Skip to main content
. Author manuscript; available in PMC: 2020 Aug 12.
Published in final edited form as: Methods Mol Biol. 2020;2104:313–336. doi: 10.1007/978-1-0716-0239-3_16

Table 2:

Selected open source (R/Bioconductor/Web-based) tools for supervised learning algorithms.

Method Source Reference
PLS-DA Bioconductor (ropls) [1]
PLS-DA, RF and SVM Bioconductor (biosigner) [2]
SVM, RF Bioconductor (MLSeq) [3]
RF, SVM, PLS-DA Metaboanalyst http://www.metaboanalyst.ca/ [4]
PCA, PLS-DA, RF Bioconductor (statTarget) [5]
Feature selection, Metric evaluation Bioconductor (OmicsMarker) [6]
Sparse PLS-DA Bioconductor (mixOmics) [7]
Feature selection, Metric evaluation CRAN (lilikoi) [8]
Probabilistic Principal Component Analysis CRAN (MetabolAnalyze) [9]
Kernel-based Metabolite Differential Analysis CRAN (KMDA) [10]
PLS-DA, OPLS-DA CRAN (muma) [11]
RF CRAN (RFmarkerDetector) [12]
RF, SVM, PLS-DA CRAN (caret) [13]

References

1.

Thévenot, E.A.: ropls: PCA, PLS (-DA) and OPLS (-DA) for multivariate analysis and feature selection of omics data. (2016).

2.

Rinaudo, P., Boudah, S., Junot, C., Thévenot, E.A.: Biosigner: a new method for the discovery of significant molecular signatures from omics data. Frontiers in molecular biosciences 3, 26 (2016).

3.

Zararsiz, G., Goksuluk, D., Korkmaz, S., Eldem, V., Duru, I.P., Unver, T., Ozturk, A., Zararsiz, M.G., klaR, M., biocViews Sequencing, R.: Package ‘MLSeq’. (2014).

4.

Xia, J., Psychogios, N., Young, N., Wishart, D.S.: MetaboAnalyst: a web server for metabolomic data analysis and interpretation. Nucleic acids research 37(suppl_2), W652-W660 (2009).

5.

Luan, H., Ji, F., Chen, Y., Cai, Z.: statTarget: A streamlined tool for signal drift correction and interpretations of quantitative mass spectrometry-based omics data. Analytica chimica acta 1036, 66–72 (2018).

6.

Determan Jr, C.E., Determan Jr, M.C.E.: Package ‘OmicsMarkeR’. (2015).

7.

Rohart, F., Gautier, B., Singh, A., Le Cao, K.-A.: mixOmics: An R package for ‘omics feature selection and multiple data integration. PLoS computational biology 13(11), e1005752 (2017).

8.

Al-Akwaa, F.M., Yunits, B., Huang, S., Alhajaji, H., Garmire, L.X.: Lilikoi: an R package for personalized pathway-based classification modeling using metabolomics data. GigaScience 7(12), giy136 (2018).

9.

Gift, N., Gormley, I.C., Brennan, L., Gormley, M.C.: Package ‘MetabolAnalyze’. (2010).

10.

Zhan, X., Patterson, A.D., Ghosh, D.: Kernel approaches for differential expression analysis of mass spectrometry-based metabolomics data. BMC bioinformatics 16(1), 77 (2015).

11.

Gaude, E., Chignola, F., Spiliotopoulos, D., Spitaleri, A., Ghitti, M., Garcìa-Manteiga, J.M., Mari, S., Musco, G.: muma, An R package for metabolomics univariate and multivariate statistical analysis. Current Metabolomics 1(2), 180–189 (2013).

12.

Palla, P.: Information management and multivariate analysis techniques for metabolomics data. Universita’degli Studi di Cagliari (2015)

13.

Kuhn, M.: Building predictive models in R using the caret package. Journal of statistical software 28(5), 1–26 (2008).