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M I C R O B I O L O G Y

Metabolic multistability and hysteresis in a model 
aerobe-anaerobe microbiome community
Tahmineh Khazaei1, Rory L. Williams1, Said R. Bogatyrev1, John C. Doyle1,2,  
Christopher S. Henry3, Rustem F. Ismagilov1,4*

Major changes in the microbiome are associated with health and disease. Some microbiome states persist despite 
seemingly unfavorable conditions, such as the proliferation of aerobe-anaerobe communities in oxygen-exposed 
environments in wound infections or small intestinal bacterial overgrowth. Mechanisms underlying transitions 
into and persistence of these states remain unclear. Using two microbial taxa relevant to the human microbiome, 
we combine genome-scale mathematical modeling, bioreactor experiments, transcriptomics, and dynamical sys-
tems theory to show that multistability and hysteresis (MSH) is a mechanism describing the shift from an aerobe- 
dominated state to a resilient, paradoxically persistent aerobe-anaerobe state. We examine the impact of changing 
oxygen and nutrient regimes and identify changes in metabolism and gene expression that lead to MSH and as-
sociated multi-stable states. In such systems, conceptual causation-correlation connections break and MSH must 
be used for analysis. Using MSH to analyze microbiome dynamics will improve our conceptual understanding of 
stability of microbiome states and transitions between states.

INTRODUCTION
Recent evidence shows that changes in the species composition and 
abundance of the human microbiome can be associated with health 
and disease (1–3). Understanding the mechanisms that cause com-
positional shifts in healthy microbiomes, which otherwise can be stable, 
is challenging because of the inherent complexity of these ecosystems. 
A perplexing feature of some of these disturbed ecosystems is the 
persistence of a new microbiome state, even in seemingly unfavorable 
conditions. For example, in small intestinal bacterial overgrowth (SIBO), 
strict anaerobes that are typically found only in the colon become 
prominent in the small intestine and, paradoxically, persist in this 
environment exposed to oxygen flux from the tissue (4, 5). Similar-
ly, in periodontal diseases (6) and in wound infections, anaerobes 
proliferate in oxygen-exposed environments. 

One potential mechanism to explain microbiome shifts and their 
persistence is multistability (7–13), the concept that several steady 
states can exist for an identical set of system parameters (Fig. 1). 
Multistable systems have been described in the context of ecosys-
tems (14–17) and gene regulatory networks (18–20). Now, with the 
expanding characterization of the microbiome, there are signs that 
multistability may also exist in these communities (21–27). For ex-
ample, compositional changes in gut microbiota are implicated in 
inflammatory bowel disease (28) and obesity (29). Bimodal species 
abundance (i.e., when a microbial species is present at either high or 
low levels) has been interpreted as multistability (30); however, as 
discussed by Gonze et al., bimodality is insufficient to prove mul-
tistability (7, 31). Some multistable systems can additionally exhibit 
hysteresis, where in response to a perturbation, a system gets “stuck” in 
a new steady state and the former state cannot be regained by simply 
reversing the perturbation (7). The presence of hysteresis could be 

hypothesized from studies of the microbiome (32). For example, antibiotic 
exposures can change the microbiome composition and have lasting 
effects even after removal of the antibiotic (33, 34). However, it has not 
been rigorously tested whether multistability and hysteresis (MSH) can 
arise in a microbiome-relevant community and by what mechanism.

Here, we investigate MSH in a minimally “complex” two-species 
system to represent the paradoxical aerobe-anaerobe microbiome com-
munities that persist in oxygen-exposed environments. We used two 
organisms prevalent in SIBO (35): the anaerobe Bacteroides thetaio-
taomicron (Bt) that breaks down complex carbohydrates (e.g., dex-
tran) into simple sugars and short-chain fatty acids (36) and the 
facultative anaerobe (hereafter referred to as an aerobe) Klebsiella 
pneumoniae (Kp) capable of consuming oxygen, simple sugars, and 
short-chain fatty acids and performing anaerobic respiration in the 
absence of oxygen (37).

Mathematical simulations (Fig. 2A) and a 35-day (832 hours) 
experiment (fig. S1) in a continuously stirred tank reactor (CSTR) 
revealed that MSH occurs in our two-species system with two distinct 
steady states that can exist under identical environmental conditions: 
(i) Kp-only state and (ii) Kp-Bt state, where the anaerobe (Bt) prolifer-
ates in the presence of continuous oxygen input. Using genome-scale 
mathematical models, which capture the full metabolic capacity of 
each species (1491 equations for Bt and 2262 equations for Kp), and 
RNA sequencing data collected from the CSTR experiment, we find 
that MSH extends to the level of metabolism, where genes are dif-
ferentially expressed in the two distinct states. We identified key 
metabolic pathways (short-chain fatty acid and oligosaccharide me-
tabolism) involved in metabolic coupling between the two species 
leading to MSH.

RESULTS
Computational results
Mathematical simulations of a CSTR revealed that MSH arises from 
the interplay between environmental perturbations and interspecies 
metabolic interactions. We used the dynamic multispecies metabolic 
modeling (DMMM) framework (38) to model a community of Kp 
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and Bt in a CSTR (Fig. 2A) with continuous input flows of dextran 
minimal media and varying input glucose or varying input oxygen 
levels (depending on the simulation). The outflow rate is equal to the 
inflow rate to maintain a constant reactor volume, and the resident 
time in the reactor is 5 hours. The DMMM framework uses dynamic 
flux balance analysis (dFBA) (39), which allows us to capture tem-
poral changes in intracellular flux rates (using the genome-scale 
metabolic model for each species), extracellular metabolite concen-
trations, and species concentrations.

To computationally test whether a change in the balance of oxygen 
and carbon fluxes could lead to a change in the state of the aerobe- 
anaerobe community, we altered glucose input concentrations (Fig. 3A), 
while keeping constant all other system parameters, including con-
tinuous oxygen input and continuous dextran input. The model 
predicted that for glucose concentrations of 0.25 to 3 mM in the 
input feed (at a constant flow rate of 0.7 ml/min for all conditions), the 
output state consisted solely of Kp, which we refer to as the Kp-only 
state (Fig. 2B). Stoichiometrically, at these glucose concentrations, 
oxygen was not completely consumed; thus, the environment was 
unfavorable for Bt growth. However, when we increased glucose in-
put concentration to 3.25 mM, we observed a shift to a new steady 
state (Fig. 3A). At this “tipping point,” the environment became suffi-

ciently anaerobic to support the growth of Bt. We refer to this second 
distinct steady state as the Kp-Bt (aerobe-anaerobe) state (Fig. 2C). 
In the Kp-Bt state, the Kp population is no longer carbon limited 
because of the additional carbon sources generated from the metab-
olism of dextran by Bt. Thus, Kp can now consume all of the available 
oxygen to oxidize both glucose and the additional carbon sources, 
resulting in anaerobic conditions. Unexpectedly, this Kp-Bt state 
persisted when we systematically reversed the input of glucose be-
low 3.25 mM, even to 0 mM. Thus, this system shows hysteresis and 
multistability: Under identical input conditions of glucose and oxy-
gen, the system can be in either of the two possible states. We then 
identified tipping points for population shifts in response to input oxy-
gen variations, with glucose kept constant (Fig. 3B). In addition to 
glucose input, all other parameters, including continuous dextran 
input, were held constant. We considered oxygen as a parameter because 
in host settings, oxygen availability can be affected by respiration, 
blood flow rate, immune consumption, etc. We found that we could 
return the system to the Kp-only state by increasing oxygen levels, a 
state switch that was not possible by manipulating glucose concen-
tration alone. Last, we simulated changes in both glucose and oxygen 
levels and characterized the landscape of multistability and monosta-
bility in the model microbial community (Fig. 3C). These simulation 
results illustrate that even a minimal model of microbiome with code-
pendence (40, 41) can demonstrate marked MSH.

Experimental results
To confirm and further explore MSH beyond mathematical predic-
tions, we performed a CSTR experiment over 35 days (832 hours). 
In the CSTR (200-ml culture volume), we varied input glucose con-
centrations (while keeping all other parameters constant, including 
continuous dextran and oxygen) and measured the steady-state out-
put composition of the microbial community by quantitative poly-
merase chain reaction [qPCR; and digital PCR (dPCR); fig. S6]. Oxygen 
was sparged into the reactor at 3.4% of the gas feed (total gas feed, 
50 ml/min) and kept constant for all conditions. For each steady-state 
condition, we collected three CSTR samples separated by at least one 
residence time (5 hours; fig. S1 contains the experimental workflow).

As predicted by the mathematical models, we observed both mul-
tistability and hysteresis (Fig. 4A) experimentally. At 0.25, 1, and 2 mM 
glucose concentrations, the steady-state community consisted only of 
Kp; Bt was washed out under these conditions (Fig. 4B). To confirm 
washout, Bt was reinoculated three separate times. The dissolved oxy-
gen measurements (Fig. 4C) confirmed that oxygen was not limiting 
under the selected parameter conditions, resulting in an aerobic en-
vironment unsuitable for Bt growth. As in the simulations, at 5 mM 
glucose, a new distinct steady state was reached where Bt grew in 
the presence of Kp. Although there was continuous oxygen flux 
into the reactor, the concentration of dissolved oxygen measured in 
the reactor was near zero. Next, to test for hysteresis, we reduced the 
glucose input back down to 2, 1, 0.25, and 0 mM and found that the 
aerobe-anaerobe state persisted. The persistence of the Kp-Bt state 
(instead of a return to the Kp-only state) qualitatively confirmed model 
predictions of hysteresis and verified that this microbial community 
is a multistable system.

The CSTR results demonstrate metabolic coupling and code-
pendence between these two bacterial species with respect to carbon 
and oxygen. At sample point 8, there is no glucose input to the reactor, 
yet Kp continued to grow, indicating that Kp was completely depen-
dent on Bt for its carbon supply. At sample point 4, Bt started to grow, 
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Fig. 1. Simplified illustration of multistability and hysteresis. A frictionless see-
saw is a multistable system with two states (left and right) determined by the posi-
tion of the person. Conversely, a seesaw with static friction is a multistable system 
with hysteresis. Within the region of hysteresis, the state of the system is not deter-
mined by the external input (position of person) but rather by the system’s history. 
As the person walks through positions 1 and 2 past the midpoint to position 3, the 
seesaw remains stuck in the left state; the person has to walk much further, to po-
sition 4, to switch it to the right state. As the person walks back to the left, through 
positions 5 and 6 and past the midpoint to position 7, the seesaw remains stuck in 
the right state and it only switches back to the left state when the person reaches 
position 8. In the region of positions 2, 3, 6, and 7, the system exhibits multistability 
and hysteresis (MSH). Here, the state of the microbial community (Kp-only state or 
Kp-Bt state) is analogous to the state of the seesaw, and the balance of oxygen or 
glucose inputs are analogous to the positions of the person.
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despite the continuous oxygen input, indicating that Bt was dependent 
on removal of oxygen by Kp. At sample points 7 (0.25 mM glucose) 
and 8 (0 mM glucose), Bt continued to grow, despite dissolved oxygen 
measurements indicating oxygen concentrations above the tolerance 
for Bt growth (Fig. 4C). This observation differed slightly from the 
model, suggesting that there may be additional biological factors beyond 
metabolic coupling and stoichiometric balance of carbon and oxy-
gen that can affect multistability. Imaging revealed that in the Kp-Bt 
state, bacterial aggregates were larger at lower glucose concentrations. 
Furthermore, fluorescent in situ hybridization showed these aggre-
gates contained both Kp and Bt (fig. S2). We hypothesize that coag-
gregation is one potential mechanism that could extend the region 
of hysteresis by providing microenvironments more favorable for Bt 
growth by further facilitating metabolic coupling between the two 
species, as observed in biofilms (6). Other factors, such as adhesion 
to the walls of the vessel, may also contribute to extending the re-
gion of hysteresis.

Gene expression analysis of CSTR samples revealed that mul-
tistability also occurs at the transcriptome level in both the commu-
nity and in individual species. Principal components analysis (PCA) 
of the community-level gene expression data showed that samples 
clustered on the basis of the steady state (Kp-only versus Kp-Bt) from 
which they were collected (Fig. 5A). Strong clustering at the com-

munity level is expected because Bt is absent from the Kp-only state. 
However, when we evaluated the gene expression profile of Kp (Fig. 5B), 
which is present in all steady-state conditions, we also found clustering 
based on the state of the community.

To further evaluate the proposed metabolic mechanism respon-
sible for MSH (Fig. 2, B and C), we compared metabolic regulation 
in Kp in the Kp-Bt state and the Kp-only state. We used a method 
from the Neilsen Lab (42) to collect topological information from 
the genome-scale metabolic models and combine it with gene ex-
pression data to identify reporter metabolites that maximally differ 
between the two states. Among the top reporter metabolites were 
pyruvate, phosphoenolpyruvate, glucose, and glucose-6-phosphate 
(table S3), suggesting that the phosphotransferase system (PTS), which 
is involved in sugar transport, is up-regulated in the Kp-only state 
relative to the Kp-Bt state (Fig. 5, C and D). In the Kp-Bt state, genes 
involved in the -glucoside linked substrates were up-regulated 
(Fig. 5E), suggesting that Kp obtains some of its carbon source from 
oligosaccharides. These oligosaccharides are released into the envi-
ronment by Bt through the breakdown of dextran by dextranase, an 
extracellular endohydrolase (43). Bt uses these oligosaccharides by 
hydrolyzing them using glucan-1,3--glucosidases. As expected, both 
dextranase (dexA) and glucan-1,3--glucosidase (gaa) were found 
to be highly expressed in Bt in the Kp-Bt state (Fig. 5E).

A

B C

Fig. 2. A multistable model system consisting of Kp, a facultative anaerobe, and Bt, an anaerobe, that is relevant to the human gut microbiome. (A) Dynamic 
equations describing the model system can be solved with dFBA using each species’ genome-scale metabolic model. (B) In the Kp-only state, Bt does not grow and Kp 
uses external sugars and short-chain fatty acids. (C) In the Kp-Bt state, Bt can grow and break down complex polysaccharides into simple sugars and short-chain fatty acids, 
which Kp can use to maintain reduced oxygen levels favorable for Bt growth.
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Our analysis (Fig. 5F) also suggested an up-regulation of acetate 
utilization by Kp in the Kp-Bt state as inferred from the up-regulation 
of acetate permease. In addition, Kp genes involved in lactate utili-
zation were up-regulated in the Kp-Bt state. Upon oxygen exposure, 
Bt is known to produce lactate (44). A pilot experiment showed that 
the addition of a mixture of lactate and acetate can cause a direct 
“jump” from the Kp-only state to the Kp-Bt state (fig. S5), emphasizing 
that short-chain fatty acids are involved in the metabolic coupling 
between Kp and Bt in MSH. Multistability of gene expression 
extended to the anaerobic metabolic pathway for propanediol utili-
zation in Kp (Fig. 5G) (45). We thus infer that a subpopulation of 
Kp was undergoing anaerobic metabolism in samples 4 and 5 (of the 
Kp-Bt state), where the dissolved oxygen concentrations in the reactor 

were lowest (Fig. 4C). Overall, these results were consistent with 
the basic mechanism for MSH (Fig. 2, B and C) and reveal that 
MSH extends to the expression of genes and pathways involved in 
metabolic coupling between the species.

DISCUSSION
In this work, we used genome-scale mathematical modeling, biore-
actor experiments, transcriptomics, and dynamical systems theory 
to show that MSH is a mechanism that can describe shifts and per-
sistence of a two-member model microbiome aerobe-anaerobe com-
munity under seemingly paradoxical conditions (e.g., oxygen-exposed 
environments). We further identified key metabolic pathways involved 
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in MSH in the Kp-Bt system. Future gene knockout studies would 
further confirm the critical metabolic pathways responsible for MSH. 
We demonstrated that altering the balance between carbon and ox-
ygen fluxes within the system, by changing input glucose levels, leads 
to a community shift from the Kp-only state to the Kp-Bt state. 
Follow-up experiments exploring the manipulation of input oxygen levels 
would be needed to quantitatively evaluate the role of input oxygen 
levels in MSH; in particular, the model-predicted ability to switch 
the system back to the Kp-only state. A limitation of this study is the 
long time frame of the CSTR experiment (fig. S1) and that the data 
reported come from a single run; however, a shorter pilot experiment 
(fig. S9) demonstrated similar dynamics. More broadly, identifying and 

interpreting MSH in human microbiomes and microbiome-associated 
diseases would require carefully designed longitudinal measurements 
and models that take into account the full complexity of microbi-
omes, their spatial structure, and host responses. If MSH is found, 
then it would have profound conceptual impact. To understand and 
control microbial communities without MSH, one currently relies on 
a well-established conceptual connection between correlation, causation, 
and control. Consider points S1 to S3 (Fig. 4). The levels of Kp cor-
relate with the input glucose concentration; from a known input glu-
cose concentration, one can infer a steady-state Kp concentration 
and vice versa. Input glucose concentration is the causal factor, and 
therefore, it can be used to control the steady-state levels of Kp. If 
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MSH is identified in microbiomes, then it would break this familiar 
conceptual connection between causation and correlation. Consider 
the region of hysteresis (points S1 to S3 and S5 to S7; Fig. 4). The 
observed steady-state levels of Kp no longer correlate with the input 
glucose concentration. At 2 mM input glucose, the system could be 
in either the Kp-only state S3 or the Kp-Bt state S5. At ~650 × 106 
colony-forming units/ml of Kp, the input glucose levels could be 
either 0.25 or 2 mM. Although there is no correlation between species’ 
abundance and input glucose concentration (in other words, knowing 
glucose concentration is not sufficient for predicting species abun-
dance; instead, a system’s history must also be known), input glucose 
concentration remains the causal factor. Furthermore, under MSH, 
establishing causation is insufficient for achieving control: Although 
input glucose concentration is the causal factor responsible for changes 
in the community state, it cannot be used to fully control the com-
munity (i.e., one cannot use changes in glucose inputs to revert the 
Kp-Bt state back to the Kp-only state). Alternative control strategies 
(e.g., changes in oxygen levels or disruption of metabolic coupling), 
derived from appropriate models, would need to be deployed under 
MSH. Therefore, recognizing whether and when MSH exists in human 
microbiomes will be critical for interpreting correlation and causation 
and for designing therapeutic control strategies that can steer mi-
crobial communities to desirable states.

MATERIALS AND METHODS
Model development
For the computational simulations, we used the DMMM framework 
(38), which is an extension of dFBA applied to microbial communities. 
Briefly, the DMMM framework has two components. In component 1, 
external differential equations describe mass balances for species 
and metabolite concentrations in the CSTR (shown in Fig. 2A and 
described in the Supplementary Materials). Unlike the traditional 
method for solving differential equations in a bacterial system, we 
do not assume that parameters such as growth rates and metabolic 
flux rates are constant. Instead, we allow the parameters to be dynamic 
because we are studying a system with potentially rich dynamics. To 
find the values for these dynamic parameters, we use FBA (compo-
nent 2) to solve for the parameter values at every time step of the 
simulated time period. Component 2 includes the genome-scale 
models for each species. These models are used to perform FBA at 
every time point to obtain updated parameters for the differential 
equations in component 1.
Component 1
The system is described as a CSTR with the following mathematical 
formulation

    d  X  i   ─ dt   =    i    X  i   −    F  out    X  i   ─ V    (1)

     dS   j  ─ dt   =  ∑ i      v i  
j    X  i   +   

 F  in    S feed  j   −  F  out    S   j 
  ─ V    (2)

     dS   oxygen  ─ dt   =  ∑ 
i
      v i  

oxygen   X  i   +  K  L   a(S * −  S   oxygen )  (3)

Here, V is the volume of the reactor (constant), and Xi is the 
biomass (g/liter) of the ith microbial species. Sj is the concentration 
(mM) of the jth metabolite, Fin is the rate of flow (liter/hour) into the 
reactor, Fout is the rate of flow (liter/hour) out of the reactor,   S  feed  j    is 

the concentration of the jth metabolite in the feed stream, i (hour−1) 
is the growth rate of the ith microbial species,   v  i  

j    is the metabolic 
flux of the jth substrate in the ith microbial species, KLa is the volu-
metric oxygen transfer coefficient, and S* is the dissolved oxygen 
saturation concentration.

In continuous culture, substrate utilization can deviate from di-
auxic growth (as typically observed in batch culture) and cosubstrate 
utilization is possible (46). The set of differential equations are solved 
using the following analytical approximation

   X  f   =  X  i,0    e    (     i  −  F  in   _  V  0     )  ∆T   (4)

   
  S  f  j   =  S  0  j   +  ∑ 

i
     [    v  i  

j      V  0   ─  μ  i    V  0   −  F  in     (    X  i,0    e    (   μ  i  −  F  in   _  V  0     )  ΔT  −  X  i,0   )   ]   
    

+   
 F  in   (    S  feed  j   −  S   j  )  

 ─  V  0     ΔT
     

  (5)

   
  S f  

oxygen  =  S 0  oxygen  +  ∑ 
i
     [    v i  

oxygen     V  0   ─  μ  i    V  0   −  F  in     (    X  i,0    e    (   μ  i  −  F  in   _  V  0     )  ΔT  −  X  i,0   )   ]   
     

+  K  L   a(S * −  S   oxygen  ) ΔT
    

  (6)

At the beginning of every time step (∆T), the parameters i and   
v  i  

j    are calculated using FBA from genome-scale models (component 
2) and fed back into Eqs. 4, 5, and 6. This process is repeated for all 
time intervals in the simulated time period.
Component 2
Genome-scale metabolic models are used to establish genotype- 
phenotype relationships and capture the metabolic capabilities of 
each model organism. Furthermore, these models allow us to inte-
grate metabolic network topology information with RNA sequenc-
ing data for transcriptomic analysis of the CSTR experiments 
(described further in the “RNA sequencing and analysis” section). 
We used the published iYL1228 model of Kp MGH-78578 (37) and 
the published iAH991 model of Bt VPI-5482 (36). Because these 
models are well validated (and curated), we added the minimum 
number of parameters that allow for integration of these models to 
the community dFBA framework. Our changes include adding a 
pathway for dextran uptake and hydrolysis to glucose in the Bt 
iAH991 model. The pathway lumps hydrolysis of dextran to glucose 
into a single reaction. In this lumped reaction, we assume that 50% 
of the glucose produced from dextran by Bt can be released into the 
environment for shared use. For the purpose of the simulations, dex-
tran is assumed to be 100 glucose units. The genome-scale models are 
solved separately for each species by FBA (47) at each time point

  max  c   T   ̄   v  i     (7)

                          s . t .  A  i    ̄   v  i    = 0  

                                       ̄  v    i,lb   <   ̄   v  i    <    ̄  v    i,ub    

where c is the cost vector,    ̄  v    is the vector of fluxes, and A is the ma-
trix of mass balance stoichiometries. The optimization criterion is 
biomass growth rate (for each species). For the bounds for the fluxes, 
we used the values in the curated, published genome-scale models 
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(Kp iYL1228 and Bt iAH99). The uptake fluxes explicitly modeled 
in component 1 (dextran, glucose, acetate, and oxygen) are bounded 
by Michaelis-Menten kinetics

   v  i,ub  j   =  v  i  
j,max     S   j  ─ 

 K  m   +  S   j 
    (8)

The values for   v i  
j,max   and Km for some of the metabolites in the 

model were estimated from batch experiments. Batch culture ex-
periments were carried out in a 96-well flat-bottom plate. Overnight 
cultures grown anaerobically in minimal medium supplemented 
with either 0.5% (w/v) dextran or 0.5% (w/v) glucose were diluted 
1:20 (for Bt) and 1:100 (for Kp) and outgrown to mid-log phase. The 
cultures were then pelleted and resuspended at optical density (OD) 
1 (for Bt) and OD 0.1 (for Kp) in carbon-source-free minimal medium. 
We added 10 l of cells to 200 l of minimal medium containing 
various concentrations [0.125 to 0.5% (w/v)] of the carbon source. 
The plate was incubated at 37°C, and OD600 was measured every 
10 min. For batch cultures, Monod growth kinetics was assumed

    dX ─ dt   = X    max     S ─ S + K    (9)

    dS ─ dt   = −  v  max     S ─ S + K    (10)

where max is the maximum growth rate the given bacteria can 
achieve on a carbon source when it is not resource limited. Growth 
data from replicate wells of multiple concentrations of carbon source 
were fitted simultaneously using Bayesian parameter estimation 
implemented with Markov chain Monte Carlo (48). Individual 
growth curves were allowed to have distinct initial cell concentrations 
and background values, with other parameters held constant. The 
fitted parameters are presented in table S1 and fig. S3. For all other 
metabolites captured in the differential equations, the Km and vmax 
values are assumed to be the same (vmax of 10 mmol/gCDW·hour 
and Km of 0.01 mM) on the basis of literature for Escherichia coli 
(49, 50).

Values for parameters and initial conditions used in the model 
are presented in table S2. Initial conditions are chosen to represent 
the experimental setup, whereby we first establish a steady state for 
Kp in the CSTR before inoculating Bt. Therefore, in the models, we 
start with a higher concentration of Kp than Bt. The initial conditions 
for Kp in the reactor is arbitrarily chosen to be the experimentally 
measured monoculture steady-state concentration of Kp at an input 
glucose concentration of 0.25 mM. The initial conditions for Bt in 
the reactor are 0.0015 g/liter, which is equivalent to addition of 1 ml of 
OD 1 Bt into the reactor, as done experimentally. For most steady-
state conditions, glucose is limiting, and therefore, the initial condi-
tions for glucose concentration in the reactor are chosen to be 0 mM.

We note that although an individual FBA simulation (component 
1) is linear, a dynamic FBA (the combination of component 1 and 
component 2) is not linear. The behavior of the cells will shift mark-
edly (a nonlinear response) when substrate levels in the environment 
cross certain thresholds. The two biggest sources of nonlinearity in 
our model system are binary growth/no-growth behavior of Bt in 
the presence or absence of O2 and the binary capacity of Kp to use 
carbon from dextran (through its breakdown into oligosaccharides 
by Bt) in the presence or absence of Bt. To model the binary growth/
no-growth behavior of Bt in the presence of O2, we included a con-

ditional operator before the FBA simulations for each time step: If the 
O2 levels are above 350 nM, then the growth rate of Bt is set to zero 
and the FBA is not run for Bt, whereas if O2 levels are lower than 
350 nM O2, then the FBA simulation for Bt is allowed to proceed. The 
value for the O2 growth threshold for the model is arbitrarily chosen 
from the concentration range reported for the aerotolerant Bt (51).

To computationally identify the regions of stability with respect 
to glucose and oxygen (Fig. 3C and fig. S4), we varied oxygen input 
flow rates at constant input glucose concentration for each glucose 
condition examined. We evaluated 11 glucose conditions ranging from 
1 to 6 mM. For each given glucose input concentration, we started 
with oxygen at an input flow rate of 6 ml/min and ran the simula-
tion for 50 hours to ensure that the system reached a steady state. 
We then decreased the oxygen input by intervals of 0.5 ml/min down 
to 0.5 ml/min, for each oxygen condition, ensuring that the system 
reached a steady state [we refer to the oxygen variations at 6 to 
0.5 ml/min for a given constant glucose input concentration as the 
“forward simulations”]. The concentration of oxygen input at which 
Bt starts to grow is identified as the tipping point to the monostable 
Kp-Bt state. After running the oxygen simulation at 0.5ml/min, 
we increased the concentration back to 6 ml/min at intervals of 
0.5 ml/min [we refer to the oxygen variations at 0.5 to 6 ml/min as 
the “reverse simulations”). The concentration of oxygen at which Bt 
can no longer grow and gets washed out is identified as tipping 
point to the monostable Kp-only state. The region between these 
two tipping points to the monostable Kp-Bt state in the forward 
simulations and the monostable Kp-only state in the reverse simu-
lations is identified as the region of bistability. The colors in fig. S4 
represent the steady-state concentration of Kp in the reverse simu-
lations divided by the steady-state concentration of Kp in the 
forward simulations. In regions of monostability, the concentration 
of Kp is similar in both the forward and reverse simulations and 
therefore has a value of approximately 1.

Continuous culture of Kp and Bt
Continuous culture experiments were carried out in a 500-ml 
bioreactor (miniBio Applikon Biotechnology, Delft, Netherlands) 
with a total culture volume of 200 ml. Minimal medium [KH2PO4 
(3.85 g/liter), K2HPO4 (12.48 g/liter), (NH4)2SO4 (1.125 g/liter), 
1× methyl methanesulfonate (20× methyl methanesulfonate: NaCl, 
17.6 g/liter; CaCl2, 0.4 g/liter; MgCl2 × 6H2O, 0.4 g/liter; MnCl2 × 4H2O, 
0.2 g/liter; and CoCl2 × 6H2O, 0.2 g/liter), Wolfe’s mineral solution 
(10 ml/liter) (52), Wolfe’s vitamin solution (10 ml/liter) (52), 4.17 M 
FeSO4 × 7H20, 0.25 mM cysteine, 1 M menadione, 2 M resazurin, 
dextran (1 g/liter; Sigma, D5376; average molecular weight, 1.5 × 106 
to 2 × 106), and glucose at varying concentrations] was purged with 
100% N2, stored under anaerobic conditions before use, and main-
tained under N2 during operation of the CSTR. We calibrated the 
dissolved oxygen probe by aerating the reactor with CO2 (5 ml/min) 
and N2 (45 ml/min). The stable measurement without O2 input was 
taken to be 0 M dissolved oxygen. We then sparged the reactor with 
O2 (1.7 ml/min), CO2 (5 ml/min), and N2 (43.3 ml/min). This stable 
measurement was taken to be 30.714 M O2 [calculated assuming 
dissolved oxygen (6.056 mg/liter) at 1 atm and 37°C].

For the experiments, the bioreactor was sparged with total gas at 
50 ml/min [O2 (1.7 ml/min), CO2 (5 ml/min), and balance of N2] 
and agitated with two six-bladed Rushton turbines operated at 
750 rpm. Temperature was maintained at 37°C, and a residence time 
of 5 hours (input and output flow rates of 40 ml/hour) was used for 
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all experiments. Dissolved oxygen, pH, and biomass were monitored 
throughout. For initial inoculation of Kp, 1 ml of OD 1 culture was 
injected through the septum and grown in batch culture until station-
ary phase (indicated by a leveled biomass readout and an increase of 
dissolved oxygen levels) before beginning continuous culture. For 
every experimental condition examined (input glucose concentra-
tion) in the CSTR, we waited for the system to first reach steady 
state (at least 24 hours). To assess whether a steady state had been 
reached, we monitored the total biomass in the reactor using a real- 
time OD probe. Once the system reached steady state, we took three 
samples over the course of 24 to 48 hours. The time interval be-
tween each sample collection was at least one residence time (5 hours). 
Residence time is defined as the time it takes to entirely exchange 
the volume of the reactor. For introduction of Bt, a log phase (OD 
0.6 to 0.8) anaerobic culture grown in minimal media with 0.5% dex-
tran and 2 mM cysteine was pelleted (5 min at 3500g) and washed 
twice using dextran/glucose-free anaerobic minimal media. Cells were 
carbon-starved at 37°C for 30 min, washed (once), and resuspended 
in dextran/glucose-free minimal media to OD 1. We used 1 ml of 
this Bt cell suspension for inoculation into the reactor, and a sample 
was collected immediately after inoculation. A subsequent sample 
was collected for quantification after at least two residence times had 
passed. In the Kp-only state conditions (0.25, 1, and 2 mM glucose), 
Bt is washed out, as described in Results. To ensure reproducibility 
of a washout for these conditions, the Bt inoculation and sample 
collection process were repeated a total of three times. In Kp-Bt state 
conditions (5, 2, 1, 0.25, and 0 mM glucose), where Bt growth per-
sisted, reinoculation of Bt was no longer necessary for each new glu-
cose steady-state condition; three samples separated by at least one 
residence time were collected for each steady-state condition. To col-
lect samples, ~0.5 ml of culture was removed from the bioreactor in a 
3-ml Luer-lock syringe and discarded before collection of 1.5 to 2 ml 
of culture. Supernatant from 700 l of the collected sample was stored 
at −80°C for short-chain fatty acid analysis; a 50-l subsample was 
treated with deoxyribonuclease [DNase; 2.5 l of New England Biolabs 
(NEB) DNase I, 2000 U/ml per 50 l] for subsequent DNA extraction, 
and two 250-l aliquots were used for extraction of RNA.

Quantification of bacterial abundance
CSTR culture samples were treated with NEB DNase I (final con-
centration, 100 U/ml) for 10 min at 37°C immediately after collec-
tion. DNA was extracted using the ZyGEM prepGEM Bacteria Kit 
(ZyGEM, Southampton, England) according to the manufacturer’s 
protocol. Samples were extracted in 100-l total volume (20-l cul-
ture sample and 80-l of extraction mixture); incubated at 37°C for 
15 min, 75°C for 5 min, and 95°C for 5 min; and then cooled to 
4°C. DNA was stabilized by adding 10× Tris-EDTA buffer to a final 
concentration of 1× TE before storage at 4°C.
qPCR quantification
Extracted DNA was quantified by qPCR using the Eco Real-Time PCR 
System (Illumina, San Diego, CA, USA). The components in the qPCR 
mix used in this study were as follows: 1 l of extracted DNA, 1× 
SsoFast EvaGreen Supermix (Bio-Rad Laboratories, Hercules, CA, 
USA), 500 nM forward primer, and 500 nM reverse primer. For 
detection of each bacterial species in the community, primer sets specific 
to Bt (forward primer, 5′-GGAGTTTTACTTTGAATGGAC-3′ and 
reverse primer, 5′-CTGCCCTTTTACAATGGG-3′) and Kp (forward 
primer, 5′-ATTTGAAGAGGTTGCAAACGAT-3′ and reverse primer, 
5′-TTCACTCTGAAGTTTTCTTGTGTT-3′) were used. Quantifica-

tion of cell concentrations were determined using DNA standards 
of single species prepared using 10× serial dilutions of log phase 
cultures extracted as above. Cell concentrations of standards were 
determined by hemocytometer. For conversion of OD and cell con-
centration to biomass concentration (gram of cell dry weight per 
liter), 100 ml of culture for each individual species incubated anaer-
obically at 37°C was harvested and pellets were dried at 80°C for 
~48 hours before recording mass.
dPCR quantification
Archived DNA samples from the CSTR were quantified by dPCR using 
a QX200 Droplet dPCR (ddPCR) System (Bio-Rad). The compo-
nents in the dPCR mix were as follows: 1 l of dilutions of extracted 
DNA, 1× QX200 ddPCR EvaGreen Supermix (Bio-Rad), 500 nM 
forward primer, and 500 nM reverse primer. For detection of each 
bacterial species in the community, primer sets specific to Bt (for-
ward primer, 5′-GGTGTCGGCTTAAGTGCCAT-3′ and reverse 
primer, 5′-CGGAYGTAAGGGCCGTGC-3′) and Kp (forward primer, 
5′-ATGGCTGTCGTCAGCTCGT-3′ and reverse primer, 5′-CCTA-
C TTCTTTTGCAACCCACTC-3′) were used. The dPCR mix was 
loaded into DG8 Cartridges (Bio-Rad), which were filled with QX200 
Droplet Generation Oil for EvaGreen (Bio-Rad) and loaded into the 
QX200 Droplet Generator (Bio-Rad). The generated droplets were 
transferred to the C1000 Touch Thermal Cycler (Bio-Rad) for the 
following protocol: 5 min at 95°C, 40 cycles of 30 s at 95°C, 30 s at 
60°C (Kp) or 65°C (Bt), and 30 s at 72°C (ramping rate reduced to 
2°C/s) and final dye stabilization steps of 5 min at 4°C and 5 min at 
90°C. The stabilized plates were loaded into the QX200 Droplet Reader 
and analyzed using the QuantaSoft Analysis Software (Bio-Rad).

RNA sequencing and analysis
From the CSTR samples, a 250-l aliquot was used for metatran-
scriptomic analysis. The freshly collected CSTR sample was imme-
diately placed into Qiagen RNAprotect Bacteria Reagent (Qiagen, Hilden, 
Germany) for RNA stabilization. RNA was extracted using the En-
zymatic Lysis of Bacteria protocol of the Qiagen RNeasy Mini Kit 
and processed according to the manufacturer’s protocol. DNA diges-
tion was performed during extraction using the Qiagen RNase-Free 
DNase Set. The quality of extracted RNA was measured using an 
Agilent 2200 TapeStation (Agilent, Santa Clara, CA, USA). Extract-
ed RNA samples were prepared for sequencing using the NEBNext 
Ultra RNA Library Prep Kit for Illumina (NEB, Ipswich, MA, USA) 
and the NEBNext Multiplex Oligos for Illumina. Libraries were se-
quenced at 100 single base pair reads and a sequencing depth of 10 
million reads on an Illumina HiSeq 2500 System (Illumina, San Diego, 
CA, USA) at the Millard and Muriel Jacobs Genetics and Genomics 
Laboratory, California Institute of Technology. Raw reads from the 
sequenced libraries were subjected to quality control to filter out 
low-quality reads and trim the adaptor sequences using Trimmomatic 
(version 0.35). Because our samples were a mixture of Kp and Bt cells, 
to separate the reads for each species, we did the following: Reads 
that aligned to ribosomal RNA and transfer RNA of Bt and Kp were 
first removed, as those sequences contain overlapping reads between 
the two species. Each sample was then separately aligned to Bt VPI-5482 
(genome accession number: GCA_000011065.1) and Kp MGH-78578 
(genome accession number: GCA_000016305.1) using Bowtie2 (ver-
sion 2.2.5) and quantified using the Subread package (version 1.5.0-
p1). Gene expression was defined in transcripts per million for each species, 
and gene expression analysis was performed using DESeq2 (version 
1.22.2; default settings, which provides two-tailored P values).
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To determine the most differentially regulated metabolic path-
way between the Kp-Bt and Kp-only states, we used an approach by 
Patil and Nielsen (42), which combines gene expression data with 
topological information collected from genome-scale metabolic mod-
els. Briefly, in this approach, the metabolic network is presented as 
a bipartite undirected graph, where metabolites and enzymes are 
represented as nodes (this graph is obtained from genome-scale models). 
Differential data can be mapped on the enzyme nodes of the graph 
with specification of the significance of differential gene expression 
for each enzyme, i. We used DESeq to perform our differential gene 
expression analysis between sample points in the two states (Kp- 
only and Kp-Bt) to obtain P values. The P values are subsequently 
converted to Z score for an enzyme node using the inverse normal 
cumulative distribution. Last, the Z score of each metabolite node is 
calculated on the basis of the normalized transcriptional response of 
its k neighboring enzymes

   Z  metabolite   =   1 ─ 
 √ 
_

 k  
    ∑ 1  k     Z  i    

The metabolites with the highest Z scores mark the pathways with 
substantial regulation between two states.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/6/33/eaba0353/DC1

View/request a protocol for this paper from Bio-protocol.
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