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Many models of gene expression do not explicitly incorporate a cell cycle
description. Here, we derive a theory describing how messenger RNA
(mRNA) fluctuations for constitutive and bursty gene expression are influ-
enced by stochasticity in the duration of the cell cycle and the timing of
DNA replication. Analytical expressions for the moments show that omitting
cell cycle duration introduces an error in the predicted mean number of
mRNAs that is a monotonically decreasing function of η, which is proportional
to the ratio of the mean cell cycle duration and the mRNA lifetime. By contrast,
the error in the variance of the mRNA distribution is highest for intermediate
values of η consistent with genome-wide measurements in many organisms.
Using eukaryotic cell data, we estimate the errors in the mean and variance
to be at most 3% and 25%, respectively. Furthermore, we derive an accurate
negative binomial mixture approximation to the mRNA distribution. This
indicates that stochasticity in the cell cycle can introduce fluctuations in
mRNA numbers that are similar to the effect of bursty transcription. Finally,
we show that for real experimental data, disregarding cell cycle stochasticity
can introduce errors in the inference of transcription rates larger than 10%.
1. Introduction
Intrinsic noise in gene expression induces variability in the transcript number
across a population of cells. Current microscopy techniques are able to capture
this variability, which can be used to infer the kinetic parameters of transcription,
thereby letting us quantify mechanisms in charge of the regulation of gene
expression [1–3]. In order to make this inference possible, it is necessary to have
an accurate stochastic dynamical model that is able to relate the details of the mes-
senger RNA (mRNA) number distribution to the different transcriptional and post-
transcriptional molecular mechanisms involved in mRNA processing. This has
been extensively done by describing the dynamics of the system by means of
theMaster Equation, aMarkovian descriptionwhose solution gives the probability
of observing a certain number of mRNAs in a cell at a certain time [4]. Because the
exact analytical solution of theMaster Equation is only available for a few scenarios
(e.g. [5–7]), the study of the probability distribution of mRNA transcript number is
usually limited to calculating the moments of the distribution.

One particular mechanism that has been difficult to study analytically is the
influence of the cell cycle on the distribution of mRNAs in a population of cells.
The duration of the different phases of the cell cycle is stochastic, introducing
noise not only in the time of mitosis when the molecular content is diluted
but also in the time at which DNA is replicated, which in turn increases the
mRNA production rate [3]. In addition, during mitosis, the cellular content is
divided, leading to a stochastic transcript bipartition [8].

Owing to these different challenges, mathematical effort has been focused
on limit cases, such as when the cell cycle duration is considered constant
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[6,7,9], or when DNA replication is omitted [10,11]. Other
studies have considered the effect of the cell cycle on protein
fluctuations [5,12–14]; the analysis in this case is simplified
because unlike mRNA, protein lifetimes are very long and
hence degradation is mostly owing to dilution at cell division.

In addition, there are other factors beyond details of the cell
cycle progression that can have a profound influence on tran-
script fluctuations. The symmetry of cellular division affects the
number of transcripts in a cellular population. For instance, in a
growing proliferating tissue, the continuous exponential appear-
ance of young cells in a population introduces an asymmetry in
the population cell age, favouring the proportion of cells at early
stages of their cell cycle. This contrasts with the age structure of a
homeostatic population where it is expected to find the cells
equallydistributed along their cell cycle [15,16]. Because the aver-
age number of mRNAs in a cell increases with the time position
in the cell cycle, we expect to observe larger mRNA content for
the same type of cell in a homeostatic population compared to
a growing population. Similar discrepancies arise when mRNA
distributions measured from snapshots of a growing cell popu-
lation are compared with the temporal tracking of the
expression levels of a single cell over time, apparently contradict-
ing ergodicity between single cells and thepopulation.While this
effect has been formalized mathematically [11], its relevance to
the distributions ofmRNA, or to the inference of different kinetic
parameters, remains a conundrum.

In this paper, we study the distribution of mRNA transcripts
in single cells where expression can be bursty or non-bursty
(both commonly observed, see for example [2]), with a cell
cycle progression described as a number of stages having a sto-
chastic duration. Our model also includes DNA replication and
differentiates between population and lineage (single-cell trajec-
tory) measurements of the mRNA distribution. Keeping the
framework relevant to the experimental inference of kinetic
parameters, we aim to answer the following question: how
important is the inclusion of cell cycle variability for predicting
the statistics of stochastic mRNA expression?With this objective
inmind,we derive and analyse expressions for the errormade in
different observables of transcript abundance when a determi-
nistic cell cycle (one of fixed length) is considered instead of a
stochastic one. Furthermore, we apply our results to a genome-
wide expression dataset to address the magnitude of the error
made in the inference of the transcription rate when mathemat-
ical models with different cell cycle details are employed.
2. Model description
We consider a general model of stochastic gene expression
that takes into account cell cycle variability (for an
illustration, see figure 1a,b) with the following properties.

(i) The cell cycle is divided intoN stages. The duration of each
stage i is exponentially distributed with a rate ki. This
implies that the total cell cycle duration follows a hypo-
exponential distribution. Note that the number of stages,
in general, will be larger than the number of cell cycle
phases. Each biological cell phase can, therefore, be
described as the composition of a given number of stages
resulting in hypoexponentially distributed cell cycle
phases consistent with recent experiments [17]. The
number and duration of the different stages can be
chosen by fitting the experimental cell cycle duration
distribution.
(ii) The length of the mitotic phase is negligible and hence it
is assumed to occur instantaneously after the end of the
N-th stage. This leads to binomial partitioning of the
mRNA between mother and daughter cells, where each
individual molecule is allocated in either daughter cell
with the same probability.

(iii) There is bursty or constitutive transcription of mRNA
with rate ri of producing mRNAs per unit of time, and
a decay rate di. When the transcription is bursty, the
burst size follows a geometric distribution with mean
βi. All the parameters ri, di, βi can vary depending on
the stage i along the cell cycle.

This constitutes the general model studied in this manu-
script. Detailing cell stage-specific rates of transcription
and degradation is particularly relevant as it will bestow
our model with the ability to accurately describe the dynamic
nature of mRNA transcription [3,18]. In addition, for the sake
of clarity of our analysis, we will also consider a particular
case of the general model.

(i) All the cell stage rates are identical along the cell cycle
ki = k. This implies that the total cell cycle duration follows
an Erlang distribution. The number of cell cycle stages, in
this case, can be easily determined from the best fit of an
Erlang distribution to the experimental cell cycle duration
[19]. In particular, the coefficient of variation (CV) of the
Erlang distribution is equal to

ffiffiffiffiffiffiffiffiffi
1=N

p
.

(ii) The degradation rate of the mRNA is independent of the
cell cycle stage di = d.

(iii) There are W stages prior to DNA replication of the gene
of interest and N−W stages post-replication. The pro-
duction rate of mRNA is proportional to the DNA
content of the cell at each stage without dosage compen-
sation, being ri = r for i≤W and ri = 2r for i >W. We can
consider replication to be instantaneous because the
time of replication of the locus containing the gene of
interest is much shorter than the total duration of the
S-phase [20]. If transcription is considered to be bursty,
the average burst size is constant along the cycle βi = β.

Because in this particular scenario, the cell cycle duration
follows an Erlang distribution, it will be referred hereon as
the Erlang model to distinguish it from the general model.
Despite the simplicity of the model, a fit of the Erlang distri-
bution to eight different types of eukaryotic and prokaryotic
cells showed a very good fit, capturing the variability of cell
cycle duration (figure 1c).

Stochastic simulations of the model can be used to study
the effect of changing parameter values on the mRNA tran-
script number (figure 1d ). Alternatively, we can study
analytically the evolution of the probability Pi(n, t) of finding
a cell in stage i with n mRNAs at time t by using a Master
Equation description, that for the general model with consti-
tutive mRNA transcription (bursty case is detailed in
appendix A) reads:
@P1(n, t)
@t

¼ �k1P1(n, t)þ kNP0
N(n, t)

þ r1(P1(n� 1, t)� P1(n, t))
þ d1((nþ 1)P1(nþ 1, t)� nP1(n, t)) (2:1)
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Figure 1. (a,b) Schematic of the general model where mRNA dynamics take into account details of the cell cycle (a) including DNA replication of a gene, phase duration
variability and bipartition of mRNA content at mitosis. During each cell cycle stage (b) mRNA dynamics is described as a production term (constitutive or bursty), and a
linear degradation. (c) The Erlang and hypoexponential distributions provide excellent fits to the experimental probability distributions of cell cycle durations of eight
different cell types. The parameters of the Erlang distribution (k, N) are shown on the figure. The sources of the experimental data, together with the parameters of the
hypoexponential distribution (k1, N1, k2, N2) with N1 stages of rate k1 and N2 stages of rate k2 are: B-cells (11.7, 132, 0.26, 1) [21], Rat1 fibroblasts (0.15, 1, 2.4, 50) [22],
HeLa cells (0.71, 4, 20.0, 110) [23], NIH 3T3 fibroblasts (0.24, 2, 11.4, 98) [19], mammary epithelial cells [24] (0.32, 1, 11.4, 154), Escherichia coli (0.88, 16, 0.07, 1) [25],
Saccharomyces cerevisae (0.04, 1, 1.4, 115) [26] and Synechococcus elongatus (4.18, 30, 4.18, 28) [27]. Fitted distributions correspond with the least-squares fit of the
distance between the experimental histograms and the probability density functions using the Trust Region Reflective algorithm implemented in SciPy. (d) Comparison of
stochastic mRNA trajectories between a case where cell cycle duration is constant (purple) or stochastic (green), for different degradation rates d. Arrows indicate
stochastic division times. Stochastic cell cycle simulations use the Erlang model with a production rate per chromosome equal to r = 50d for a cell cycle with
N = 4 stages, from which W = 3 stages occur prior to the gene replication (w =W/N = 3/4) indicated by dashed lines for the deterministic simulations.

royalsocietypublishing.org/journal/rsif
J.R.Soc.Interface

17:20200360

3

and

@Pi(n, t)
@t

¼ �kiPi(n, t)þ ki�1Pi�1(n, t)

þ ri(Pi(n� 1, t)� Pi(n, t))
þ di((nþ 1)Pi(nþ 1, t)� nPi(n, t)), i [ [2, N]:

(2:2)

The first and second terms in these equations describe the exit
from, and entrance to, the present cell cycle stage. The third
term models transcription and the fourth term mRNA
decay. Note that binomial partitioning during mitosis is
explicitly taken into account by the second term of equation
(2.1). This process implies

P0
N(n, t) ¼

X1
m¼0

m
n

� �
2�mPN(m, t), (2:3)

where we take the convention m choose n equals zero when
n >m.
3. Factorial moments in cyclo-stationary
conditions

Defining the generating function Gi ¼
P

n z
nPi(n), the Master

Equations equations (2.1)–(2.2) can be written as

@G1(z, t)
@t

¼ �k1G1(z, t)þ kNGN

�
1þ z
2

, t
�

þ r1(z� 1)G1(z, t)

þ d1(1� z)
@

@z
G1(z, t) (3:1)

and

@Gi(z, t)
@t

¼ �kiGi(z, t)þ ki�1Gi�1(z, t)

þ ri(z� 1)Gi(z, t)

þ di(1� z)
@

@z
Gi(z, t), i [ [2, N]: (3:2)

From the definition of the generating function, it follows
that the unnormalized ℓ-th factorial moment of the mRNA
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distribution in stage j is given by

(nj)‘ ;
X
n

n(n� 1) � � � (n� ‘þ 1)Pj(n) ¼ G(‘)
j (1), (3:3)

where the superscript (ℓ) means differentiating ℓ times.
Enforcing cyclo-stationary conditions (steady state for the
mRNA distribution of each individual cell stage) by setting
the time derivatives in equations (3.1) and (3.2) to zero, differ-
entiating p times the resulting equations and using the
definition of the factorial moments above, we obtain

0 ¼ �k1(n1)p þ kN

�
1
2

�p

(nN)p

þ r1p(n1) p�1 � d1p(n1)p (3:4)

and

0 ¼ �ki(ni)p þ ki�1(ni�1)p
þ rip(ni) p�1 � dip(ni)p, i [ [2, N]: (3:5)

Equation (3.5) can be brought into the form

(niþ1)p ¼ fi(ni)p þ gi, i [ [2, N], (3:6)

where we have used the definitions

fi ¼ ki
kiþ1 þ pdiþ1

and gi ¼
riþ1p(niþ1) p�1

kiþ1 þ pdiþ1
: (3:7)

Because these are first-order non-homogeneous recurrence
relations with variable coefficients, their solution can be writ-
ten as

(nj)p ¼ dj(n1)p þ uj, j [ [2, N], (3:8)

where we have used the definitions

uj ¼ dj
Xj�1

m¼1

gm
dmþ1

and dj ¼
Yj�1

k¼1

fk: (3:9)

Solving equation (3.8) for (nN)p and substituting in equation
(3.4), after some simplification, we obtain

(n1)p ¼
2r1p(n1) p�1 þ kN

�
1
2

� p�1

uN

2(d1pþ k1)� kN

�
1
2

� p�1

dN

: (3:10)

Note that the solution of the unnormalized p-th factorial
moment depends on knowledge of the unnormalized
(p− 1)-th factorial moment. Hence, because of this depen-
dency, all factorial moments need knowledge of the zeroth
order factorial moment (nj)0, which corresponds with the
probability of finding the cell at stage j. By the definition of
equation (3.3), we see that (nj)0 =Gj(1). Setting p = 0 in
equations (3.4) and (3.5) one obtains

(ni)0 ¼ ki
XN
j¼1

k�1
j

0
@

1
A�1

: (3:11)

Hence summarizing, equations (3.8), (3.10) and (3.11)
together give the solution to the unnormalized p-th
factorial moment of the mRNA numbers in cell stage j.
Note that to obtain the normalized p-th factorial moment
one divides the unnormalized p-th factorial moment by
Gj(1) ¼

P
n Pj(n) ¼ (nj)0.

The factorial moments for the general model with bursty
transcription can be derived following the same steps. This
procedure shows that the first factorial moment is equal to
the constitutive case, whereas the factorial moments for
higher orders in the bursty case are larger than in the consti-
tutive case (see appendix A).
4. Lineage measurements
The moments of the distribution can be used to compute the
mRNA distribution statistics for different tissues. For
instance, the mean number of mRNAs can be calculated as
the average along the cell cycle stages of the expected
number of mRNAs at each stage ((ni)1/(ni)0) weighted by
the probability πi of finding a cell in a tissue at a certain
stage i. Following this methodology, the expressions for the
mean and the variance are

hni ¼
XN
i¼1

pi
(ni)1
(ni)0

and s2 ¼
XN
i¼1

pi
(ni)2
(ni)0

þ hni(1� hni):

(4:1)

We will start our analysis studying the scenario in which
the mRNA content of a single cell is tracked in time at regu-
lar intervals and, after division, the tracking keeps following
only one of the daughter cells. This scenario is equivalent to
the mRNA distribution of the cells forming a homeostatic
tissue, where after each division one of the cells leaves the
population, keeping constant the number of cells in the
tissue [15,16]. This scenario will be referenced in the text
as the ‘lineage’ case, to differentiate it from the mRNA
distribution across a growing proliferating population of
cells, which will be referred to as the “population” case.
In the lineage case, the probability πi of finding a cell at
the i-th cell cycle stage corresponds with (ni)0 (equation
(3.11)) being inversely proportional to the cell stage advance
rate ki:

pi ¼ (ni)0: (4:2)

For the Erlang model, this is πi = 1/N, and the explicit
expression for the mean transcript can be obtained by intro-
ducing equations (3.10), (3.11) and (4.2) in (4.1), obtaining

hni ¼ n̂þ (1� w)n̂� n̂
h

1�

�
1

1þ hD

�(1�w)=D

2�
�

1
1þ hD

�1=D

0
BBB@

1
CCCA, (4:3)

where for the sake of clarity we have written the expression
in terms of the CV of the cell cycle

ffiffiffiffi
D

p ¼ ffiffiffiffiffiffiffiffiffi
1=N

p
. In addition,

we have introduced the mean mRNA number in the absence
of a cell cycle n̂ ¼ r=d, the fraction of the cell cycle before DNA
replication of the gene of interestw =W/N, and the non-dimen-
sional parameter η= dT that compares the degradation time
scalewith the dilution time scale given by the average cycle dur-
ation T =N/k (table 1). Note that η is proportional to the ratio
between themRNAhalf-life t1/2 and the cell cycledurationT fol-
lowing η= Tln(2)/t1/2.

The first term of equation (4.3) corresponds to the classical
scenario without cell cycle. The second term of equation (4.3)
introduces the effect of DNA replication for the case in which
the mRNA degradation time scale is much shorter than the
cell cycle length (η→∞). Finally, the third term in equation



Table 1. Description of the different parameters used to describe the cell
cycle, mRNA dynamics, and their relationship in the Erlang model. (Parameters
in shadowed rows can be derived from the rest of the parameters.)

meaning Erlang model

N number of cell stages

W cell stages prior to replication

ki rate of advance of cell cycle stage i k

ri transcription rate during stage i r if i≤ W

2r if i > W

di mRNA degradation during stage i d

βi mean burst size during stage i β

w proportion of cell cycle

before gene replication W/N

n̂ stationary average mRNA number

in absence of cell cycle r/d

T average cell cycle duration N/k

Δ squared coefficient of variation

of cell cycle duration 1/N

η mRNA degradation relative

to cell division rate dT

Table 2. Typical values of Δ, w and η for different cell types and their source.
(Values of Δ = 1/N are obtained from the Erlang fitting (figure 1c). Range for
η corresponds with the 99% confidence interval of the η distribution for each
genomic dataset.)

E. coli S. cerevisae N1H3T3

Δ 0.14 [25] 0.03 [26] 0.08 [19]

w 0.15–0.50 [28] 0.35–0.55 [29] 0.40–0.80 [30]

η 0.41–8.4 [31] 0.89–15 [32] 0.65–6.4 [33]
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(4.3) describes the contribution when mRNA degradation
occurs at a comparable time scale to the cell cycle duration
through the parameter η which has measured values in the
approximate range 0.5–8.0 for a variety of cell types (table 2).
This latter contribution increases monotonically with the cell
cycle variability Δ (see appendix B), and is minimal in the
limit of Δ→ 0 (deterministic cell cycle duration). In this determi-
nistic limit, equation (4.3) reduces to the simpler form

hni� ¼ lim
D!0

hni ¼ n̂þ (1� w)n̂� n̂
h

�
1� e�h(1�w)

2� e�h

�
, (4:4)

which agrees with a different calculation using deterministic
rate equations (see appendix C). Comparison of equations
(4.3) and (4.4) allows us to quantify the relative error R made
in the expected numberofmRNAwhen the cell cycle variability
is not considered in the description of the mRNA dynamics:

R ;
hni � hni�

hni

¼ 1�
h(2� w)� 1� e�h(1�w)

2� e�h

� �

h(2� w)� 1� (1þ hD)�(1�w)=D

2� (1þ hD)�1=D

 ! : (4:5)

Note that R is only a function of η, w and Δ, and therefore inde-
pendent of the mRNA production rate (figure 2a). The error is
always positive (see appendix B) and increases with the cell
cycle time variability Δ, reaching its maximum for Δ = 1
(which is the maximum Δ attainable for an Erlang process
since N≥ 1). Similarly, as the expression for the first moment
is identical in the bursty and constitutive cases (see appendix
A), the mean transcript number and its error are also indepen-
dent of how bursty the transcription is.

For a given cell type, the average time at which replication
of a given gene occurs and the cell cycle duration variability
can be considered constant (provided external conditions are
not changed), and hence the value of the error R for different
genes will be determined exclusively by η, which compares
the mean cell cycle duration and mRNA lifetime, and can
vary significantly from gene to gene [33]. The error decreases
with η (figure 2a,b), vanishing for η≫ 1 corresponding with
the scenario where mRNA lifetime is much shorter than the
cell cycle duration. On the other hand, the relative error R
is maximum for low values of η, describing the case of
stable mRNAs for which degradation rates are much lower
than the proliferation rate of the cell (analytical expressions
for the mRNA distribution for this case can be found following
the method described in [5]):

lim
h!0

R ¼ D

Dþ (2� w)þ 2
2� w

:

Interestingly, this maximal error depends on the proper-
ties of the cell cycle through w and Δ and it is maximized
for intermediate levels of the DNA replication time
w ¼ 2� ffiffiffi

2
p ≃ 0:6, which is comparable to biological values

of the relative duration of the G1 phase for N1H1 3T3 cells
(table 2) [3,30] (excluding cells which have arrested G1

phases), achieving a maximal relative error of R ≃ 15%,
corresponding to Δ = 1/2 and w ¼ 2� ffiffiffi

2
p

.
The relative error can be more precisely estimated given

data for specific types of cells. For example, the cell cycle dur-
ation distribution in NIH 3T3 mouse embryonic fibroblasts has
been described by an Erlang distribution with CV2≃ 1/12
(which implies N = 12 effective cell cycle stages) [19] and the
G1 phase occupies roughly a fraction w = 0.4 of the cell cycle,
indicating the position of the earlier transcribed genes
during S-phase [30]. The maximum relative error R for these
parameters lies around 3% (figure 2b), while for most of the
transcriptome (η∼ 1, figure 2c) the relative error R ≃ 1%, indi-
cating that in these cases the cell cycle duration variability can
be ignored if the mean mRNA is all that we are interested in.

Making use of the second-order moments of the distri-
bution, we can extend the analysis to other statistic
observables, allowing us to quantify the (relative) error in
the variance, Rs, of mRNA fluctuations made when neglect-
ing cell-cycle variability:

Rs ¼ s2 � s2�

s2 , (4:6)

where σ2* is the variance of the mRNA distribution in the
deterministic cell cycle limit (Δ→ 0). For the Erlang model,
combining the expression for the variance (equation (4.1))
with the factorial moments (equations (3.10) and (3.11)), we
obtain an error for the variance Rσ that is much larger than
the one observed in the mean. Additionally, Rs does not
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Figure 2. Relative error made in the average number of mRNAs (R) and its variance (Rs) when considering the cell cycle to be deterministic instead of Erlang
distributed in a non-proliferating population or a lineage. Panels compare the theoretical results (lines) with stochastic simulations (circles). (a,b) Relative error R of
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have a monotonic dependence on the degradation rate, but
is maximal for intermediate values of the degradation rate
(η∼ 1, see figure 2d,e,f). Interestingly, this region of values of η
corresponds with most of the transcripts genome-wide for
different species (figure 2c). In particular, for the NIH 3T3
cells the error reaches Rs ≃ 25% (figure 2e), and can reach
values as high as 80% for Δ = 1/2 (figure 2d). In contrast to
the error in the mean, the error in the variance will depend
on the transcription rate and the transcriptional burstiness.
Analysis of Rs for the bursty model shows that Rs decreases
with the burst size, reflecting that an increase in the variance
owing to the bursty gene expression reduces the relative
impact of the contribution from cell cycle variability
(figure 2f). Nevertheless, despite this reduction, the error Rs is
still above 10% for many scenarios including both bursty and
constitutive expression (figure 2d,e,f). Furthermore, in contrast
to the error in the mean, Rs depends on the DNA replication
position w in such a way that genes replicating later in the cell
cycle (largerw) not onlyshow largererrors but also fora broader
range of degradation rates (figure 2e).
5. Population measurements
When considering a proliferating population of cells, the con-
tinuous appearance of synchronized cells at an initial cell
cycle stage establishes a different age distribution than the
one derived in the lineage scenario (figure 3a). Specifically,
after mitosis, one cell at stage N leaves the population to
give rise to two cells at stage 1, enhancing the probability
of finding cells in the population at initial stages of their
cell cycle. The population values for the probability of
observing a cell in the i-th cell stage πi, can be obtained by
considering the evolution of the average number of cells in
cell cycle stage i at time t, denoted by Ci(t) [19,36]:

dC1(t)
dt

¼ �k1C1(t)þ 2kNCN(t) (5:1)

and

dCi(t)
dt

¼ �kiCi(t)þ ki�1Ci�1(t) i ¼ 2, . . . , N, (5:2)

where the factor 2 in the first equation stands for cellular div-
ision: every time a cell divides (leaving stage N), two cells
start at stage 1. In the lineage case this factor becomes
1. More generally, for cases with asymmetric division (after
mitosis some cells leave the population with a certain prob-
ability) this factor 2 can be replaced by a factor α∈ [0, 2]
[16]. While for equations (5.1) and (5.2), the number of cells
Ci(t) will grow in time, the relative cell stage distribution in
the population will eventually reach a steady state for
which we can write the ansatz Ci(t)/C1(t)≡ λi. Specifically,
for the Erlang case, introducing the definition of λi in
equation (5.2) yields the relationship

li ¼ 2(1�i)=N , (5:3)

that gives the explicit values for the probability πi of observing
a cell in the population at stage i:

pi(t) ¼ Ci(t)PN
i¼1 Ci(t)

¼ 21=N � 1
2(i=N)�1 , i ¼ 1, . . . , N, (5:4)

differing from the lineage stage distribution (equation (4.2)),
which for the Erlang case is constant (πi = 1/N). This discre-
pancy was confirmed by simulations (see inset of figure 3a).
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In addition to differences in πi, cells in the population case
are also found more likely at earlier times inside each stage
than in the lineage case. For the Erlang model, the distri-
bution of times that each cell has been in its current cell
stage follows an exponential distribution ∼Exp(k21/N) (see
appendix D and [5]). Given the Markovian nature of the pro-
cess, this effect is equivalent to reducing k and having a faster
cell advance through the cell cycle. Therefore, using the
expressions for πi from equation (5.4), and the new effective
rates of cell stage advance k→ k21/N in equations (3.8),
(3.10) and (3.11), allows us to obtain the factorial moments
for population measurements. The mean number of mRNA
in this scenario is

hni ¼ n̂
21�whD

2D þ hD� 1
: (5:5)

It is straightforward to show that 〈n〉 increases monotoni-
cally with Δ (similar to the lineage case). The exactness of
equation (5.5) is confirmed by stochastic simulations in
figure 3. In the limit of a deterministic cell cycle, equation
(5.5) reduces to the simpler form

hni� ¼ lim
D!0

hni ¼ 21�whn̂
hþ ln (2)

: (5:6)

This agrees with a different calculation using deterministic
rate equations (see appendix C). Similar to the lineage case,
this allows us to write explicitly an expression for the relative
error R in the average number of mRNAs made when omit-
ting the stochasticity of the cell cycle:

R ;
hni � hni�

hni ¼ 1� 2D þ hD� 1
D(hþ ln(2))

: (5:7)

As in the lineage case, the error is a monotonic decreasing
function of η, and increases with Δ reaching an error that is
similar to the single-cell case (R ≃ 20%) (figure 3b,c). Never-
theless, in contrast to the lineage case, the error is negative,
indicating that the expected number of mRNA decreases
with the variability of the cell cycle duration. Strikingly, the
error is independent of w and thus independent of the rela-
tive duration of G1 and G2 phases. Analysis of the error in
the variance, Rs, results in similar observations to those of
the lineage measurements, where Rs depends on the tran-
scription rate and the transcription burstiness, resulting in
errors much larger than R (Rs . 50%) that peaks at inter-
mediate values of the degradation rate corresponding to the
most frequent values of η measured genome-wide for differ-
ent species (figure 2c). As in the lineage case, the error Rs

depends on the replication position during the cell cycle w,
so genes replicating later in the cell cycle show larger errors
for broader ranges of mRNA stability.
6. Messenger RNA distribution approximation
The exact mRNA distribution of our model is known only
for some limit cases such as η→ 0 [5]. Nevertheless, for
more general realistic cases, we can use the moment deriva-
tion to reconstruct an approximate distribution. In particular,
our analysis provides analytical expressions for the moments
of the distribution at each cell stage i. Exclusively using
the first moments, we can approximate the total mRNA
population as a mixture of N Poisson distributions
~P(N, t) ¼Pi piPois(hnii), where the weights πi correspond to
the probability of finding a cell at cell stage i obtained in
equations (4.2) and (5.4). Similarly, including the second
moments, we can describe the probability as amixture of nega-
tive binomial distributions ~P(n, t) ¼Pi piNB(hnii, si), where
each component NB(hnii, s2

i ) is a negative binomial distri-
bution with mean 〈n〉i and variance s2

i (see equation 4.1).
Results for the lineage case, show that while the Poisson mix-
ture failed to recover the distribution obtained from stochastic
simulations in most scenarios (figure 4a), the negative bino-
mial mixture resulted in a very good prediction, able to
recover the broad tails and bimodality of the mRNA distri-
bution. In order to accurately assess the goodness of the
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reconstructed distribution, we computed the Kullback–Leibler
divergence of the negative binomial mixture ~P(n, t) from the
simulated exact distribution (figure 4b). We observed that
the approximation only fails for regimes with very unstable
mRNAs that are highly expressed. On the other hand, the
approximation improves for larger values ofN, closer to exper-
imental values for the cell cycle duration variability (CV2 =
1/N = 1/12) [19] (compare left and right panels of figure 4b).
Comparison of the distributions for bursty expression
and population measurements, using their corresponding
moments and stages distributions, πi, yielded an even better
approximationwith values of theKullback–Leibler divergence
orders of magnitude lower than the lineage case (figure 4c).
7. Genome-wide transcription rate inference
error

Our results so far have been focused on analysing the errors
that different models introduce on the mRNA statistics. Like-
wise, it is relevant to assess the error that different models
introduce in the inference of biochemical parameters from
experimental data. For this purpose, we analysed the
genome-wide data from [33] and compared their transcription
rate inference based on a lineagemodelwith constant cell cycle
and no replication (obtained by solving an expression equival-
ent to 〈n*〉withw = 0 in equation (4.4), see appendix F) against
different models incorporating stochastic cell cycle duration
(see figure 5 and appendix F). Interestingly, because the aver-
age mRNA number is proportional to the transcription rate
(see equations (4.3) and (5.5)), for given values of the cell
cycle duration and gene replication, the relative error made
when omitting cell cycle variation is a function depending
only on the degradation rate through the parameter η
(figure 5a). Because [33] reported no correlation between
mRNA stability and transcription rate, this resulted in the
absence of correlation between the error and the speed at
which genes are transcribed (figure 5a). Additionally, in agree-
ment with the error of the average mRNA number R, the error
in the transcriptional rate estimate increases with the stability
of the mRNA. When comparing the error expected for differ-
ent models, small errors were observed for the lineage case
with no DNA replication (figure 5b). Nevertheless, for more
realistic scenarios, where the error is evaluated for a growing
population case with DNA replication [33], more than 90%
of the genes detected underestimate the transcription rate
with an error bigger than 10% (figure 5b).
8. Discussion
Most of the models employed to study gene regulation ignore
the effect that a detailed stochastic cell cycle description has
on gene expression. The model and methodology developed
in this paper not only allows one to analytically evaluate the
role of features such as cell duration stochasticity or DNA
replication in the transcript population, but also provides a
straightforward way of discriminating the scenarios for
which such details are relevant for the description of the
system. This is of paramount importance when mathematical
models are used to infer parameters from experimental data,
where the precision of the information demands the use of
the right level of abstraction [37].

Specifically, this approach contrasts with alternative strat-
egies that either ignore cell cycle effects or fit mRNA
populations to arbitrary population mixtures, impeding the
inference ofmechanistic information of the transcriptional par-
ameters. This is of particular relevance for current data
analysis where mRNA labelling techniques give access to
mRNA abundance distributions in populations of cells. In
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order to extract mechanistic information of the transcriptional
process from these distributions, it is paramount to link the
details of the distribution to the properties of the different bio-
molecularmechanisms [3,38].While in this paper, we analysed
the error in the transcription rate estimation owing to neglect-
ing cell cycle variability and replication, future work will
address how taking into account such details may also affect
the inference of other biochemical parameters such as gene
activation and deactivation rates, or the mean burst size. The
necessity of such a study becomes apparent from the mRNA
distributions obtained, which can be approximated accurately
by negative binomials in scenarios with constitutive gene
expression, challenging the common practice to use negative
binomial distributions as a signature of bursty transcription
[1,38,39]. Experimental validation of these predictions will
require inference of parameters using data obtained by live
imaging techniques, such as labelling with mRNA aptamers
such as MS2, Mango or Peppers [40–42] capable of measuring
individual mRNA dynamics. Specifically, trajectory data pro-
vided by live imaging techniques can be used together with
the moments provided by our stochastic cell cycle length
theory to infer the parameters of the model using Bayesian
methods (such as ABC) [37]. Contrasting the resulting par-
ameter posterior from a stochastic cell cycle model with
those obtained from performing the same analysis under
the assumption of a fixed cell cycle length can highlight
the relevance of cell cycle variability for the estimation of
transcription and other biochemical parameters.

One of themajor assumptions used in the bulk of the paper
is that all the stages of the cell cycle have the same rates of
mRNA production per allele, burst size, and degradation.
Nevertheless, our analysis allows the incorporation of different
rates of production and degradation in the expression for the
moments of the general model (equations (3.8)–(3.11)). Such
an accurate description will be of paramount importance to
understand the effect of stochastic cell cycle duration in
genes related to cell-cycle progression [43–45] or dosage com-
pensation along the cell cycle [3,46]. Furthermore, additional
experimental stochastic details of the different cell cycle
phases can be incorporated by choosing accordingly the
rates and number of stages of the general model [47].

Future extensions of the model can focus on incorporating
more detailed descriptions of the stochastic dynamics of the
different processes. These could include more realistic
assumptions about how molecules are partitioned at cell div-
ision to effectively account for specific segregation
mechanisms [8]. Another possible extension could describe
transcriptional bursts by considering promoter switching
dynamics explicitly [48] allowing us to investigate the effect
of multiple promoter states on the mRNA dynamics [49].

Finally, further extension of the model should include
protein regulation of mRNA abundance. Particular mechan-
isms include nuclease dynamics controlling mRNA turnover
along the cell cycle [43,50], or cyclin-dependent kinases con-
trolling cell-cycle advance [51]. In addition, incorporating the
methodology developed in this paper to gene regulatory net-
works will provide a route to better understanding the
stochastic details of the expression of genes with dynamics
that can change in a time scale comparable to the cell cycle
duration, such as circadian clock-related genes [52,53]. This
is of special relevance in embryonic development, where the
details of intrinsic noise are known to play a major role in
the formation of spatial domains of gene expression in the
patterning of embryonic tissues [54–56].
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Appendix A. Bursty messenger RNA transcription
model
Considering the general model, we can introduce bursty
mRNA transcription as a reaction with a burst rate νi at cell
stage i. The number of mRNAs ℓ produced in a burst at
cell stage i follows a geometric distribution ξi(ℓ) with average
number βi of transcripts produced per burst, i.e. an average

https://github.com/2piruben/langil/tree/master/examples/CellCycleVariability
https://github.com/2piruben/langil/tree/master/examples/CellCycleVariability
https://github.com/2piruben/langil/tree/master/examples/CellCycleVariability
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rate ri = νiβi of mRNAs produced per unit of time [57]. The
explicit geometric probability distribution follows:

ji(‘) ¼
1

1þ bi

bi

1þ bi

� �‘

: (A 1)

The resulting Master Equation reads

@P1(n, t)
@t

¼ �k1P1(n, t)þ kNP0
N(n, t)

þ r1
b1

Xn
‘¼1

[P1(n� ‘, t)j1(‘)]� P1(n)(1� j1(0))

 !

þ d1((nþ 1)P1(nþ 1, t)� nP1(n, t)) (A 2)

and

@Pi(n, t)
@t

¼ �kiPi(n, t)þ ki�1Pi�1(n, t)

þ ri
bi

Xn
‘¼1

[Pi(n� ‘, t)ji(‘)]� Pi(n)(1� ji(0))

 !

þ di((nþ 1)Pi(nþ 1, t)� nPi(n, t)), i [ [2, N]:

(A 3)

As in the constitutive case, we can use these system of differ-
ential equations to obtain the steady-state factorial moments
of the distribution by introducing the generating function
Gi ¼

P
n z

nPi(n). In particular, the terms corresponding to
bursty transcription follow the sum

X1
n¼0

Xn
‘¼1

znP(n� ‘, t)ji(‘) ¼
X1
‘¼1

X1
n¼0

znP(n� ‘, t)ji(‘)

¼
X1
‘¼1

ji(‘)z
‘G(z) ¼

G(z)
1

1þ bi(1� z)
� 1
1þ bi

� �
: (A 4)

This results in the system of differential equations

@G1(z, t)
@t

¼ �k1G1(z, t)þ kNGN

�
1þ z
2

, t
�

þ 1
1þ b1(1� z)

� 1
� �

r1
b1

G1(z, t)

þ d1(1� z)
@

@z
G1(z, t), (A 5)

@Gi(z, t)
@t

¼ �kiGi(z, t)þ ki�1Gi�1(z, t)

þ 1
1þ bi(1� z)

� 1
� �

ri
bi

Gi(z, t)

þ di(1� z)
@

@z
Gi(z, t), i [ [2, N]: (A 6)

Enforcing the steady state by setting the time derivatives
in equations (A 5) and (A 6) to zero, differentiating p times
the resulting equations and using the definition of the factor-
ial moments (ni)k, we obtain

0 ¼ �k1(n1)p þ kN

�
1
2

�p

(nN)p

þ r1
Xp�1

j¼0

p!
j!
b

p�j�1
1 (n1)j � d1p(n1)p (A 7)
and

0 ¼ �ki(ni)p þ ki�1(ni�1)p

þ ri
Xp�1

j¼0

p!
j!
b

p�j�1
i (ni)j � dip(ni)p, i [ [2, N]:

(A 8)

The normalization of the factorial moments (nj)0, obtained
for p = 0 with the normalization condition

P
j Gj(1) ¼ 1, is the

same as in the constitutive case, and only depends on the cell
stage advance rates

(n1)0 ¼
�
1þ

XN
i¼2

Yi
j¼2

k j�1

kj

��1

(A 9)

and

(ni)0 ¼ (n1)0
Yi
j¼2

k j�1

kj
, i [ [2, N]: (A 10)

Similarly to the constitutive case, equation (A 8) can be
written in the form

(ni)p ¼ fi�1(ni�1)p þ ~gi�1, i [ [2, N], (A 11)

where we have used same definition for fi as in the constitu-
tive production case, but ~gi replaces gi, which instead of
depending on the immediately lower order factorial
moment p− 1, depends on all the moments lower than p:

fi ¼ ki
kiþ1 þ pdiþ1

, ~gi ¼
riþ1

P p�1
j¼0

p!
j!
b

p�j�1
iþ1 (niþ1)j

kiþ1 þ pdiþ1
: (A 12)

These first-order non-homogeneous recurrence relations have
the solution

(nj)p ¼ dj(n1)p þ ~uj, j [ [2, N], (A 13)

where we have used the definitions

~uj ¼ dj
Xj�1

m¼1

~gm
dmþ1

, dj ¼
Yj�1

k¼1

fk: (A 14)

Substituting this solution in equation (A 7), we obtain
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: (A 15)

Comparing these results, we can immediately see that the
expected value of mRNAs is the same in the bursty case and
the constitutive case considering the same average rate of
mRNA production at cell stage i : ri = νiβi. Differences arise
for higher moments. In particular, all the factorial moments
of the bursty scenario with p > 1 are larger than the factorial
moments of the constitutive case because

ri
Xp�1
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b

p�j�1
i (ni)j

¼ rip(ni) p�1 þ ri
Xp�2

j¼0
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b
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i (ni)j . pri(ni) p�1: (A 16)
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Appendix B. Monotonic dependence of mean
messenger RNA on the coefficient of variation of
the cell cycle duration for lineage observations
By equation (4.3), we have for η > 0

hni ¼ wn̂þ (1� w)2n̂� n̂
h

1�
1

1þ hD

� �(1�w)=D

2� 1
1þ hD

� �1=D

0
BBB@

1
CCCA

¼ CþDf(D),

(B 1)

where w is a fraction, C, D are constants (D is positive) and

f(D) ¼
1

1þ hD

� �(1�w)=D

2� 1
1þ hD

� �1=D : (B 2)

If we define x = (1 + ηΔ)1/Δ, we note that because Δ > 0 we
have x∈ (1, eη) and also x(Δ) is monotonically decreasing,
which follows from

dx
dD
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We then note that using this transformation, we get

f(D) ¼ g(x) ¼ xw

2x� 1
, (B 4)

which satisfies

dg(x)
dx

¼ xw�1

(1� 2x)2|fflfflfflfflffl{zfflfflfflfflffl}
.0

(2x(w� 1)� w)|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
,0

, 0: (B 5)

Using this, we find

df(D)
dD

¼ dx
dD|{z}
,0

dg(x)
dx|fflffl{zfflffl}
,0

. 0, (B 6)

which proves strict monotonicity of 〈n〉 as a function of Δ > 0.
Appendix C. Alternative derivation of equations
(4.4) and (5.6) from deterministic
rate equations
Consider a cell cycle of fixed duration Twith replication (and
consequent doubling of transcription) occurring at time τ =
wT (where w is a fraction). If the transcription rate before
replication is r, the mRNA decay rate is d and n(t) is the deter-
ministic estimate for the mean number of mRNAmolecules at
time t then a deterministic model for this process is

dn(t)
dt

¼ r� dn(t), if 0 � t , t
2r� dn(t), if t � t � T:

�
(C 1)

In the cyclo-stationary limit, binomial partitioning (when cell
division occurs at the end of the cell cycle) leads to the
boundary condition 2n(0) = n(T ). Note that t in this context
means the cell age and not absolute time and hence it can
only vary between 0 and T. Solving these differential
equations, we obtain the solution

n(t) ¼ n̂(1þ e d(t�t)

1�2eh ), if 0 � t , t

2n̂(1þ e d(t�tþT )

1�2eh ), if t � t � T,
:

(
(C 2)

where n̂ ¼ r=d. Let f (t) dt be the probability of observing a
cell of age between t and t + dt, where dt is an infinitesimal
time interval. It then follows that

f(t)dt ¼ lim
N!1

pj j ¼ Nt
T

� �
, (C 3)

where πj is the probability of observing a cell in cell cycle
stage j. Note that because Δ = 1/N, the limit of N→∞ at con-
stant T is the same as the limit of Δ→ 0. Because T =N/k, in
this limit, we have infinite cell stages N advancing with an
infinite rate k, i.e. the cell spends an infinitesimal small time
dt = 1/k at each stage. Knowing that πi = 1/N for lineage
measurements, we have

f(t) ¼ lim
N!1

pj

dt
¼ 1

T
: (C 4)

For the population case, we substitute i/N = t/T in
equation (5.4) take limit of large N and finally use N = kT to
obtain

f(t) ¼ ln (2)
T

2(1�t=T): (C 5)

Note that both equations (C 4) and (C 5) are well known
and have been in common use for more than 40 years [58].
Finally, we obtain the mean number of mRNA averaged
over the cell cycle �n ¼ Ð T0 f(t)n(t)dt. For the lineage measure-
ments, this yields

�n ¼ wn̂þ (1� w)2n̂� n̂
h

�
1� e�h(1�w)

2� e�h

�
, (C 6)

while for the population measurements, we obtain

�n ¼ 21�whn̂
hþ ln (2)

: (C 7)

These expressions agree exactly with equations (4.4) and (5.6)
which were derived from a Master Equation approach in the
limit of zero variability in the cell cycle duration for the case
of lineage and population measurements, respectively.
Appendix D. Derivation of the distribution of cell
stage durations in population measurements
We let Ci(t, τ) denote the number of cells in a population that
are in cell stage i at time t that have been in that cell state for a
duration τ. After a small time duration δ all the cells will
either advance to an age τ + δ or advance to the next cell
stage. Therefore, we can write the conservation equation

Ci(tþ d, tþ d) ¼ Ci(t, t)� Ci(t, t)kid: (D 1)

Assuming that there is a stationary distribution for the
stage age of the cell population at a stage i, pi(τ), we can
write Ci(t, τ) as Ci(t, τ) = Ci(t)pi(τ); where Ci(t) is the
number of cells at cell stage i. Introducing this factorization
of Ci(t, τ) in equation (D 1), and taking the limit δ→ 0, we get



Algorithm 1. General model with stochastic cell cycle and constitutive expression.

1: n ¼ n̂ ▹ initial number of mRNA

2: j ¼ 1 ▹ initial cell stage

3: t ¼ 0 ▹ initial time

4: While t < tmax do

5: compute reaction channels propensities

6: pþ ¼ rj ▹ propensity of mRNA production

7: p� ¼ ndj ▹ propensity of mRNA degradation

8: pc ¼ ki ▹ propensity of cell cycle advance

9: select next reaction channel

10: u ¼ UniformRandom (0,pþ þ pm þ pc) random number to select next reaction channel

11: if u < pþ then ▹ mRNA production selected

12: n þ¼ 1

13: t ¼ ExponentialRandom (1=pþ)
14: else if u < (pþ þ p�) then ▹ mRNA degradation selected

15: n �¼ 1

16: t ¼ ExponentialRandom (1=p�)
17: else ▹ cell cycle stage advance selected

18: j þ¼ 1

19: t ¼ ExponentialRandom (1=pc )

20: if j . N then ▹ cell cycle has finished

21: n ¼ BinomialRandom (n,1=2) ▹ bipartition of mRNA

22: j ¼ 1 ▹ reset cell cycle

23: t þ¼ t
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the relationship

dCi(t)
dt

pi(t)þ dpi(t)
dt

Ci(t) ¼ �Ci(t)pi(t)ki, (D 2)

where we have used the chain rule to compute the deriva-
tive of dNi(x, x)/dx|t,τ. Because the probability of finding
a cell in a certain stage i, πi, is constant in time, the
number of cells at a given stage has to grow with the same
rate as the population, therefore dCi(t)/dt = KCi(t), where
K is the growth rate of the population. Introducing this
equality in equation (D 2), we get an equation for pi(τ):

Kpi(t)þ dpi(t)
dt

¼ �pi(t)ki: (D 3)

That gives

pi(t) ¼ (K þ ki)e�(Kþki)t: (D 4)

In the Erlang distributed model, ki = k is constant, and the
rate of growth of the population can be calculated from the
conservation equation for the total number of cells C(t):

C(tþ d) ¼ C(t)þ CN(t)kNd ¼ C(t)þ C(t)kNpNd, (D 5)

where N is the number of stages of the cell cycle. From this
equation, we obtain that the rate of exponential growth of
the population is K = kNπN. Using the value of πN from
equation (5.4), we obtain that for the Erlang model, the
stage age distribution of cell cycle stage i is

pi(t) ¼ k21=Ne�k21=Nt: (D 6)
Appendix E. Computational analysis
The simulations for the general cell cycle model (including
Erlang distributed times), were made using a custom made
publicly available Gillespie algorithm, where cell cycle
stages are treated as one extra reaction (https://github.
com/2piruben/langil/tree/master/examples/CellCycle-
Variability). After the last stage of the cell cycle is completed,
the cell cycle time is reset and the number of mRNAs is
reduced by sampling a binomial distribution B(n, 1/2)
where n is the number of mRNAs before cell division (see
algorithm 1).

On the other hand, to simulate a cell cycle where the differ-
ent stages have deterministic duration, the Gillespie algorithm
has been modified to take into account if a deterministic cell
stage change would take place before the next stochastic reac-
tion time (see algorithm 2). The rest of the details of the
algorithm are the same as in the general cell cycle model.

To obtain statistics from lineage measurements, each tra-
jectory was sampled by choosing evenly distributed time
points. For population measurements, several simulations
are run in parallel, one for each cell. After each cell division
event, a new cell is introduced in the simulation containing
the remaining mRNA from the binomial partition of the
mother cell. In order to achieve a steady-state behaviour
with deterministic cell cycles it was necessary to initiate
each replicate following the corresponding age distribution
(equation (C 4) or equation (C 5)). Statistics from the popu-
lation measurements are calculated across all the cells at a
particular time snapshot.

https://github.com/2piruben/langil/tree/master/examples/CellCycleVariability
https://github.com/2piruben/langil/tree/master/examples/CellCycleVariability
https://github.com/2piruben/langil/tree/master/examples/CellCycleVariability
https://github.com/2piruben/langil/tree/master/examples/CellCycleVariability


Algorithm 2. Deterministic cell cycle model

1: n ¼ n̂ ▹ initial number of mRNA

2: t ¼ Random (f (t)) ▹ initial time following cyclostationary distribution

3: j ¼ dNt=Te ▹ initial cell stage

4: tnext ¼ s1 ▹ time left on the current cell state

5: While t < tmax do

6: compute reaction channels propensities

7: pþ ¼ rj ▹ propensity of mRNA production

8: p� ¼ ndj ▹ propensity of mRNA degradation

9: select next stochastic reaction channel

10: u ¼ UniformRandom (0,pþ þ pm) ▹ random number to select next reaction channel

11: if u < pþ then ▹ mRNA production proposed

12: Dn ¼ 1 ▹ proposed change in number of mRNAs

13: t ¼ ExponentialRandom (1=pþ)
14: else ▹ mRNA degradation proposed

15: Dn ¼ �1 ▹ proposed change in number of mRNAs

16: t ¼ ExponentialRandom (1=p�)
17: comparison of proposed stochastic reaction channel with cell stage advance

18: if tnext . t then ▹ stochastic reaction selected

19: n þ¼ Dn ▹ update number of mRNA

20: tnext �¼ t ▹ update time of current cell stage

21: else ▹ cell cycle stage advance

22: j þ¼ 1

23: t ¼ tnext
24: if j . N then ▹ cell cycle has finished

25: n ¼ BinomialRandom (n,1=2) ▹ bipartition of mRNA

26: j ¼ 1 ▹ reset cell cycle

27: tnext ¼ s1 ▹ start timer of first cell cycle stage

28: else

29: tnext ¼ sj ▹ start timer of next cell cycle stage

30: t þ¼ t
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Appendix F. Inference of transcription rates and
error calculation
Using the expression for the average number of mRNAs
in the lineage measurements given by equation (4.3), we
can write the transcription rate parameter r for the
Erlang model as a function of the average number of
mRNAs observed and the rest of the parameters of the
model:

r ¼ hnih
T

2� w� 1
h

1�

�
1

1þ hD

�(1�w)=D

2�
�

1
1þ hD

�1=D

0
BBB@

1
CCCA

0
BBB@

1
CCCA

�1

: (F 1)

Similarly, we can write an expression for r for the popu-
lation case using equation (5.5):

r ¼ hnih
T

2D þ hD� 1
21�whD

: (F 2)
We can use both equations (F 1) and (F 2) to obtain the
average transcription rate �r along the cell cycle for lineage
or population cases:

�r ¼ rwþ 2r(1� w): (F 3)

In the limit of a deterministic cell cycle duration and no
replication rexp ¼ �r(D ! 0, w ¼ 1), we recover the expression
used in [33], which returns a value of transcription rate for
each gene given the measured decay rate and average
number of mRNA transcripts. By contrast, in order to compute
�r in a general case we need to evaluate the cell cycle duration
variability Δ. The cell cycle duration reported in [33] was
19.9 h < 27.5 h < 33.6 h, and hence we choose a standard devi-
ation of (33:6� 19:9)=2 ¼ 6:85h. The corresponding number
of effective states N can be obtained from the CV of the cell
cycle length N = 1/Δ = 1/CV2≃ 16.

Introducing the calculated value of Δ in equations (F 1)–(F 3),
we can evaluate �r for lineage and population cases for different
DNA replication positions along the cell cycle. In the text, we
study a casewithout replicationw = 1 and a casewith replication
at the middle of the cell cycle w= 1/2.
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In order to evaluate how our predictions differ from the
reported transcription rates rexp, we compute the relative
error ε:

1 ¼ rexp � �r
rexp

: (F 4)
Note that because �r is linear in the average transcript
number 〈n〉, the resulting error is independent of 〈n〉.
Therefore, differences in the error ε among the different
genes reported in [33] will only depend on their degradation
rate.
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