Table 2:
Method | Source | Reference |
---|---|---|
PLS-DA | Bioconductor (ropls) | [1] |
PLS-DA, RF and SVM | Bioconductor (biosigner) | [2] |
SVM, RF | Bioconductor (MLSeq) | [3] |
RF, SVM, PLS-DA | Metaboanalyst http://www.metaboanalyst.ca/ | [4] |
PCA, PLS-DA, RF | Bioconductor (statTarget) | [5] |
Feature selection, Metric evaluation | Bioconductor (OmicsMarker) | [6] |
Sparse PLS-DA | Bioconductor (mixOmics) | [7] |
Feature selection, Metric evaluation | CRAN (lilikoi) | [8] |
Probabilistic Principal Component Analysis | CRAN (MetabolAnalyze) | [9] |
Kernel-based Metabolite Differential Analysis | CRAN (KMDA) | [10] |
PLS-DA, OPLS-DA | CRAN (muma) | [11] |
RF | CRAN (RFmarkerDetector) | [12] |
RF, SVM, PLS-DA | CRAN (caret) | [13] |
References
Thévenot, E.A.: ropls: PCA, PLS (-DA) and OPLS (-DA) for multivariate analysis and feature selection of omics data. (2016).
Rinaudo, P., Boudah, S., Junot, C., Thévenot, E.A.: Biosigner: a new method for the discovery of significant molecular signatures from omics data. Frontiers in molecular biosciences 3, 26 (2016).
Zararsiz, G., Goksuluk, D., Korkmaz, S., Eldem, V., Duru, I.P., Unver, T., Ozturk, A., Zararsiz, M.G., klaR, M., biocViews Sequencing, R.: Package ‘MLSeq’. (2014).
Xia, J., Psychogios, N., Young, N., Wishart, D.S.: MetaboAnalyst: a web server for metabolomic data analysis and interpretation. Nucleic acids research 37(suppl_2), W652-W660 (2009).
Luan, H., Ji, F., Chen, Y., Cai, Z.: statTarget: A streamlined tool for signal drift correction and interpretations of quantitative mass spectrometry-based omics data. Analytica chimica acta 1036, 66–72 (2018).
Determan Jr, C.E., Determan Jr, M.C.E.: Package ‘OmicsMarkeR’. (2015).
Rohart, F., Gautier, B., Singh, A., Le Cao, K.-A.: mixOmics: An R package for ‘omics feature selection and multiple data integration. PLoS computational biology 13(11), e1005752 (2017).
Al-Akwaa, F.M., Yunits, B., Huang, S., Alhajaji, H., Garmire, L.X.: Lilikoi: an R package for personalized pathway-based classification modeling using metabolomics data. GigaScience 7(12), giy136 (2018).
Gift, N., Gormley, I.C., Brennan, L., Gormley, M.C.: Package ‘MetabolAnalyze’. (2010).
Zhan, X., Patterson, A.D., Ghosh, D.: Kernel approaches for differential expression analysis of mass spectrometry-based metabolomics data. BMC bioinformatics 16(1), 77 (2015).
Gaude, E., Chignola, F., Spiliotopoulos, D., Spitaleri, A., Ghitti, M., Garcìa-Manteiga, J.M., Mari, S., Musco, G.: muma, An R package for metabolomics univariate and multivariate statistical analysis. Current Metabolomics 1(2), 180–189 (2013).
Palla, P.: Information management and multivariate analysis techniques for metabolomics data. Universita’degli Studi di Cagliari (2015)
Kuhn, M.: Building predictive models in R using the caret package. Journal of statistical software 28(5), 1–26 (2008).