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Stingless bees of the genus Tetragonula construct a brood comb with a spiral or
a target pattern architecture in three dimensions. Crystals possess these same
patterns on the molecular scale. Here, we show that the same excitable-
medium dynamics governs both crystal nucleation and growth and comb
construction in Tetragonula, so that a minimal coupled-map lattice model
based on crystal growth explains how these bees produce the structures
seen in their bee combs.
1. Introduction
The geometry of the bee comb has for centuries astonished those who have exam-
ined it [1,2]. Many studies have concentrated on understanding how honeybees
make almost perfectly hexagonal cells [3–6]. But beyond its hexagonal packing of
neighbouring cells, the overall structure of the bee comb is equally interesting.
An example is the Southeast Asian and Australian stingless bee Tetragonula
[7–12]. InTetragonulanests,we findavarietyofbroodcombstructures in threedimen-
sions (figure 1) that can be classified into (a) target (i.e. bullseye-shaped) patterns, (b)
spirals, (c) double spirals and (d) more disordered terraces. In a totally different field
of science, crystals also grow in three-dimensional patterns with spirals and target
patterns [13,14]. Here we show that a minimal model, a coupled-map lattice
excitable medium, explains both crystal nucleation and growth and the architecture
of Tetragonula brood combs. This is an example of how the applicability of the same
dynamics across different fields of science leads to similar patterns in very diverse
systems, and of how complex structures can emerge from simple behavioural rules.

Various species of the Southeast Asian andAustralian stingless bee Tetragonula
construct brood combs with three-dimensional, open structures consisting of
terraces built one on top of another [8,10–12] (figure 1). Worker bees add new
cells to the edges of each terrace, each of which is then filled with an egg and
closed before repeating the process. The resulting morphology is similar to what
we see in crystal growth, where crystals grow in terraces of atoms or molecules
one on top of another [13,14]. New so-called growth units (i.e. atoms, molecules,
ions, etc.) attach to the crystal at the edges of terraces, called steps and kinks. This
dynamics was explored by Burton et al. [13], who proposed a dynamical model
to explain how crystals should grow layer by layer through the addition ofmaterial
at kinks: growth sites at the edges of a spiral or target pattern. Likewise, although
bees are free to move across and between the terraces—the levels are open so that
the bees can get between them (figure 2a) like a multi-storey car park—bees are
found concentrated at the terraces in these three-dimensional structures (figure 2b).

Spiral and target patterns are found across nature from chemical oscillators
to the heart, and from cellular slime moulds to the brain [14]. Common to these
varied systems is that they are excitable media: they all have a threshold in some
parameter, below which the system returns quickly to its resting state, but
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(a) (b)

(c) (d)

Figure 1. Combs of two species of the stingless bee Tetragonula showing structures of (a) target patterns (Tetragonula carbonaria), (b) spirals (Tetragonula carbo-
naria), (c) double spirals (Tetragonula carbonaria) and (d ) more disordered terraces (Tetragonula hockingsi). Images courtesy of (a) Elke Haege; (b–d ) Tim Heard.

(a) (b)

Figure 2. (a) The open structure is like a multi-storey car park or, in this case of a spiral ramp, like the Guggenheim museum in New York (T. carbonaria).
(b) Worker bees are observed to spend time clustered at the growing edges of terraces (T. carbonaria). Images courtesy of Tim Heard.
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above which it undertakes a large excursion before doing so,
and then has a refractory period during which the system is
unresponsive to further perturbations. Some of us developed
a model of Burton–Cabrera–Frank dynamics as an excitable
system, and showed that it could be applied both to crystal
growth [15] and to liquid crystals growing layer by layer as
they do in the formation of the mother-of-pearl produced
by molluscs [16]. In the present work, we show that a version
of this coupled-map lattice excitable medium model explains
how the complex structures seen in Tetragonula combs emerge
from simple behavioural rules.
2. Model
In both crystals and bee combs, growth occurs in a layered
manner, each layer growing by addition of individual units.
This is a discrete process, so we apply a discrete model in
which a surface is divided into cells. In order to avoid aniso-
tropic effects in the growth process, we randomize the grid
[17]. We use a hexagonal grid of cells to reproduce the
cellular growth process in the comb—that is to say, bees
choose to tile the plane with a hexagonal, rather than a
square or triangular, array—although it is not necessary to
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Figure 3. Our growth model produces versions of the structures seen in figure 1: (a) target patterns for αmax = 0.01; R = 5, (b) spirals for αmax = 0.09; R = 3,
(c) double spirals for αmax = 0.11; R = 4, (d ) disordered terraces for αmax = 0.15; R = 2. For all cases ΔHN = 0.5 and ΔHG = 0.5. In each case, the bottom layer
is the projection of the top.
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use a hexagonal grid of cells in order to produce the patterns
observed: the physics is not determined by the grid chosen,
and a square lattice gives similar results. We comment below
on how this choice of array might come about in bees. We
define a neighbourhood radius, R, so that the neighbours k
of the cell i are all elements within this radius

jri � rkj , R: (2:1)

Each cell has an associated height, hi(t), with initial value
hi(0) = 0. Height is a continuous variable, so that different
patterns will arise, although the time t advances in discrete iter-
ations, making the model a coupled-map lattice. In both
systems, new cells may be added as a new island on a flat
surface (nucleation) or by adding new materials at a growth
front (growth), so in our model we impose a nucleation con-
dition and a growth condition. The condition for nucleation
is that the cell in question must be on a flat surface, meaning
that the height difference with its neighbouring cells must be
smaller than a certain margin, ΔHN,

X

k

jhk(t)� hi(t)j , DHN : (2:2)

If this condition is met, the height of the cell is increased by 1
plus or minus a small random factor α, 0≤ α≤ αmax,

hi(tþ 1) ¼ hi(t)þ 1þ a: (2:3)
The condition for growth of a new cell in the comb is that the
cell must be at the edge of a growth front, meaning it has at
least one neighbour with a height difference larger than a
certain threshold, ΔHG,

hk(t)� hi(t) . DHG: (2:4)

When growth takes place, the height of the cell is increased by
the mean height difference with its higher neighbours,

hi(tþ 1) ¼ hi(t)þ
X

k

hk(t)� hi(t)
n

þ a, (2:5)

where k is the coordinate for each higher neighbour and n is the
total number of higher neighbours, which depends on R. This
growth algorithm is performed simultaneously for all cells and
the process is iterated in time t.

The model has four parameters that can be adjusted to
generate all the different patterns observed in stingless bee
combs (figure 3 and table 1): (i) α is the amount of randomiz-
ation applied to every growth unit. It is necessary for the
emergence of defects and spiral patterns. In a growing crys-
tal, it is related to the amount of impurities, while in a bee
comb it is related to the ability of the bees to produce a flat
surface. (ii) ΔHN defines how flat a surface needs to be for
it to nucleate a new growth front. This influences the fre-
quency of nucleations which lead to target patterns. In
crystallization, it is related with the supersaturation of the



Table 1. The parameters in the model and their meanings in crystal growth and in bee comb construction.

parameter description responsible for
physical meaning in
crystal growth

physical meaning in bee
comb construction

α stochastic term size of defects impurities/heterogeneity how flat the bees can

make a layer

R radius of the cell neighbourhood terrace separation surface diffusion order of size of a bee

ΔHN surface height margin between

neighbours considered to be flat

enough to nucleate

frequency of nucleations,

i.e. target patterns

supersaturation availability of worker bees

ΔHG surface height threshold between

neighbours considered to be the

base of a step

amount of spiral patterns impurities/heterogeneity

of growth units

how similar the bees can make

growth units
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precipitating material, while in a bee comb it is probably
related to the availability of worker bees. (iii) ΔHG is respon-
sible for the appearance of screw dislocations which lead to
spiral patterns. Both in crystals and in bee combs there can
be several causes for this kind of defect, such as the hetero-
geneity of the growth units or the presence of impurities.
(iv) R will influence the separation between terraces on the
growing surface because nucleation cannot happen in cells
that are closer than R to a growth front. In crystals, this is
viewed as the amount of surface diffusion, as growth units
tend to be added at steps or kinks. In the bee comb this is
associated with the space that bees require to work; bigger
bees construct bigger cells [18].

During a time step, nucleation has a probability of 1 to
occur at all the cells where the condition (2.2) is satisfied. In
previous work with a numerical model of this type, we had
a nucleation probability, a small number, typically 10−3, so
that nucleation would be a rare event [15,16]. In the present
case, we have removed this parameter, with the objective to
have a more elegant model; to eliminate as much complexity
as possible while still being able to reproduce all the patterns
observed. With this simplified model, if we start with a per-
fectly flat surface h(t = 0) = 0, every cell in the map would
nucleate. However, after the first time iteration of the
model, the surface is no longer perfectly flat because of the
addition of the random parameter α, as shown in equation
(2.3). So, after the first iteration, the number of nucleations
that appear is small and can be controlled with α.

In the case both of the crystal and of the bee comb, the
model puts growth and nucleation on an equal footing. We
have attempted to codify a few simple rules, which make
no fundamental distinction between nucleation and growth,
because at the level of the atom in the crystal or the bee in
the comb that distinction is artificial. There has of course to
be a way to move mathematically from the discrete to the
continuum level above it. At the continuum level concepts
like diffusion can be defined. But both bee combs and crystals
are built by discrete steps, and this model is to explain the
growth process at that low level of the individual growth
unit in a crystal and the individual bee building a comb.

The time step in the model is by definition the time of the
addition of one cell. This addition may in fact involve more
than one bee and more than one mandibleful of wax. Our time
discretization is then whatever is suitable for the
building process—i.e. to keep the growth surface reasonably
smooth—just like a numerical discretization. The time step in
crystal growth would naturally be the moments at which new
growth units become incorporated, and likewise in the bees the
moments at which a new cell is added are the natural time scale.

In the limit of continuous smooth growth, for which α is
taken to be constant and a unit of growth is infinitesimal, we
can obtain analytical solutions for the target and spiral pat-
terns. Growth occurs at a constant rate. For a target pattern,
the first nucleation occurs at t = 0 and the growth front
moves radially according to dr/dt = 1. Subsequent nucleations
occur at tk = kR, where k is the number of the nucleation. The
number of nucleations that occur within time t is M = Inte-
ger(t/tk). So the surface of the comb at time t is described by

h(r, u, t) ¼
XM

k¼0

H[t� tk � r] ¼
XM

k¼0

H[t� kR� r],

0 , u , 2p,

(2:6)

where H denotes the Heaviside step function. Since growth
occurs in the horizontal direction, α has been taken to be
zero. Two examples of analytical target patterns are shown
in figure 4a,b. Spirals develop as a result of only one initial
nucleation, corresponding to R→∞, so that the growth pat-
tern depends only on α. Growth occurs in the radial,
azimuthal and vertical directions at rates dr/dt = 1, dθ/dt = 1
and dh/dt = α. The growth in the radial direction takes place
between the time of birth of a new radial layer tu and the
time of growth of the comb t, while the growth in the
azimuthal direction occurs over time tu. The height h
grows over the full time tu þ r. So the surface of the comb is
described by

x ¼ r cos tu
y ¼ r sin tu

and h ¼ a(tu þ r) 0 , r , t� tu, 0 , tu , t:
(2:7)

These equations represent a helicoidal surface with decreasing
radius from bottom to top and tilt α in both the radial and
azimuthal directions, as exemplified in figure 4c,d.
3. Discussion
These two limiting behaviours described by equations (2.6)
and (2.7) help us understand the role of the parameters R
and α in the more complex comb structures. R represents
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Figure 4. Analytical solutions in the cases of targets (equation (2.6)) and spirals (equation (2.7)); (a) target with R = 3, (b) target with R = 1.5, (c) spiral with α = 0.2,
(d ) spiral with α = 0.5.
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the distance between nucleations while α determines the
slope of the growth. Figure 5 shows a regime diagram
which maps the different structures. We can conclude that a
range of complex bee-comb structures arises from only two
directives in stingless bee behaviour during construction of
a comb: the tilt as neighbouring cells are added and the
distance between nucleations.

Further interesting and experimentally testable points
follow. The surface area for work grows with time. So either
more bees must join in the construction or the growth rate per
unit area slows downwith time. The two cases are distinguish-
able by growth rate. Which of the two occurs depends on
whether growth is limited by available area for growth or by
availability of growth units. In the general case of crystal
growth under conditions of saturation it is available area that
limits growth and growth units are normally in excess. Also,
in the case of stingless bees, more bees will join in building as
the structure gets bigger. This is so for as long as there is
never a shortage of worker bees available for this task.

A key concept in the field of swarm intelligence and social
insects is stigmergy [19], a social mechanism of indirect coordi-
nation in which individuals communicate with one another by
modifying their local environment. Simulations of the architec-
ture of wasp nests with these ideas showed results similar to
those seen in nature [20]; honeybees clearly do utilize stig-
mergy [6]. This is not to say that their behaviour is not
flexible. There should be, and is, scope for both adaptability
to local circumstances and error recovery in bee behaviour
[21]. Bees clearly possess cognitive capabilities [22,23]—recall
the waggle dance of the honeybee [24–26]—but that does not
mean that their architecture need be the result of a master plan.

Our model shows the minimal complexity necessary—the
minimal amount of information a bee needs—to be able to
construct such a structure. It has been considered that bees
might be using some overall plan set down (for example) by
diffusing chemicals. But this model demonstrates that they
do not need such an overall plan if they have the small set of
behavioural rules to follow. Thus bee behaviour is determined
by something: pressure measurements, chemical measure-
ments or dimension/flatness measurements. Bees sense
something in their environment, make some sort of compu-
tations and then do something. But what is fundamentally
different between one view and the other is that in one case
only local information is available; in the other view global
information is available, albeit sampled locally. Our model
thus shows that stingless bee comb construction, like crystal
construction, can be the result of self-organization [27].

Consider an aspect of comb building that we mentioned
at the beginning: bees construct the comb with a hexagonal
lattice. How can this come about? A way to approach the
matter is to see the same problem from a grocer’s point of
view: when making a display of oranges, the first orange
can be placed anywhere and the second anywhere alongside
the first. It is when the third and subsequent oranges are to be
placed that a choice must be made. If the third orange is
placed as compactly as possible, touching both the previous
oranges, and subsequent ones in the same fashion, then a
hexagonal packing of oranges is formed. If, on the other
hand, the third orange is placed in a looser configuration
touching only one previous orange, then a square packing
will be the result. So bees can make a hexagonal array
simply by following a local rule always to construct a new
cell as compactly as possible, touching two others when
there are at least two cells.

The overall pattern emerges as a result of the repeated appli-
cation of strictly local rules. As examples of such local rules in
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social insects, honeybees seem to use their body parts for
measuring distances when building the comb [6,28,29]. Further
towards understanding the minimal information bees need for
construction, wemay note that each cell is constructed from the
bottom up and that stingless bees have been seen to use a verti-
cal displacement between cells to construct the spiral pattern
[10]. This corresponds to the tilt α in our model. Such construc-
tion can be performed using only discrete decisions at each
moment, which correspond to the decisions bees make about
what to do next and where to do it. These rules taken together
lead to the system being describable as an excitable medium,
characteristic of a large class of systems in physics, chemistry
and biology. It is notable that other instances of bees showing
behaviour compatible with an excitable description are to be
found, such as spiral waves in ‘shimmering’ honeybees
repelling hornet attacks [30].

We focus on the genus Tetragonula in this work, since that
genus produces all these patterns. One can certainly have par-
allel evolution of these structures. Other genera show similar
patterns too [12], and they should be describable by our
model. By concentrating on one genus we know that we are
looking at a genetically related set of species—a clade. In fact,
in Tetragonula, many species are distinguished precisely by
their comb patterns [8]. It is then possible to hypothesize
that, during the radiation of the genus Tetragonula, the genetic
changes through evolution have led to the parameters affecting
ourmodel shifting in different directions in different species, so
that they produce different patterns of comb building.

Of course, both crystal growth and bee combs are subject to
fundamental laws that govern everything in the Universe,
including thermodynamics. But there is plenty of room
within the laws of thermodynamics for different phenomena
to emerge, which is why the universe can be the complex
place that it is. Crystal growth and bee comb construction are
two systems operating within very different spheres of science.
Sowhat leads to the similar structures? This is the beauty of the
applicability of mathematics to nature. It turns out, so often,
that similar laws and similar principles govern the formation
of very different systems in different areas of science, and
thus are describable by the same mathematics. And this is
one of those cases. Both crystal growth and this bee comb con-
struction are describable within the mathematical framework
of excitable media. Crystals, slime moulds, the brain, the
heart, chemical oscillators, forest fires and many other systems
can function as excitable media. And, in this instance, bees
making their combs too. So what the mathematics tells us is
that the processes that drive atoms or molecules to aggregate
as a crystal have the same mathematical structure as the pro-
cesses that drive bees when making their bee comb, so that
they both possess the same spiral and target patterns. There
is a beautiful mathematical equivalence between how
molecules build a crystal and how bees build a bee comb.

The beehive has long been used as a metaphor for a self-
organized society: Mandeville argued in The Fable of the Bees
(1714) that local behaviour for private gain might result in
global behaviour for the public good [31]. Our purpose has
been to show that, just like a molecule that makes up a crystal,
the individual bee need only take account of local information
in order for the colony to be able to construct a complex
structure, so that the bee builds its comb like a crystal.
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