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We provide a review of recent advancements in non-local continuous models
for migration, mainly from the perspective of its involvement in embryonal
development and cancer invasion. Particular emphasis is placed on spatial
non-locality occurring in advection terms, used to characterize a cell’s motility
bias according to its interactions with other cellular and acellular components
in its vicinity (e.g. cell–cell and cell–tissue adhesions, non-local chemotaxis),
but we also briefly address spatially non-local source terms. Following a
short introduction and description of applications, we give a systematic classi-
fication of available PDE models with respect to the type of featured non-
localities and review some of the mathematical challenges arising from such
models, with a focus on analytical aspects.

This article is part of the theme issue ‘Multi-scale analysis and modelling
of collective migration in biological systems’.
1. Introduction
Collective movement arises when individuals correlate their motion with that of
others, generating migration at a population level. Paradigms include flocks,
swarms and crowds [1], but it also occurs for bacteria [2], embryonic populations,
and immune and invading cancer cells [3,4]. Scales span enormous ranges, from a
few cells clustered over a fewmicrometres to millions or billions of organisms dis-
tributed over kilometres, e.g. large-scale fish schools [5] and locust swarms [6].
Adoption of theoretical approaches has helped understand these phenomena.
Agent-based modelling is a popular approach, with its individual-level
representation facilitating data fitting. For cell populations, agent-basedmodelling
approaches range greatly in sophistication, including single or multi-site cellular
automata [7,8] and descriptions of cells as overlapping spheres [9], deformable
ellipsoids [10] or dynamic boundaries [11]. For organisms, collective movement
models are often founded on point-based individuals moving with velocities
determined by their interactions with neighbours (see the review in [12]).

Despite their many advantages, problems persist with agent-based models
(ABMs) that motivate complementary approaches. First, a lack of standard
analytical methods leads to heavy reliance on computation which, inevitably,
becomes burdensome as population size increases. Second, how should one
compare the results emerging following different approaches applied to the
same problem, e.g. between a lattice- and off-lattice model used to describe
cell sorting behaviour? Precise quantitative matching is clearly unrealistic, so
when can one state that two methods generate equivalent behaviour? Third,
different implementations of the same method can also generate quantitatively
distinct results when applied to the same problem [13]. This typically escalates
with the sophistication/detail of the ABM, with variations arising from, say,
ambiguously stated assumptions or distinctions in the numerical implemen-
tation. Overall, these issues highlight the general challenge of appropriately
‘benchmarking’ ABMs, and we refer to [14] for a more detailed consideration.
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While it would be disingenuous to state that continuous
models are free from such issues, in principle their solutions
are reproducible: well-posed problems generate unique
solutions for a given set of initial conditions. Furthermore,
with their roots in classical theory, well-developed analytical
methods exist that provide generic insights: the analysis
necessary to demonstrate the self-organizing capacity of
Turing’s counterintuitive reaction and diffusion theory
of morphogenesis [15] is not restricted to precise reactions,
parameters, etc. Phenomenological derivations start with a
mass conservation equation, where movement is modelled
via stipulating an appropriate flux. Coupled to reaction/
birth/death processes, governing equations are stated for the
key variables (cells, organisms, chemicals, etc.), each rep-
resented by continuous density distributions. Models derived
in this way typically fall into the class of reaction–diffusion–
advection (RDA) equations,

ð1:1Þ

where u(x, t) denotes the population density at position x at
time t. Diffusion describes a non-oriented dispersal process, for
example due to simple random meandering by individuals,
and is characterized by diffusion coefficient D( · ). Advection
could be passive (e.g. environmental flow) or due to active navi-
gation by individuals, and is described by an advective velocity
a( · ). Reaction describes the population birth/death, etc. A vast
number of models fall into the above class, including numerous
landmark works: textbooks such as [16,17] address several
models in this framework. Models of type (1.1) can also be
derived as the continuous limiting equation of a biased random
walk description for biological particle movement (see [18]).

Models in the RDA framework typically have a local nature,
i.e. terms that depend pointwise. For example, in the well-
known Keller–Segel model [19] for chemotaxis, the advection
term describes population drift along a local chemoattractant
gradient: specifically, a ¼ xrv, for some chemoattractant v
and function χ. Effectively, cells (or animals) are assumed to
detect and migrate in the direction of a local gradient. This is
often logical, viewed at a macroscopic level: cells such as leuko-
cytes orient according to the concentration difference of
attractant across their body axis, but at the scale of a tissue
this can be regarded as a pointwise calculation.

Local assumptionsmaynot, however, always hold or be con-
venient. Population densities may be high: classical diffusive
fluxes (e.g. Fickian) assume diluteness, and at high densities
the impact of long-range effects may be important [17]. More-
over, many particles sense the environment over extended
regions: filopodia/cytonemes permit cells to detect signals mul-
tiple cell diameters away [20]; sensory organs grant organisms
highly non-local perception fields (e.g. [21–24]). Approximating
information originating over large regions to, say, a local gradi-
ent, could clearly be overly reductive. Dispersal distances may
also be non-local, for example seeds can be transported
significant distances from source while various studies have
implicated ‘Lévy-type’ behaviour in migration paths, where
short-range movements are interspersed with occasional long
transits (e.g. [25]). Local formulations can also create analytical
problems, exemplified in the ‘blow-up’ phenomena in certain
formulations of chemotaxis models (e.g. see [26]). Here, the
coupling between a population’s pointwise production of its
own attractant and movement up the local gradient leads to
runaway aggregation and singularity formulation. Such
phenomena are powerful indicators of inherent self-organiz-
ation, yet formation of infinite cell densities is, ultimately,
unrealistic.

These considerations and others have led to a range of
spatially non-local RDA models, and their modelling and
mathematical properties have attracted significant interest.
This brief survey focuses on some aspects of modelling through
such a framework. Non-locality is, of course, a broad concept
and can be included in various ways, for example into any or
all of the diffusion, advection or reaction terms. We primarily
focus on the use of non-local advectionmodels that feature spatial
integral operators inside advection terms. These have typically
been developed to replace the gradient-type terms often used
to describe taxis-type movement and, in particular, have
come into vogue as a method of modelling collective
movement processes in cells and organisms.
2. Applications in development and cancer
Non-local advection models have received considerable atten-
tion for their capacity to include cell–cell (and cell–matrix)
adhesion into models for tissue dynamics. Adhesion occurs
when juxtaposing membranes link certain transmembrane
adhesion proteins, fastening cells together and forming clusters
[27]. Moreover, cell–cell adhesion confers self-organization,
with famous studies revealing how mixed cell types can self-
rearrange into distinct configurations, implying a capacity to
‘recognize’ others of same type [28]. The differential adhesion
hypothesis (DAH) of Steinberg [29] suggested that distinct
adhesion can provide this ‘tissue-affinity’, with the ratio of
self- to cross-adhesion strengths determining the configuration;
various experiments corroborate this theory (e.g. [30]).

Models of adhesion should ideally exhibit clustering/sort-
ing, and many ABMs indeed reproduce these phenomena (e.g.
[14]). The discrete cell representation is optimal: adhesion
easily enters as an attracting force over a range of cell–cell sep-
arations, coalescing cells until their compression generates a
counteracting repulsion. Incorporating adhesion into continu-
ous models, however, can prove challenging. Attempts
starting from an initial discrete random walk process have cer-
tainly generated continuous models, yet these can be ill-posed
(backward diffusion) or seemingly incapable of displaying
more complicated behaviour such as sorting (e.g. [31–33]).

Phenomenological approaches founded on non-local con-
cepts appear to be more successful. Such models capture cell–
neighbour interactions through the proposed movement of cells
according to the density of others in their vicinity. An early
model of this type was proposed in [34], although subsequent
analysis focused on a localized form derived under expansion.
The non-local model for adhesion proposed in [35] was explored
regarding its ability to recapitulate the sorting behaviour pre-
dicted by the DAH, and its relative success has led to various
extensions: [36] performed a more comprehensive analysis;
[37,38] replaced the overly reductive linear diffusion terms with
nonlinear forms, generating the sharp cell boundaries often
observed experimentally; [39] extended to more general cell–
cell contact phenomena, for example allowing repulsive inter-
actions as found in Ephephrin interactions [40]; the model of
[41] has been extended to allow dynamic adhesion regulation.

Typical applications lie in morphogenesis and cancer. The
former has witnessed non-local advection models used to



Table 1. Non-local modifications of the gradient operator applied to a function v (or v = (v1, v2)).

integral operator examples references

is placed before r (J w v1)rv2 [58]

is placed inside r r( J w v) [65]

replaces r Arv(x) ¼ 1
r -
Ð
Br
v(x þ j) j

jjj Fr(jjj) dj adhesion velocity [35,66]
�rrv(x) ¼ n

r -
Ð
Sr
v(x þ j)j dSr non-local chemotaxis [67,68]

is applied to r T rrv(x) ¼ 1
r

Ð 1
0 -
Ð
Br
(rv(x þ sj) � j) j

jjj Fr(jjj) dj ds [69]

Srrv(x) ¼ n
r

Ð 1
0 -
Ð
Sr
(rv(x þ sj) � j)j dSr ds [69]
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describe somitogenesis [42], mesenchymal condensation in
early limb development [43,44], neuronal positioning in
early brain development [45,46] and zebrafish gastrulation
[41]. Notably, many of these studies integrate modelling
with experimental data. The formulation of non-local advec-
tion models for cancer invasion has addressed the question of
how cell–cell and cell–matrix adhesion interact with other
mechanisms to facilitate cancer invasion, e.g. [47–53]. As
one example, the study of [51] recapitulates various observed
tumour infiltrative patterns, as well as the characteristic mor-
phologies of ductal carcinomas and fibroadenomas. Other
cellular applications of non-local advection models include
the interactions between liver hepatocyte and stellate cells
for in vitro culture systems [54]. Non-local models of cell
migration and spread including adhesion have also been
extended to account for further structure, such as cellular
age and the level of bound receptors; see [51,52,55,56].
Including variables characterizing subcellular dynamics
opens the way for multiscality.

Non-local advection models have also been applied
extensively to problems of animal movement, particularly
animal swarming/flocking behaviour. The pioneering
model of [57] featured a non-local advection based on a con-
volution, modelling the attracting and repelling interactions
between neighbouring swarm members. This model has
sparked various extensions and significant analysis, for
example see [58–63]. In the context of swarming, hyperbolic
approaches have been developed in which non-local inter-
actions are included in the turning behaviour of swarm
members, allowing extensions to orientation alignment (see
the review in [64]). Non-local advection models have also
been used to incorporate perceptual range into the model
[23,24], i.e. animal movement according to information
drawn from potentially large regions of their environment.
3. Classes of non-local models for cell migration
We can extend (1.1) to a general RDA equation of the form
(3.1), describing the evolution of a subpopulation density ui
as a part of an ensemble u = (u1, …, un) of n [ N components
representing cell densities, densities of a surrounding fibrous
environment (e.g. natural or artificial tissue), concentrations
of nutrients and chemical signals, etc.:

@tui ¼ r � (ai0(u)rui)�r �
Xm�1

j¼1

aij(u)rbij(u)

0
@

1
Aþ aim(u):

(3:1)

Here, r ¼ rx is the spatial gradient, m [ N, and the coeffi-
cients have the following meaning: ai0(u) is the diffusion
coefficient (normally non-negative), aij(u) and bij(u) for
j∈ {1, …, m− 1} describe tactic sensitivities and signal func-
tions, respectively, and, finally, aim(u) is the reaction-
interaction term. As previously remarked, non-locality can
be introduced in multiple ways into such partial differential
equations (PDEs). Often, it takes the form of an integral oper-
ator with respect to time t and/or position x in a spatial set
O , Rd, d [ N, but other independent variables (e.g. orien-
tation/speed or age/phenotype/individual state, etc.) can
also be involved. A typical spatial non-local operator can be
described as follows:

Iv(x) :¼
ð
O
J(x, y)v(y) dy,

where J is some kernel defined in O ×O. If, for instance,
O ¼ Rd and J = J(x− y), then the so-called convolution nota-
tion is used

Iv ¼ J w v:

It can be seen e.g. as the combined ability (over thewhole spatial
regionO) of some extracellular trait (mediated by a density dis-
tribution function J) and some quantity v (density/volume
fraction/etc.) todetermine the celldensityat a specific locationx.

Non-localities of orders zero, one or two can be distin-
guished according to whether a coefficient function, a first- or
a second-order differential operator is replaced by a non-local
one. For example, a zero-order non-locality is present if an aij
is made dependent upon Iu. Moreover, non-locality can be
introduced into the reaction, taxis or diffusion terms, leading
to another possible classification. In the subsequent text, we
address these and other possibilities in more detail.
(a) Spatial non-locality in advection terms
There are (at least) four ways to include a non-locality into the
advective flux; see table 1.

Hereafter, Br and Sr denote the open d-dimensional ball and
the (d− 1)-dimensional sphere, respectively, which are centred
at the origin and have radius r, termed the sensing radius. The
operator -

Ð
denotes the usual averaging over the set uponwhich

the integration takes place. For the precisemathematical formu-
lations consult the references in table 1. Constructions in lines 1
and 2 in the table can be viewed as zero-order non-localities.
The former describes, e.g. the situation of long-range inter-
actions of individuals having density v1 with their
environment containing a signal of concentration v2 (think of
cells extending protrusions towards sites with higher concen-
trations of some chemoattractant, i.e. directing themselves
towards the gradient of such concentrations). If the chemical
signal itself is assumed to move much faster than the cells—
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which is often the case—then v2 can actually be expressed as a
function of v1, possibly in a non-localway, too, thus leading to a
flux of the form (J1 w v1)r(J2 w v1), as e.g. in [58]. This corre-
sponds to direct, long-range intraspecific interactions. Line 2
in table 1 refers e.g. to the case of individuals (cells, ants, …)
moving in a collectiveway, thereby perceiving and correspond-
ingly adapting to regions with large crowd density.1

Concerning the remaining lines of table 1, an operator
M [ {Ar, �rr, T rr, Srr} can be used to include a non-locality
of first order. A basic model example of the latter case is given
by a system of two equations

@tu1 ¼ r � (a10(u)ru1 � a11(u)M(b11(u)))þ a12(u) (3:2a)

and

@tu2 ¼ a20Du2 þ a21(u), (3:2b)

equipped with suitable initial and boundary conditions. It can
describe growth andmotility of a single-cell population of den-
sity u1 biased by intra- and interspecies interactions and/or a
signal concentration u2. The latter is either a diffusing chemo-
attractant/-repellent if a20 > 0, or, if a20 = 0, an insoluble cue—
usually a non-diffusing polymeric matrix such as tissue
fibres. Further components can be included into the system,
e.g. other cell populations and other soluble/insoluble signals.

A non-local chemotaxis model was introduced in [68] and
further studied in [67,70–72]. Such settings can be derived
from position- or velocity-jump processes under adequate
assumptions, e.g. constant r for shrinking spatial mesh size
or non-local sensing introducing a bias of higher order with
respect to r. This leads to the operator rr in the advection
term. Cell–cell and/or cell–tissue interactions are usually
characterized by a so-called adhesion operator Ar involving
a suitable function Fr. The latter represents the distance-
dependent magnitude of the interaction force. We refer to
[35,70,72] and references therein for formal deductions of
such models. Other versions characterizing the non-local
space–time dynamics of one or several interacting species
(cell populations, soluble and insoluble signals) have also
been addressed [35,47,49,73].

Very recently, a model class was introduced [69], which
uses T rr (resp. Srr) rather than Ar (resp. �rr). There, it
was pointed out that on the one hand

Aru ¼ T r(ru), �rru ¼ Sr(ru)

in Vr:¼ (x [ V : dist(x, @V) . r),

whereas, on the other hand, e.g. for Ω = (− 1, 1) and u≡ 1 in Ω

T r(u0) ; 0 ; u0,
ð1
�1

jArujdx ¼ 1 for r [ (0, 1): (3:3)

In [69], Ωr was termed domain of restricted sensing since there
cells a priori cannot directly perceive signals from outside the
domain of interest Ω. For r→ 0, it tends to cover the whole of
Ω. By contrast, a cell inside the r-thick boundary layer V nVr

can potentially reach beyond ∂Ω. Of course, if r is larger than
the diameter of Ω, then each cell can do that. However, if the
population is kept in a Petri dish or it is confined within com-
paratively hard barriers, e.g. bone material, then the cell flux
through the boundary ∂Ω vanishes. This leads to cell densities
such as u from above. As (3.3) shows, in such cases the outputs
under operatorsAr and T rr are equal inΩr, but may disagree
substantially inside V nVr even for very small r. In the case of
impenetrable boundaries and r close to zero, the study in [69]
supports the idea that cells actively adjust their movement
after suitably sampling signal gradients rather than densities.
We refer to that reference for a detailed discussion.

Other continuous models have been obtained by starting
from a particle description, e.g. accounting for long-range
attraction and short-range repulsion between individuals in a
population alongside Brownian dispersal. In the limit of suffi-
ciently large populations these lead to nonlinear PDEs for
one-component models [65,74] containing, for instance, a
degenerate diffusion a10(u) = u as well as an operator J in the
advection. Further models in this category have been proposed
in [75,76]. Models accounting for cell interactions with attrac-
tion or repulsion have also been studied in [37,38]. A related
approach [77] employs an off-lattice ABM and derives a conti-
nuum approximation able to account for correlations between
moving cells. A mean-field approximation of the evolution
equations obtained for one- and two-cell density functions start-
ing from Langevin equations for cell movement leads to a PDE
akin to themore common adhesionmodels fromabove.Models
with similar mathematical structure are also used to describe
crowd dynamics, flocking or swarming, often referred to as
self-organization models; see [78–80] and references therein.
(b) Further types of spatial or other non-locality
Replacing the usual Laplace operator in a diffusion term with
a fractional Laplacian (e.g. [81]) is another way of including
spatial non-locality within motility terms and exemplifies a
second-order non-locality. Such models account for dispersal
of individuals performing Lévy flights rather than Brownian
motion, cf. §1. Systems describing competition between
locally and non-locally dispersing populations were devel-
oped and studied in [82,83].

Non-localities introduced into reaction-interaction terms
can still affect cell motion, albeit indirectly. Indeed, cell prolifer-
ation and decay (alongside intra- and interspecific interactions)
lead to local changes in densities, which flows into the density-
dependent coefficients. From a modelling perspective, this
accounts for population pressure, competition for resources,
cooperation in signal transmission, differentiation, and/or
tissue degradation, etc. But even when motion coefficients do
not depend on the population density, local versus non-local
source termsmay lead to different overall evolution; see the dis-
cussion below. In a broader framework, classical reaction terms
in population dynamics have been introduced in [84,85] and
they are local. For the emergence and evolution of a single
biological species, the typical choice is

a(u) ¼ mua(1� u)� gu: (3:4)

For α = 1, growth is proportional to the population density and
limited by competition for available resources. The case α > 1
accounts for advantages of clustering together or organizing
in groups. This applies to cells [86], but also to sexual reproduc-
tion (case α = 2) or swarming of animals.

Individuals, of course, typically perceive information
related to occupancy, biochemical cues, etc. within a neigh-
bourhood centred on their current position. Thus, local
terms like (3.4) have been recently replaced by non-local
ones. The best known example of the resulting equation is

@tu ¼ Duþ mua(1� J w ub)� gu, (3:5)

where J is a kernel as above, and α, β, μ, γ are constants. Here,
the non-locality is of order zero. Similar reaction terms have
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been used, e.g. to describe natural selection of tumour cells
leading to the emergence of therapy-resistant clones [87,88].
Further examples of non-local source terms, not necessarily
connected to biological applications, are of the form a(u) =
f (u) + I(g(u)), where I(z) :¼ Ð

O z(y, t) dy, e.g. [89–91]. In a bio-
logical context such terms can account for both local and
non-local interactions between cells and their surroundings.
We refer to [92,93] for a rich variety of non-local reaction
models in engineering and biology.

Several model classes have also been developed featuring
integral terms that describe non-locality with respect to one
or several other variables, including age, phenotype, internal
cell state, velocity, etc. They include the large class of struc-
tured population models [94], as well as kinetic transport
equations (KTEs) (and in particular the so-called kinetic
theory of active particles framework; see [95,96] and references
therein). Under appropriate conditions, models with spatial
non-locality can be (formally) derived from KTEs, e.g. [68,97].
 oc.B

375:20190379
4. Local versus non-local models: mathematical
aspects

This section briefly discusses relevant qualitative results. We
focus on analysis pertaining to just two model classes:
equations featuring non-local reaction and local diffusion,
e.g. (3.5), and settings that involve a first-order non-locality
to model a process such as adhesion or non-local chemotaxis
(cf. §3a). Our motivation for this focus is as follows. On the
one hand, the most straightforward way of accounting for
non-locality is via a zeroth order in the source terms.2

Thus, understanding and overcoming challenges met when
analysing such equations is essential for developing a general
mathematical theory applicable to non-local problems. Con-
sequently, the basic representative of the class, equation
(3.5), has received significant attention by analysts. While
models involving first-order non-localities have received con-
siderably less study, they are particularly relevant for
applications, particularly in the context of collective motion
phenomena (cf. §2).

(a) Analysis of models with spatial non-localities in
reaction terms

The analysis of reaction–diffusion equations featuring non-
localities in source terms is highly challenging, in large part
down to classical techniques that rely on comparison principles
being no longer valid. A general theory seems presently out of
reach, since the analysis heavily depends on the exact form of
involved non-locality, where key features of the corresponding
settings are revealed, e.g. [89–91]. If one includes a parameter
where, as it is formally sent to zero, the non-local equation
becomes local, then one can expect that results for the
local equation can be suitably generalized to the non-local
setting. As for the corresponding local case, studies of general
non-local models such as (3.5) include results on global
well-posedness, blow-up and stationary solutions. Specific
solutions, such as stationary, radially symmetric, travelling
wave solutions, or monotone wavefronts have also received
attention owing to their relevance in applications.

To exemplify, consider the relatively well-understood non-
local Fisher–KPP equation (3.5) for the case γ = 0. For J≡ 1,
which corresponds to the situation of blind competition, and
with general α, β≥ 1, a global bounded solution has been
shown to exist both for bounded and unbounded domains
[98,99]. When the kernel J is replaced by the Dirac delta func-
tion, (3.5) reduces to a classical, local reaction–diffusion
equation. There, results on global well-posedness, asymptotic
stability of non-trivial stationary solutions, as well as other sol-
ution behaviours such as hair-trigger effect,3 extinction and
quenching, have been intensively investigated, e.g.
[84,100,101]. If instead J > 0 in a ball of positive radius, then
the non-locality can have a profound impact. For instance,
the constant solution u≡ 1 can lose the stability of the corre-
sponding local case with a periodic-in-space stationary
solution bifurcating from it [102–104]. This phenomenon has
been observed in the study of travelling wave solutions, and
numerically tested for the time-dependent version in [97].
On the other hand, if J has an everywhere-positive Fourier
transform or if it approximates the Dirac delta function, then
there are travelling waves connecting u = 0 and u = 1 for α = 1
(see [105]), and [97] shows that for 1 � a , 1þ 2b=N the
hair-trigger effect appears, while for large μ values u = 1 can
indeed become unstable and Turing patterns occur [106]. Simi-
lar results have been obtained for the bistable case [107]. As
observed in [97], the concrete solution behaviour, in particular
with respect to pattern formation, depends strongly on the
shape of the interaction kernel. Even for (3.5) the integral
kernel must be fixed to study in detail long-time behaviour.
For systems of PDEs with non-localities in the reaction terms
the situation is even more complicated and, to our knowledge,
there has been no breakthrough in the study of behaviour in
this context.

(b) Analysis of models with spatial non-localities in
advection terms

The rigorous analysis of local RDA systems has enjoyed great
popularity over recent decades. The Keller–Segel systems are
among the best studied [26,108,109], a model class corre-
sponding to M ¼ r in (3.2). By contrast, only a few studies
consider problems including one of the four non-local oper-
ators introduced in table 1 that lead to first-order non-
localities. At a general level, combining local diffusion with
non-local advection appears to preclude the existence of an
energy functional satisfying a precise dissipation identity, as
known for various formulations of local Keller–Segel model
and providing a key for their analysis. Owing to this draw-
back, only settings where the non-local advection is
effectively dominated by diffusion have been investigated
so far. This is generally the case when the operators Ar or
�rr are involved, since they replace a differential operator
by an integral one, leading to an increase (rather than a
decrease) in regularity. In the absence of other effects this
allows well-posedness to be established. Moreover, it turns
out that the uniform boundedness of solutions can be guaran-
teed under quite general assumptions, including even cases
where the corresponding local system exhibits finite time
blow-up. Even situations in which a10 � a11@u1b11 is some-
where negative can be covered. In the corresponding local
setting this implies negative self-diffusion and, generally,
non-existence of solutions. A detailed analysis of a non-
local chemotaxis system was carried out in [67]. Several
studies, in particular [52,66,73,110–112], address equations
or systems featuring the adhesion operator Ar or its extension
to a possibly unbounded sensing region [113]. Some works
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exploit specific solutions that are particularly relevant for
applications, including steady states and their stability, exist-
ence of travelling waves, etc.; see [114] and [67,70,110,111,115]
for models with �rr and Ar, respectively.

Overall, operators �rr andAr form apowerful alternative to
the local gradient, particularly as they allow modelling a
broader range of aggregative mechanisms without fear of
potential blow-up.Moreover, as formal Taylor expansions per-
formed in [116] and [47], respectively, indicate, �rr and Ar

approach the local gradient ru for some fixed smooth u and
vanishing r. In [67], the question was therefore raised concern-
ing convergence of solutions to a family of non-local
chemotaxis systems as r→ 0. This corresponds to the sensing
region of a cell almost shrinking to its respective position, i.e.
the sensing is effectively local. However, as the example from
§4a indicates, blow-up may appear in the gradient limit on
the boundary of the spatial domain. Using T rr or Srr instead
excludes this undesired effect. These operators are, however,
computed based on the gradient and they are closer to it
both quantitatively and qualitatively. Consequently, the dom-
ination of diffusion over advection demands much stronger
conditions on coefficients aij and bij. Suitable conditions have
been found and existence and rigorous convergence (of a
subsequence) of solutions proved in [69].

The issue of connecting spatially local and non-local
models acting on the same (macroscopic) scale has also
been addressed, e.g. in [58] (upon performing an adequate
scaling) and, as mentioned above, in [47,116] upon Taylor
approximations (for small r) of functions inside the non-
local operators. Those deductions are, however, formal,
whereas [69] provides a rigorous approach.
5. Outlook
Several challenges arise in connection with non-local models,
some of which we already mentioned. Here, we focus on
models for cell migration, but most mathematical issues
also apply to systems of this type characterizing other
real-world phenomena.

From the modelling viewpoint, the settings can be extended
to account for various aspects of cell migration and growth. For
instance, tumour heterogeneity can be with respect to cell phe-
notypes, motility, treatment response, etc.; each of these is
influenced by the composition of the tumour microenviron-
ment, which in turn is dynamically modified by the cells,
according to their population behaviour. This results in ODE–
PDE systems with intricate couplings and nonlinearities, even
if only spatial non-locality is considered. Including several
populations of cells structured by further variables, as
addressed at the end of §3b, leads to multiscale descriptions,
involving hyperbolic and/or parabolic PDEs with various
non-localities. The latter can also occur in a pure macroscopic
framework with only spatial non-locality. When the cell den-
sities evolve in a bounded domain one has to provide
adequate boundary conditions. Depending on the complexity
of the system accounting for interactions of cells between them-
selves and their surroundings, deriving them together with the
population-level dynamics is often non-trivial and calls for a
careful modelling starting on lower scales and performing
appropriate upscalings. Connections between local and non-
local settings retain their relevance also in this context. From
the numerical viewpoint, non-local models present significant
challenges: integrating across a non-local region carries a sub-
stantial extra burden over classical local RDA models,
compounded as one moves into higher (e.g. three) dimensions.
Numerically efficient techniques can be developed (e.g. [36,47]),
although they typically rely on, e.g., convenient boundary con-
ditions or static sensing regions. Continued development of
efficient methodologies is therefore a must for further, more
intricate applications.

From an analytical viewpoint, it is desirable to support
initially formal deductions by performing a rigorous limit
procedure wherever it is possible. Notwithstanding, qualitat-
ive properties, such as the well-posedness, the long-time
behaviour including the possibility of a blow-up, the limit be-
haviour with respect to some vanishing parameter, etc. need
to be addressed for the resulting models. Overall, these key
aspects have remained open for many cell migration
models, and that includes even local, single-scale ones. Intro-
ducing a non-locality into a well-understood local model can
lead to additional challenges since it breaks the original struc-
ture; see the discussions in §4.
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Endnotes
1Thereby, J w v can be seen to represent the average density felt by
the individual.
2In this review, we use the standard designations ‘reaction’ and
‘source’ for all terms containing zero-order derivatives.
3Meaning that an initially very small cell density can evolve in the
long term into a cell mass completely filling the space, i.e. at maxi-
mum density.
References
1. Sumpter DJT 2010 Collective animal behavior.
Princeton, NJ: Princeton University Press.

2. Ariel G, Shklarsh A, Kalisman O, Ingham C, Ben-Jacob
E. 2013 From organized internal traffic to collective
navigation of bacterial swarms. New J. Phys. 15,
125019. (doi:10.1088/1367-2630/15/12/125019)

3. Friedl P, Locker J, Sahai E, Segall JE. 2012
Classifying collective cancer cell invasion. Nat. Cell
Biol. 14, 777. (doi:10.1038/ncb2548)
4. Mayor R, Etienne-Manneville S. 2016 The front and
rear of collective cell migration. Nat. Rev. Mol. Cell
Biol. 17, 97–109. (doi:10.1038/nrm.2015.14)

5. Makris NC, Ratilal P, Jagannathan S, Gong Z,
Andrews M, Bertsatos I, Godø OR, Nero RW,
Jech JM. 2009 Critical population density
triggers rapid formation of vast oceanic fish
shoals. Science 323, 1734–1737. (doi:10.1126/
science.1169441)
6. Rainey RC. 1967 Radar observations of locust swarms.
Science 157, 98–99. (doi:10.1126/science.157.3784.98)

7. Graner F, Glazier JA. 1992 Simulation of biological
cell sorting using a two-dimensional extended Potts
model. Phys. Rev. Lett. 69, 2013–2016. (doi:10.
1103/PhysRevLett.69.2013)

8. Deutsch A, Dormann S 2005 Cellular automaton
modeling of biological pattern formation. New York,
NY: Springer.

http://dx.doi.org/10.1088/1367-2630/15/12/125019
http://dx.doi.org/10.1038/ncb2548
http://dx.doi.org/10.1038/nrm.2015.14
http://dx.doi.org/10.1126/science.1169441
http://dx.doi.org/10.1126/science.1169441
http://dx.doi.org/10.1126/science.157.3784.98
http://dx.doi.org/10.1103/PhysRevLett.69.2013
http://dx.doi.org/10.1103/PhysRevLett.69.2013


royalsocietypublishing.org/journal/rstb
Phil.Trans.R.Soc.B

375:20190379

7
9. Drasdo D, Höhme S. 2005 A single-cell–based
model of tumor growth in vitro: monolayers and
spheroids. Phys. Biol. 2, 133–147. (doi:10.1088/
1478-3975/2/3/001)

10. Palsson E, Othmer HG. 2000 A model for
individual and collective cell movement in
Dictyostelium discoideum. Proc. Natl Acad. Sci.
USA 97, 10 448–10 453. (doi:10.1073/pnas.97.19.
10448)

11. Schaller G, Meyer-Hermann M. 2005 Multicellular
tumor spheroid in an off-lattice Voronoi–Delaunay
cell model. Phys. Rev. E 71, 051910. (doi:10.1103/
PhysRevE.71.051910)

12. Berdahl AM, Kao AB, Flack A, Westley PA, Codling EA,
Couzin ID, Dell AI, Biro D. 2018 Collective animal
navigation and migratory culture: from theoretical
models to empirical evidence. Phil. Trans. R. Soc. B
373, 20170009. (doi:10.1098/rstb.2017.0009)

13. Rejniak KA, Dillon RH. 2007 A single cell–based
model of the ductal tumour microarchitecture.
Comp. Math. Methods Med. 8, 51–69. (doi:10.1080/
17486700701303143)

14. Osborne JM, Fletcher AG, Pitt-Francis JM, Maini PK,
Gavaghan DJ. 2017 Comparing individual-based
approaches to modelling the self-organization of
multicellular tissues. PLoS Comp. Biol. 13,
e1005387. (doi:10.1371/journal.pcbi.1005387)

15. Turing AM. 1952 The chemical basis of
morphogenesis. Phil. Trans. R. Soc. Lond. B 237,
37–72. (doi:10.1098/rstb.1952.0012)

16. Okubo A, Levin SA 2001 Diffusion and ecological
problems: modern perspectives, vol. 14. New York,
NY: Springer Science & Business Media.

17. Murray JD 2003 Mathematical biology II: spatial
models and biomedical applications, 3rd edn.
New York, NY: Springer.

18. Codling EA, Plank MJ, Benhamou S. 2008 Random
walk models in biology. J. R. Soc. Interface 5,
813–834. (doi:10.1098/rsif.2008.0014)

19. Keller EF, Segel LA. 1970 Initiation of slime
mold aggregation viewed as an instability.
J. Theor. Biol. 26, 399–415. (doi:10.1016/0022-
5193(70)90092-5)

20. Kornberg TB, Roy S. 2014 Cytonemes as specialized
signaling filopodia. Development 141, 729–736.
(doi:10.1242/dev.086223)

21. Payne R, Webb D. 1971 Orientation by means of
long range acoustic signaling in baleen whales.
Ann. NY Acad. Sci. 188, 110–141. (doi:10.1111/j.
1749-6632.1971.tb13093.x)

22. Lima SL, Zollner PA. 1996 Towards a behavioral
ecology of ecological landscapes. Trends Ecol. Evol.
11, 131–135. (doi:10.1016/0169-5347(96)81094-9)

23. Fagan WF, Gurarie E, Bewick S, Howard A, Cantrell RS,
Cosner C. 2017 Perceptual ranges, information
gathering, and foraging success in dynamic landscapes.
Am. Nat. 189, 474–489. (doi:10.1086/691099)

24. Johnston ST, Painter KJ. 2019 The impact of short-
and long-range perception on population
movements. J. Theor. Biol. 460, 227–242. (doi:10.
1016/j.jtbi.2018.10.031)

25. Harris TH. 2012 et al. Generalized Lévy walks and
the role of chemokines in migration of effector
CD8+ T cells. Nature 486, 545–548. (doi:10.1038/
nature11098)

26. Bellomo N, Bellouquid A, Tao Y, Winkler M. 2015
Toward a mathematical theory of Keller–Segel
models of pattern formation in biological tissues.
Math. Models Methods Appl. Sci. 25, 1663–1763.
(doi:10.1142/S021820251550044X)

27. Alberts B, Johnson A, Lewis J, Morgan D, Raff M,
Roberts K, Walter P, Wilson J, Hunt T. 2015
Molecular biology of the cell, 6th edn. New York, NY:
Garland Science.

28. Townes PL, Holtfreter J. 1955 Directed movements
and selective adhesion of embryonic amphibian
cells. J. Exp. Zool. 128, 53–120. (doi:10.1002/jez.
1401280105)

29. Steinberg MS. 1963 Reconstruction of tissues by
dissociated cells. Science 141, 401–408. (doi:10.
1126/science.141.3579.401)

30. Steinberg MS. 2007 Differential adhesion in
morphogenesis: a modern view. Curr. Opin. Gen.
Dev. 17, 281–286. (doi:10.1016/j.gde.2007.05.002)

31. Anguige K, Schmeiser C. 2008 A one-dimensional
model of cell diffusion and aggregation,
incorporating volume filling and cell–to-cell
adhesion. J. Math. Biol. 58, 395–427. (doi:10.1007/
s00285-008-0197-8)

32. Johnston ST, Simpson MJ, Baker RE. 2012 Mean-
field descriptions of collective migration with strong
adhesion. Phys. Rev. E 85, 051922. (doi:10.1103/
PhysRevE.85.051922)

33. Johnston ST, Simpson MJ, Plank MJ. 2013 Lattice-
free descriptions of collective motion with crowding
and adhesion. Phys. Rev. E 88, 062720. (doi:10.
1103/PhysRevE.88.062720)

34. Sekimura T, Zhu M, Cook J, Maini PK, Murray JD. 1999
Pattern formation of scale cells in Lepidoptera by
differential origin-dependent cell adhesion. Bull. Math.
Biol. 61, 807–828. (doi:10.1006/bulm.1998.0062)

35. Armstrong NJ, Painter KJ, Sherratt JA. 2006 A
continuum approach to modelling cell–cell
adhesion. J. Theor. Biol. 243, 98–113. (doi:10.1016/
j.jtbi.2006.05.030)

36. Gerisch A, Painter KJ. 2010 Mathematical modelling
of cell adhesion and its applications to
developmental biology and cancer invasion. In Cell
mechanics: from single scale-based models to
multiscale modeling (eds A Chauvière, L Preziosi),
pp. 319–350. Boca Raton, FL: CRC Press.

37. Murakawa H, Togashi H. 2015 Continuous models
for cell–cell adhesion. J. Theor. Biol. 374, 1–12.
(doi:10.1016/j.jtbi.2015.03.002)

38. Carrillo JA, Murakawa H, Sato M, Togashi H, Trush
O. 2019 A population dynamics model of cell–cell
adhesion incorporating population pressure and
density saturation. J. Theor. Biol. 474, 14–24.
(doi:10.1016/j.jtbi.2019.04.023)

39. Painter KJ, Bloomfield JM, Sherratt JA, Gerisch A.
2015 A nonlocal model for contact attraction and
repulsion in heterogeneous cell populations. Bull.
Math. Biol. 77, 1132–1165. (doi:10.1007/s11538-
015-0080-x)

40. Taylor HB, Khuong A, Wu Z, Xu Q, Morley R,
Gregory L, Poliakov P, Taylor WR, Wilkinson DG.
2017 Cell segregation and border sharpening by
Eph receptor–ephrin-mediated heterotypic
repulsion. J. R. Soc. Interface 14, 20170338. (doi:10.
1098/rsif.2017.0338)

41. Ko JM, Lobo D. 2019 Continuous dynamic modeling
of regulated cell adhesion. Biophys. J. 117,
2166–2179. (doi:10.1016/j.bpj.2019.10.032)

42. Armstrong NJ, Painter KJ, Sherratt JA. 2009 Adding
adhesion to a chemical signaling model for somite
formation. Bull. Math. Biol. 71, 1–24. (doi:10.1007/
s11538-008-9350-1)

43. Glimm T, Bhat R, Newman SA. 2014 Modeling the
morphodynamic galectin patterning network of the
developing avian limb skeleton. J. Theor. Biol. 346,
86–108. (doi:10.1016/j.jtbi.2013.12.004)

44. Bhat R, Glimm T, Linde-Medina M, Cui C, Newman
SA. 2019 Synchronization of Hes1 oscillations
coordinates and refines condensation formation and
patterning of the avian limb skeleton. Mech. Dev.
156, 41–54. (doi:10.1016/j.mod.2019.03.001)

45. Matsunaga Y et al. 2017 Reelin transiently promotes
N-cadherin-dependent neuronal adhesion during
mouse cortical development. Proc. Natl Acad. Sci.
USA 114, 2048–2053. (doi:10.1073/pnas.
1615215114)

46. Trush O et al. 2019 N-cadherin orchestrates self-
organization of neurons within a columnar unit in
the Drosophila medulla. J. Neurosci. 39, 5861–5880.
(doi:10.1523/JNEUROSCI.3107-18.2019)

47. Gerisch A, Chaplain MAJ. 2008 Mathematical
modelling of cancer cell invasion of tissue: local and
non-local models and the effect of adhesion.
J. Theor. Biol. 250, 684–704. (doi:10.1016/j.jtbi.
2007.10.026)

48. Kim Y, Lawler S, Nowicki MO, Chiocca EA, Friedman
A. 2009 A mathematical model for pattern
formation of glioma cells outside the tumor
spheroid core. J. Theor. Biol. 260, 359–371. (doi:10.
1016/j.jtbi.2009.06.025)

49. Painter KJ, Armstrong NJ, Sherratt JA. 2010 The
impact of adhesion on cellular invasion processes in
cancer and development. J. Theor. Biol. 264,
1057–1067. (doi:10.1016/j.jtbi.2010.03.033)

50. Andasari V, Gerisch A, Lolas G, South AP, Chaplain
MA. 2011 Mathematical modeling of cancer cell
invasion of tissue: biological insight from
mathematical analysis and computational
simulation. J. Math. Biol. 63, 141–171. (doi:10.
1007/s00285-010-0369-1)

51. Domschke P, Trucu D, Gerisch A, Chaplain MAJ. 2014
Mathematical modelling of cancer invasion:
implications of cell adhesion variability for tumour
infiltrative growth patterns. J. Theor. Biol. 361,
41–60. (doi:10.1016/j.jtbi.2014.07.010)

52. Engwer C, Stinner C, Surulescu C. 2017 On a
structured multiscale model for acid-mediated
tumor invasion: the effects of adhesion and
proliferation. Math. Models Methods Appl. Sci. 27,
1355–1390. (doi:10.1142/S0218202517400188)

53. Bitsouni V, Chaplain MAJ, Eftimie R. 2017
Mathematical modelling of cancer invasion: the
multiple roles of TGF-β pathway on tumour
proliferation and cell adhesion. Math. Models

http://dx.doi.org/10.1088/1478-3975/2/3/001
http://dx.doi.org/10.1088/1478-3975/2/3/001
http://dx.doi.org/10.1073/pnas.97.19.10448
http://dx.doi.org/10.1073/pnas.97.19.10448
http://dx.doi.org/10.1103/PhysRevE.71.051910
http://dx.doi.org/10.1103/PhysRevE.71.051910
http://dx.doi.org/10.1098/rstb.2017.0009
http://dx.doi.org/10.1080/17486700701303143
http://dx.doi.org/10.1080/17486700701303143
http://dx.doi.org/10.1371/journal.pcbi.1005387
http://dx.doi.org/10.1098/rstb.1952.0012
http://dx.doi.org/10.1098/rsif.2008.0014
http://dx.doi.org/10.1016/0022-5193(70)90092-5
http://dx.doi.org/10.1016/0022-5193(70)90092-5
http://dx.doi.org/10.1242/dev.086223
http://dx.doi.org/10.1111/j.1749-6632.1971.tb13093.x
http://dx.doi.org/10.1111/j.1749-6632.1971.tb13093.x
http://dx.doi.org/10.1016/0169-5347(96)81094-9
http://dx.doi.org/10.1086/691099
http://dx.doi.org/10.1016/j.jtbi.2018.10.031
http://dx.doi.org/10.1016/j.jtbi.2018.10.031
http://dx.doi.org/10.1038/nature11098
http://dx.doi.org/10.1038/nature11098
http://dx.doi.org/10.1142/S021820251550044X
http://dx.doi.org/10.1002/jez.1401280105
http://dx.doi.org/10.1002/jez.1401280105
http://dx.doi.org/10.1126/science.141.3579.401
http://dx.doi.org/10.1126/science.141.3579.401
http://dx.doi.org/10.1016/j.gde.2007.05.002
http://dx.doi.org/10.1007/s00285-008-0197-8
http://dx.doi.org/10.1007/s00285-008-0197-8
http://dx.doi.org/10.1103/PhysRevE.85.051922
http://dx.doi.org/10.1103/PhysRevE.85.051922
http://dx.doi.org/10.1103/PhysRevE.88.062720
http://dx.doi.org/10.1103/PhysRevE.88.062720
http://dx.doi.org/10.1006/bulm.1998.0062
http://dx.doi.org/10.1016/j.jtbi.2006.05.030
http://dx.doi.org/10.1016/j.jtbi.2006.05.030
http://dx.doi.org/10.1016/j.jtbi.2015.03.002
http://dx.doi.org/10.1016/j.jtbi.2019.04.023
http://dx.doi.org/10.1007/s11538-015-0080-x
http://dx.doi.org/10.1007/s11538-015-0080-x
http://dx.doi.org/10.1098/rsif.2017.0338
http://dx.doi.org/10.1098/rsif.2017.0338
http://dx.doi.org/doi:10.1016/j.bpj.2019.10.032
http://dx.doi.org/10.1007/s11538-008-9350-1
http://dx.doi.org/10.1007/s11538-008-9350-1
http://dx.doi.org/10.1016/j.jtbi.2013.12.004
http://dx.doi.org/10.1016/j.mod.2019.03.001
http://dx.doi.org/10.1073/pnas.1615215114
http://dx.doi.org/10.1073/pnas.1615215114
http://dx.doi.org/10.1523/JNEUROSCI.3107-18.2019
http://dx.doi.org/10.1016/j.jtbi.2007.10.026
http://dx.doi.org/10.1016/j.jtbi.2007.10.026
http://dx.doi.org/10.1016/j.jtbi.2009.06.025
http://dx.doi.org/10.1016/j.jtbi.2009.06.025
http://dx.doi.org/10.1016/j.jtbi.2010.03.033
http://dx.doi.org/10.1007/s00285-010-0369-1
http://dx.doi.org/10.1007/s00285-010-0369-1
http://dx.doi.org/10.1016/j.jtbi.2014.07.010
http://dx.doi.org/10.1142/S0218202517400188


royalsocietypublishing.org/journal/rstb
Phil.Trans.R.Soc.B

375:20190379

8
Methods Appl. Sci. 27, 1929–1962. (doi:10.1142/
S021820251750035X)

54. Green JEF, Waters SL, Whiteley JP, Edelstein-Keshet
L, Shakesheff KM, Byrne HM. 2010 Non-local
models for the formation of hepatocyte–stellate cell
aggregates. J. Theor. Biol. 267, 106–120. (doi:10.
1016/j.jtbi.2010.08.013)

55. Domschke P, Trucu D, Gerisch A, Chaplain MAJ.
2017 Structured models of cell migration incorporating
molecular binding processes. J. Math. Biol. 75,
1517–1561. (doi:10.1007/s00285-017-1120-y)

56. Dyson J, Webb GF. 2014 A cell population model
structured by cell age incorporating cell–cell
adhesion. In Mathematical oncology 2013 (eds A
d’Onofrio, A Gandolfi), pp. 109–149. New York: NY:
Springer Science+Business Media.

57. Mogilner A, Edelstein-Keshet L. 1999 A non-local
model for a swarm. J. Math. Biol. 38, 534–570.
(doi:10.1007/s002850050158)

58. Lee CT et al. 2001 Non-local concepts and models in
biology. J. Theor. Biol. 210, 201–219. (doi:10.1006/
jtbi.2000.2287)

59. Topaz CM, Bertozzi AL, Lewis MA. 2006 A nonlocal
continuum model for biological aggregation. Bull.
Math. Biol. 68, 1601. (doi:10.1007/s11538-006-9088-6)

60. Bernoff AJ, Topaz CM. 2013 Nonlocal aggregation
models: a primer of swarm equilibria. SIAM Rev. 55,
709–747. (doi:10.1137/130925669)

61. Fetecau RC, Huang Y, Kolokolnikov T. 2011 Swarm
dynamics and equilibria for a nonlocal aggregation
model. Nonlinearity 24, 2681. (doi:10.1088/0951-
7715/24/10/002)

62. Fetecau RC, Huang Y. 2013 Equilibria of biological
aggregations with nonlocal repulsive–attractive
interactions. Physica D 260, 49–64. (doi:10.1016/j.
physd.2012.11.004)

63. Evers JH, Fetecau RC, Kolokolnikov T. 2017 Equilibria
for an aggregation model with two species. SIAM
J. Appl. Dyn. Syst. 16, 2287–2338. (doi:10.1137/
16M1109527)

64. Eftimie R. 2012 Hyperbolic and kinetic models for
self-organized biological aggregations and
movement: a brief review. J. Math. Biol. 65, 35–75.
(doi:10.1007/s00285-011-0452-2)

65. Morale D, Capasso V, Ölschläger K. 2005 An
interacting particle system modelling aggregation
behavior: from individuals to populations. J. Math.
Biol. 50, 49–66. (doi:10.1007/s00285-004-0279-1)

66. Adioui M, Arino O, El Saadi N. 2005 A nonlocal
model of phytoplankton aggregation. Nonlin. Anal.
Real World Appl. 6, 593–607. (doi:10.1016/j.
nonrwa.2004.12.007)

67. Hillen T, Painter K, Schmeiser C. 2007 Global
existence for chemotaxis with finite sampling
radius. Discrete Contin. Dyn. Syst. B 7, 125–144.
(doi:10.3934/dcdsb.2007.7.125)

68. Othmer HG, Hillen T. 2002 The diffusion limit of
transport equations II: chemotaxis equations. SIAM
J. Appl. Math. 62, 1122–1250. (doi:10.1137/
S0036139900382772)

69. Krasnianski M, Surulescu C, Zhigun A. 2019 Nonlocal
and local models for taxis in cell migration: a
rigorous limit procedure. arXiv, 1908.10287. See
http://arxiv.org/abs/1908.10287.

70. Buttenschön A, Hillen T, Gerisch A, Painter KJ. 2018 A
space-jump derivation for non-local models of cell–
cell adhesion and non-local chemotaxis. J. Math. Biol.
76, 429–456. (doi:10.1007/s00285-017-1144-3)

71. Hillen T, Painter KJ. 2009 A user’s guide to PDE
models for chemotaxis. J. Math. Biol. 58, 183–217.
(doi:10.1007/s00285-008-0201-3)

72. Loy N, Preziosi L. 2020 Kinetic models with non-
local sensing determining cell polarization and
speed according to independent cues. J. Math. Biol.
80, 373–421.

73. Sherratt JA, Gourley SA, Armstrong NJ, Painter KJ.
2009 Boundedness of solutions of a non-local
reaction–diffusion model for adhesion in cell
aggregation and cancer invasion. Eur. J. Appl. Math.
20, 123–144. (doi:10.1017/S0956792508007742)

74. Burger M, Capasso V, Morale D. 2007 On an
aggregation model with long and short range
interactions. Nonlin. Anal. Real World Appl. 8,
939–958. (doi:10.1016/j.nonrwa.2006.04.002)

75. Burger M, Di Francesco M. 2008 Large time
behavior of nonlocal aggregation models with
nonlinear diffusion. Netw. Heterog. Media 3,
749–785. (doi:10.3934/nhm.2008.3.749)

76. Burger M, Haškovec J, Wolfram MT. 2013 Individual
based and mean-field modeling of direct
aggregation. Physica D 260, 145–158. (doi:10.1016/
j.physd.2012.11.003)

77. Middleton AM, Fleck C, Grima R. 2014 A continuum
approximation to an off-lattice individual-cell based
model of cell migration and adhesion. J. Theor. Biol.
359, 220–232. (doi:10.1016/j.jtbi.2014.06.011)

78. Bellomo N, Dogbé C. 2011 On the modeling of
traffic and crowds: a survey of models, speculations,
and perspectives. SIAM Rev. 53, 409–463. (doi:10.
1137/090746677)

79. Eftimie R 2018 Hyperbolic and kinetic models for
self-organised biological aggregations. A modelling
and pattern formation approach. Cham, Switzerland:
Springer.

80. Muntean A, Toschi F 2014 Collective dynamics from
bacteria to crowds: an excursion through modeling,
analysis and simulation. Vienna, Austria: Springer
Science & Business Media.

81. Friedman A. 2012 PDE problems arising in
mathematical biology. Netw. Heterog. Media 7,
691–703. (doi:10.3934/nhm.2012.7.691)

82. Massaccesi A, Valdinoci E. 2017 Is a nonlocal
diffusion strategy convenient for biological
populations in competition? J. Math. Biol. 74,
113–147. (doi:10.1007/s00285-016-1019-z)

83. Kao CY, Lou Y, Shen W. 2010 Random dispersal vs.
non-local dispersal. Discrete Contin. Dyn. Syst. 26,
551–596. (doi:10.3934/dcds.2010.26.551)

84. Fisher RA. 1937 The wave of advance of
advantageous genes. Ann. Eugen. 7, 355–369.
(doi:10.1111/j.1469-1809.1937.tb02153.x)

85. Kolmogorov AN, Petrovsky IG, Piskunov NS. 1937
Investigation of the equation of diffusion combined
with increasing of the substance and its application
to a biology problem. Bull. Moscow State Univ. Ser.
A Math. Mech. 1, 1–25.

86. Wang X, Enomoto A, Asai N, Kato T, Takahashi M.
2016 Collective invasion of cancer: perspectives from
pathology and development. Pathol. Int. 66,
183–192. (doi:10.1111/pin.12391)

87. Lorz A, Mirrahimi S, Perthame B. 2011 Dirac mass
dynamics in multidimensional nonlocal parabolic
equations. Commun. Partial Diff. Equ. 36,
1071–1098. (doi:10.1080/03605302.2010.538784)

88. Lorz A, Lorenzi T, Hochberg ME, Clairambault J,
Perthame B. 2013 Populational adaptive evolution,
chemotherapeutic resistance and multiple anti-
cancer therapies. ESAIM M2AN 47, 377–399.
(doi:10.1051/m2an/2012031)

89. Pao CV. 1992 Blowing-up of solution for a nonlocal
reaction-diffusion problem in combustion theory.
J. Math. Anal. Appl. 166, 591–600. (doi:10.1016/
0022-247X(92)90318-8)

90. Deng W, Li Y, Xie C. 2003 Semilinear reaction-
diffusion systems with nonlocal sources. Math.
Comput. Modell. 37, 937–943. (doi:10.1016/S0895-
7177(03)00109-2)

91. Budd C, Dold B, Stuart A. 1993 Blowup in a partial
differential equation with conserved first integral.
SIAM J. Appl. Math. 53, 718–742. (doi:10.1137/
0153036)

92. Kavallaris NI, Suzuki T. 2018 Non-local partial
differential equations for engineering and biology.
Mathematical modeling and analysis (Mathematics
for Industry, vol. 31). Cham, Switzerland: Springer.
(doi:10.1007/978-3-319-67944-0)

93. Volpert V. 2014 Reaction-diffusion equations. Elliptic
partial differential equations, vol. 2. Basel,
Switzerland: Birkhäuser/Springer. (doi:10.1007/978-
3-0348-0813-2)

94. Magal P, Ruan S 2008 Structured population models
in biology and epidemiology. Berlin, Germany:
Springer.

95. Bellomo N, Bellouquid A, Gibelli L, Outada N. 2017
A quest towards a mathematical theory of living
systems. Cham, Switzerland: Birkhäuser/Springer.
(doi:10.1007/978-3-319-57436-3)

96. Bellomo N, Brezzi F. 2019 Towards a multiscale
vision of active particles. Math. Models Methods
Appl. Sci. 29, 581–588. (doi:10.1142/
S0218202519020019)

97. Li J, Chen L, Surulescu C. 2019 Global existence,
asymptotic behavior, and pattern formation driven
by the parametrization of a nonlocal Fisher-KPP
problem. arXiv, 1909.07934. See http://arxiv.org/
abs/1909.07934.

98. Bian S, Chen L, Latos EA. 2017 Global existence and
asymptotic behavior of solutions to a nonlocal
Fisher-KPP type problem. Nonlin. Anal. 149,
165–176. (doi:10.1016/j.na.2016.10.017)

99. Bian S, Chen L. 2016 A nonlocal reaction diffusion
equation and its relation with Fujita exponent.
J. Math. Anal. Appl. 444, 1479–1489. (doi:10.1016/
j.jmaa.2016.07.014)

100. Aronson DG, Weinberger HF. 1978 Multidimensional
nonlinear diffusion arising in population genetics.

http://dx.doi.org/10.1142/S021820251750035X
http://dx.doi.org/10.1142/S021820251750035X
http://dx.doi.org/10.1016/j.jtbi.2010.08.013
http://dx.doi.org/10.1016/j.jtbi.2010.08.013
http://dx.doi.org/10.1007/s00285-017-1120-y
http://dx.doi.org/10.1007/s002850050158
http://dx.doi.org/10.1006/jtbi.2000.2287
http://dx.doi.org/10.1006/jtbi.2000.2287
http://dx.doi.org/10.1007/s11538-006-9088-6
http://dx.doi.org/10.1137/130925669
http://dx.doi.org/10.1088/0951-7715/24/10/002
http://dx.doi.org/10.1088/0951-7715/24/10/002
http://dx.doi.org/10.1016/j.physd.2012.11.004
http://dx.doi.org/10.1016/j.physd.2012.11.004
http://dx.doi.org/10.1137/16M1109527
http://dx.doi.org/10.1137/16M1109527
http://dx.doi.org/10.1007/s00285-011-0452-2
http://dx.doi.org/10.1007/s00285-004-0279-1
http://dx.doi.org/10.1016/j.nonrwa.2004.12.007
http://dx.doi.org/10.1016/j.nonrwa.2004.12.007
http://dx.doi.org/10.3934/dcdsb.2007.7.125
http://dx.doi.org/10.1137/S0036139900382772
http://dx.doi.org/10.1137/S0036139900382772
http://arxiv.org/abs/1908.10287
http://arxiv.org/abs/1908.10287
http://dx.doi.org/10.1007/s00285-017-1144-3
http://dx.doi.org/10.1007/s00285-008-0201-3
http://dx.doi.org/10.1017/S0956792508007742
http://dx.doi.org/10.1016/j.nonrwa.2006.04.002
http://dx.doi.org/10.3934/nhm.2008.3.749
http://dx.doi.org/10.1016/j.physd.2012.11.003
http://dx.doi.org/10.1016/j.physd.2012.11.003
http://dx.doi.org/10.1016/j.jtbi.2014.06.011
http://dx.doi.org/10.1137/090746677
http://dx.doi.org/10.1137/090746677
http://dx.doi.org/10.3934/nhm.2012.7.691
http://dx.doi.org/10.1007/s00285-016-1019-z
http://dx.doi.org/10.3934/dcds.2010.26.551
http://dx.doi.org/10.1111/j.1469-1809.1937.tb02153.x
http://dx.doi.org/10.1111/pin.12391
http://dx.doi.org/10.1080/03605302.2010.538784
http://dx.doi.org/10.1051/m2an/2012031
http://dx.doi.org/10.1016/0022-247X(92)90318-8
http://dx.doi.org/10.1016/0022-247X(92)90318-8
http://dx.doi.org/10.1016/S0895-7177(03)00109-2
http://dx.doi.org/10.1016/S0895-7177(03)00109-2
http://dx.doi.org/10.1137/0153036
http://dx.doi.org/10.1137/0153036
http://dx.doi.org/doi:10.1007/978-3-319-67944-0
http://dx.doi.org/10.1007&sol;978-3-0348-0813-2
http://dx.doi.org/10.1007&sol;978-3-0348-0813-2
http://dx.doi.org/10.1007&sol;978-3-319-57436-3
http://dx.doi.org/10.1142/S0218202519020019
http://dx.doi.org/10.1142/S0218202519020019
http://arxiv.org/abs/1909.07934
http://arxiv.org/abs/1909.07934
http://arxiv.org/abs/1909.07934
http://dx.doi.org/10.1016/j.na.2016.10.017
http://dx.doi.org/10.1016/j.jmaa.2016.07.014
http://dx.doi.org/10.1016/j.jmaa.2016.07.014


royalsocietypublishing.org/journal/rstb
Phil.Trans.R.Soc.B

375:201

9
Adv. Math. 30, 33–76. (doi:10.1016/0001-
8708(78)90130-5)

101. Lou Y, Nagylaki T, Ni WM. 2013 An introduction to
migration-selection PDE models. Discrete Contin.
Dyn. Syst. A 33, 4349–4373. (doi:10.3934/dcds.
2013.33.4349)

102. Britton NF. 1990 Spatial structures and periodic
travelling waves in an integro-differential reaction-
diffusion population model. SIAM J. Appl. Math. 50,
1663–1688. (doi:10.1137/0150099)

103. Genieys S, Volpert V, Auger P. 2006 Pattern and
waves for a model in population dynamics
with nonlocal consumption of resources. Math.
Model Nat. Phenom. 1, 65–82. (doi:10.1051/
mmnp:2006004)

104. Gourley SA. 2000 Travelling front solutions of a
nonlocal Fisher equation. J. Math. Biol. 41,
272–284. (doi:10.1007/s002850000047)

105. Berestycki H, Nadin G, Perthame B, Ryzhik L. 2009
The non-local Fisher-KPP equation: travelling waves
and steady states. Nonlinearity 22, 2813–2844.
(doi:10.1088/0951-7715/22/12/002)
106. Nadin G, Perthame B, Tang M. 2011 Can a traveling
wave connect two unstable states? The case of the
nonlocal Fisher equation. C. R. Math. Acad. Sci. Paris
349, 553–557. (doi:10.1016/j.crma.2011.03.008)

107. Li J, Latos E, Chen L. 2017 Wavefronts for a
nonlinear nonlocal bistable reaction–diffusion
equation in population dynamics. J. Differ. Equ.
263, 6427–6455. (doi:10.1016/j.jde.2017.07.019)

108. Horstmann D. 2003 From 1970 until present: the Keller-
Segel model in chemotaxis and its consequences. I. Jb.
Dt. Math. Verein. 105, 103–165.

109. Zhigun A. 2019 Generalised global supersolutions
with mass control for systems with taxis. SIAM
J. Math. Anal. 51, 2425–2443. (doi:10.1137/
18M1217826)

110. Dyson J, Gourley SA, Villella-Bressan R, Webb GF.
2010 Existence and asymptotic properties of
solutions of a nonlocal evolution equation modeling
cell–cell adhesion. SIAM J. Math. Anal. 42,
1784–1804. (doi:10.1137/090765663)

111. Dyson J, Gourley SA, Webb GF. 2013 A
non-local evolution equation model of
cell–cell adhesion in higher dimensional space.
J. Biol. Dyn. 7, 68–87. (doi:10.1080/17513758.2012.
755572)

112. Buttenschön A, Hillen T. Nonlocal adhesion models
for microorganisms on bounded domains. arXiv,
1903.06635. Available from: https://arxiv.org/abs/
1903.06635.

113. Hillen T, Painter KJ, Winkler M. 2018 Global
solvability and explicit bounds for non-local
adhesion models. Eur. J. Appl. Math. 29, 645–684.
(doi:10.1017/S0956792517000328)

114. Xiang T. 2013 A study on the positive nonconstant
steady states of nonlocal chemotaxis systems.
Discrete Contin. Dyn. Syst. Ser. B 18, 2457–2485.
(doi:10.3934/dcdsb.2013.18.2457)

115. Ou C, Zhang Y. 2013 Traveling wavefronts of
nonlocal reaction-diffusion models for adhesion in
cell aggregation and cancer invasion. Can. Appl.
Math. Q. 21, 21–61.

116. Hillen T. 2007 A classification of spikes and
plateaus. SIAM Rev. 49, 35–51. (doi:10.1137/
050632427)
903
79

http://dx.doi.org/10.1016/0001-8708(78)90130-5
http://dx.doi.org/10.1016/0001-8708(78)90130-5
http://dx.doi.org/10.3934/dcds.2013.33.4349
http://dx.doi.org/10.3934/dcds.2013.33.4349
http://dx.doi.org/10.1137/0150099
http://dx.doi.org/10.1051/mmnp:2006004
http://dx.doi.org/10.1051/mmnp:2006004
http://dx.doi.org/10.1007/s002850000047
http://dx.doi.org/10.1088/0951-7715/22/12/002
http://dx.doi.org/10.1016/j.crma.2011.03.008
http://dx.doi.org/10.1016/j.jde.2017.07.019
http://dx.doi.org/10.1137/18M1217826
http://dx.doi.org/10.1137/18M1217826
http://dx.doi.org/10.1137/090765663
http://dx.doi.org/10.1080/17513758.2012.755572
http://dx.doi.org/10.1080/17513758.2012.755572
https://arxiv.org/abs/1903.06635
https://arxiv.org/abs/1903.06635
https://arxiv.org/abs/1903.06635
http://dx.doi.org/10.1017/S0956792517000328
http://dx.doi.org/10.3934/dcdsb.2013.18.2457
http://dx.doi.org/10.1137/050632427
http://dx.doi.org/10.1137/050632427

	Mathematical models for cell migration: a non-local perspective
	Introduction
	Applications in development and cancer
	Classes of non-local models for cell migration
	Spatial non-locality in advection terms
	Further types of spatial or other non-locality

	Local versus non-local models: mathematical aspects
	Analysis of models with spatial non-localities in reaction terms
	Analysis of models with spatial non-localities in advection terms

	Outlook
	Data accessibility
	Authors' contributions
	Competing interests
	Funding
	References


