan-tumor biomarker with clinical usefulness beyond gastrointestinal 

cancer, we additionally trained and tested our method in samples of endometrial cancer 

(UCEC21, n = 327 patients), which has a high prevalence of MSI3, yielding an AUC for MSI 

detection in held-out patients of 0.75 (95% CI, 0.63–0.83; Extended Data Fig. 2a).

Although our method attained robust performance across a range of human tumors and 

exceeded the previously reported performance of predicting molecular features from 

histology8,9, our experiments point to some limitations. The ability to classify does not 

necessarily extend beyond the cancer type and ethnicity present in the training set. Larger 

training cohorts are likely to boost classification performance because rare morphological 

variants can be learned by the network. Another limitation is the required tissue size. To 

define its lower limit, we generated ‘virtual biopsies’ and found that performance plateaued 

at approximately 100 tiles of 256 μm edge length, suggesting that biopsies are sufficient for 

MSI prediction (Extended Data Fig. 2b,c).

To reverse-engineer the black-box MSI detector, we correlated MSIness (the fraction of 

MSI-predicted tiles) to transcriptomic and immunohistochemical data across our test sets. 

MSIness was correlated to a lymphocyte gene expression signature in gastric cancer and to 

PD-L1 expression and an interferon-γ (IFNγ) signature in CRC (Fig. 2e, Supplementary 

Table 4). Spatially, predicted MSI overlapped with poorly differentiated and lymphocyte-

rich tumor regions (Extended Data Fig. 3), which is consistent with histopathological 

knowledge. MSI is both a prognostic and predictive biomarker22,23 and correspondingly, in 

patients with MSS tumors in the DACHS cohort, high MSIness defined a group with worse 

overall survival (univariable Cox hazard ratio, 1.65 (95% confidence interval, 1.00–2.73), 

log-rank test, P = 0.0207, multivariable models in Supplementary Table 5). Although this 

was not statistically significant in a four-variable model (hazard ratio, 1.37 (95% confidence 
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interval, 0.88–2.14); Supplementary Table 5), future clinical trials could determine the 

response to cancer immunotherapy in these patients with MSI-like tumors.

Cancer immunotherapy has changed the landscape of oncology but identifying patients who 

will benefit from immunotherapy has remained a key challenge. Recently, the American 

Society of Clinical Oncology has declared discovery of new biomarkers for immunotherapy 

as the top priority in cancer research in 2019 (https://www.asco.org/research-progress/

reports-studies/clinical-canceradvances-2019/clinical-cancer-advances-2019-glance). 

However, even established biomarkers such as MSI are not universally tested today. Our 

method can be implemented at tertiary care centers at a low cost (Extended Data Fig. 4a,b). 

It does not require additional laboratory tissue testing and can infer MSI status from 

ubiquitously existing data. After training on larger datasets and prospective validation, this 

could ultimately enable efficient identification of patients with MSI tumors, enabling the 

distribution of the benefit of cancer immunotherapy to a broader target population.

Methods

Ethics statement

All experiments were conducted in accordance with the Declaration of Helsinki and the 

International Ethical Guidelines for Biomedical Research Involving Human Subjects. 

Anonymized archival tissue samples were retrieved from the tissue bank of the National 

Center for Tumor diseases (NCT; including samples from the DACHS trial17,18) and from 

the pathology archive at the University Medical Center Mannheim, Heidelberg University 

(UMM) after approval by the institutional ethics boards as described previously13. Clinical 

data for all cohorts are listed in Supplementary Table 1.

Tumor detection, MSI detection and patient cohorts

To train an automatic tumor detector for histological images of gastrointestinal cancer, we 

used histological specimens of CRC and stomach cancer surgical specimens from the UMM 

and NCT tissue banks. This cohort was described previously and encompassed n = 94 

whole-slide images from n = 81 patients13. Regions in these images were manually 

annotated and classified as tumor and two types of nontumor tissue (dense and loose tissue, 

representing muscle and/or stroma and fat and/or mucus, respectively), yielding 11,977 

unique image tiles of 256 μm edge length. All of these images are freely available for 

download at https://doi.org/10.5281/zenodo.2530789. Image preprocessing was performed 

as previously described13, including color normalization. For color normalization, we used 

the Macenko method, which converts all images to a reference color space as described 

previously13,14,24.

We retrieved histology images of n = 315 patients with STAD (diagnostic slides, FFPE 

tissue), n = 387 patients with CRC (CRC-KR; cryosections, snap-frozen tissue), n = 360 

patients with CRC (CRC-DX; diagnostic slides, FFPE tissue) and n = 492 patients with 

UCEC (diagnostic slides, FFPE tissue) from TCGA16. All slides contained tumor tissue 

(after manual review in a blinded manner) and had the resolution available as part of the 

metadata (μm per pixel). During training, 99 (STAD), 109 (CRC-KR), 100 (CRC-DX) and 
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110 (UCEC) randomly selected patients were held out and were used as a test set. In all 

cases, training and test sets were split on a patient level and no image tiles from test patients 

were present in any training set. A more extensive description of these datasets and all image 

files are freely available for download under an open source license at https://doi.org/

10.5281/zenodo.2530835 and https://doi.org/10.5281/zenodo.2532612. All TCGA images 

can be downloaded from public repositories at the National Institutes of Health (https://

portal.gdc.cancer.gov/).

For TCGA-CRC and TCGA-STAD, all patients who were previously defined as MSI-H25 

were included in the MSI group. All patients with unknown MSI status but with a mutation 

count of >1,000 (as defined previously26) were also included in the MSI group (this was the 

case for fewer than 10 patients in any cohort). Supplementary Table 2 lists the methods that 

were used to determine MSI in all cohorts. In the TCGA cohorts, patients with less than 10 

image tiles per slide were not used for prediction. As an external validation cohort for CRC, 

we used n = 378 patients from the population-based DACHS study, a case–control study of 

CRC in the southwest of Germany with long-term follow-up of patients enrolled at more 

than 20 clinics in the study region. In addition, we analyzed data of n = 185 patients from 

KCCH as described previously19. Additional information about the cohorts is shown in 

Supplementary Tables 1–3.

Neural network models, tumor detection and MSI detection

For tumor detection in gastrointestinal cancer, we trained a convolutional neural network 

with deep residual learning (resnet18)12 model to classify tumor versus normal tissue by 

transfer learning. In TCGA-STAD, TCGA-CRC-KR, TCGA-CRC-DX and DACHS, the 

automatic gastrointestinal tumor detector was used whereas in TCGA-UCEC and KCCH, 

tumor regions were delineated by a pathologist. For MSI detection, we trained another 

resnet18 model for each tumor type. We chose resnet18, because our initial experiments 

showed that among five popular neural network models12,27–30 (Extended Data Fig. 1) that 

we compared on our tumor detection dataset, resnet18 had a short training time, excellent 

classification performance and fewer parameters than similarly performing models (alexnet, 

vgg19), reducing the risk of overfitting.

The number of image tiles per class was equalized by undersampling. Training was stopped 

if the validation accuracy in a held-out set of 12.5% of all training tiles did not increase for 

three successive validation checks (checked every 256 iterations). All convolutional neural 

networks were pretrained on the ImageNet (www.image-net.org) database as described 

previously13. Only the weights in the last 10 layers were trainable whereas all other weights 

were frozen. We used the Adam algorithm for training, counteracted overfitting by an L2-

regularization of 1 × 10−4 and used a fixed learning rate of 1 × 10−6 for TCGA-STAD, 

TCGA-CRC-DX and TCGA-CRC-KR, and 1 × 10−4 for TCGA-UCEC. DACHS and KCCH 

were only used for prediction and not for training. All codes were implemented in MATLAB 

R2018a and run on desktop workstations with Nvidia graphics-processing units (GPUs; 

Titan Xp, Quadro P6000, Titan RTX). Performance was scored as AUC in a receiver 

operating characteristic analysis as in previous studies8,9. AUC values are given as median 

with 95% confidence intervals as calculated by 500-fold bootstrapping with the ‘bias 

Kather et al. Page 5

Nat Med. Author manuscript; available in PMC 2020 August 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://doi.org/10.5281/zenodo.2530835
https://doi.org/10.5281/zenodo.2530835
https://doi.org/10.5281/zenodo.2532612
https://portal.gdc.cancer.gov/
https://portal.gdc.cancer.gov/
http://www.image-net.org/


corrected and accelerated percentile method’ unless otherwise noted31. Our source codes are 

freely available at https://github.com/jnkather/MSIfromHE and can be applied to any tumor 

type.

Statistics

Classifier performance was assessed by area under the receiver operating characteristic 

curve as calculated with ‘perfcurve’ in MATLAB R2018a. Correlations were calculated with 

R version 3.5.1 ‘cor.test’ using the ‘Pearson’ method.

Reporting Summary

Further information on research design is available in the Nature Research Reporting 

Summary linked to this article.

Data availability

All whole-slide images for datasets are available at https://portal.gdc.cancer.gov/. Training 

images for tumor detection are available at https://doi.org/10.5281/zenodo.2530789. 

Training images for MSI detection are available at https://doi.org/10.5281/zenodo.2530835 

and https://doi.org/10.5281/zenodo.2532612. Source data for Fig. 1 are available in public 

repositories at https://doi.org/10.5281/zenodo.2530789, https://doi.org/10.5281/

zenodo.2530835 and https://doi.org/10.5281/zenodo.2532612. Source Data for Figs. 1, 2 and 

Extended Data Figs. 1, 2 containing the raw data for these figures are available in the online 

version of the paper.

Code availability

Source codes are available at https://github.com/jnkather/MSIfromHE.

Extended Data
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Extended Data Fig. 1 |. Comparison of five deep neural network architectures.
We compared accuracy and training time of five neural network architectures on the tumor 

detection dataset with three balanced classes. Alexnet27, VGG19 (ref. 28)) and resnet18 (ref. 
12) achieved >95% accuracy in withheld images, whereas inceptionv3 (ref. 29) and 

squeezenet30 had a poor performance on this benchmark task. Among the well-performing 

models, resnet18 had the lowest number of parameters, making it potentially more portable 

and less prone to overfitting. In this comparison, we split the dataset into 70% training, 15% 

validation and 15% test images. Each network is shown twice in this graph: with a learning 

rate of 1 × 10−6 and 1 × 10−5 (outlined). Training was run for 25 epochs. Resnet18 was 

subsequently retrained on the dataset, attaining a median fivefold cross-validated out-of-

sample AUC > 0.99 for tumor detection. The dataset was derived from n = 94 whole-slide 

images from n = 81 patients and is available at https://doi.org/10.5281/zenodo.2530789.
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Extended Data Fig. 2 |. Additional data for classifier performance.
a, Flowchart of all experiments. The area under the receiver operating characteristic curve 

gives an overall measure of patient-level classifier accuracy as measured in held-out test sets. 

Flag symbols are from https://twemoji.twitter.com/ (licensed under a CC-BY 4.0 license). b, 

Classification performance in virtual biopsies. We predicted MSI status in all patients in the 

DACHS cohort, varying the number of blocks (tiles) from 3 to 2,054, which was the median 

number of blocks per whole-slide image This experiment was repeated five times with 

different randomly picked blocks being used. As one block has an edge length of 256 μm, a 

1-cm tissue cylinder with 100% tumor tissue from a standard 18G biopsy needle 

corresponds to 117 blocks and a 16G needle corresponds to 156 blocks. In clinical routine, 

usually only a part of each biopsy core contains tumor, but multiple biopsy cores are 

collected. With increasing tissue size, performance stabilizes at AUC = 0.84. This shows that 

a typical biopsy would be sufficient for MSI prediction. CI, confidence interval. c, 

Distribution of the numbers of blocks for all patients in DACHS (n = 378 patients). d, 

Overall survival of patients with genetic MSS tumors stratified by high or low predicted 

MSIness. In this group, patients with high MSIness had a shorter survival than patients with 
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low MSIness. The table shows the number of patients at risk. The P value was calculated by 

two-sided log-rank test (n = 350 patients).
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Extended Data Fig. 3 |. Morphological correlates of intratumor heterogeneity of MSI.
a, Histological image of a test set patient who was genetically determined as MSI. b, 

Corresponding predicted MSI map for the image shown in a. Three regions are highlighted. 

Region 1 is a glandular region with necrosis and extracellular mucus; this region was 

predominantly predicted to be MSS. Region 2 is a solid, dedifferentiated region, which was 

predicted to be MSI. Region 3 contained mostly budding tumor cells mixed with immune 

cells, this region was strongly predicted to be MSI. Together, these representative examples 

show that different morphologies elicit different predictions and that these predictions can be 

traced back to patterns that are understandable for humans. Scale bar, 2.5 mm. This figure is 

representative of n = 378 patients in the DACHS cohort.
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Extended Data Fig. 4 |. Estimated cost for MSI screening with deep learning.
a, Workflow for MSI screening with deep learning versus immunohistochemistry in tertiary 

care centers with existing digital pathology core facilities such as the University of Chicago 

Medical Center. Costs differ by country and are usually cheaper in Europe than in the United 

States. Here, we list the costs that apply in the United States. b, Set-up cost (fixed cost) for a 

digital pathology and deep learning infrastructure. H&E, hematoxylin and eosin; MMRd, 

mismatch repair deficiency; NGS, next-generation sequencing; QC, quality control. Sources 

and assumptions were as follows. (1) Prices were obtained from https://htrc.uchicago.edu/
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fees.php?fee=2&fee=2, retrieved on 11 March 2019. We assume ×20 magnification on a 

high-volume whole-slide scanner. (2) Prices were obtained from https://techcrunch.com/

2019/03/07/scaleway-releases-cloud-gpu-instances-for-e1-per-hour/ and https://

www.scaleway.com/, retrieved on 11 March 2019. We assume that 1 h of GPU computing on 

a Nvidia Tesla P100 GPU is required to process whole-slide images for one patient to 

prediction. (3) US Current Procedural Terminology (CPT) code 88342, four-antibody panel 

at US$852.00 per staining. (4) Personal communication by the Pathology Department, 

University of Chicago Medicine, March 2019. (5) Personal communication, Medical 

Oncology, National Center for Tumor Diseases, Germany. (6) Personal experience of cost 

for a high-throughput slide scanner plus a limited storing capacity, based on offers by 

multiple digital pathology vendors. (7) Assuming a tower server with one NVidia Tesla 

V100 GPU or similar GPU, based on multiple offers by providers for professional hardware, 

March 2019. Staff cost and infrastructure cost are not accounted for in this schematic.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1 |. Tumor detection and MSI prediction in H&E histology.
a, A convolutional neural network was trained as a tumor detector for STAD and CRC. Scale 

bar, 4 mm. b,c, Tumor regions were cut into square tiles (b), which were color-normalized 

and sorted into MSI and MSS (c). Scale bar, 256 μm. d, Another network was trained to 

classify MSI versus MSS. e, This automatic pipeline was applied to held-out patient sets.
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Fig. 2 |. Classification performance in an external validation set.
a,b, Tissue slides of patients with MSI and MSS tumors in the TCGA-CRC-DX test set 

show the spatial patterns of predicted MSI score (Extended Data Fig. 4). These images are 

representative of n = 378 patients. c, A network was trained on the TCGA-CRC-DX training 

cohort (n = 260 patients) and deployed on the DACHS cohort (n = 378 patients). d, Patient-

level receiver operating characteristic curve with bootstrapped 95% CI in DACHS (n = 378 

patients). FPR, false-positive rate (1 − specificity); TPR, true-positive rate (sensitivity). e, 

Pearson correlation of predicted MSIness to transcriptomic and immunohistochemical (IHC) 

data across test sets. P values are listed in Supplementary Table 4. Sample sizes per cohort 

are: TCGA-STAD n = 91, TCGA-CRC-KR n = 105, TCGA-CRC-DX n = 95, DACHS n = 

134 patients. No adjustments for multiple comparisons were made, and all statistical tests 

were two-sided.

Kather et al. Page 15

Nat Med. Author manuscript; available in PMC 2020 August 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript


	Abstract
	Methods
	Ethics statement
	Tumor detection, MSI detection and patient cohorts
	Neural network models, tumor detection and MSI detection
	Statistics
	Reporting Summary

	Data availability
	Code availability
	Extended Data
	Extended Data Fig. 1 |
	Extended Data Fig. 2 |
	Extended Data Fig. 3 |
	Extended Data Fig. 4 |
	References
	References
	Fig. 1 |
	Fig. 2 |

