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Abstract

Avoidance behavior is a typically adaptive response performed by an organism to avert harmful 

situations. Individuals differ remarkably in their tendency to acquire and perform new avoidance 

behaviors, as seen in anxiety disorders where avoidance becomes pervasive and inappropriate. In 

rodent models of avoidance, the inbred Wistar-Kyoto (WKY) rat demonstrates increased learning 

and expression of avoidance compared to the outbred Sprague Dawley (SD) rat. However, 

underlying mechanisms that contribute to these differences are unclear. Computational modeling 

techniques can help identify factors that may not be easily decipherable from behavioral data 

alone. Here, we utilize a reinforcement learning (RL) model approach to better understand strain 

differences in avoidance behavior. An actor-critic model, with separate learning rates for action 

selection (in the actor) and state evaluation (in the critic), was applied to individual data of 

avoidance acquisition from a large cohort of WKY and SD rats. Latent parameters were extracted, 

such as learning rate and subjective reinforcement value of foot shock, that were then compared 

across groups. The RL model was able to accurately represent WKY and SD avoidance behavior, 

demonstrating that the model could simulate individual performance. The model determined that 

the perceived negative value of foot shock was significantly higher in WKY than SD rats, whereas 

learning rate in the actor was lower in WKY than SD rats. These findings demonstrate the utility 
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of computational modeling in identifying underlying processes that could promote strain 

differences in behavioral performance.
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1. INTRODUCTION

Avoidance behavior is a response intended to prevent negative experiences, thoughts, or 

situations. Avoidance is key in self-preservation, as it prevents potentially life-threatening 

events from occurring. As such, these behaviors can be vital to survival, and can also 

influence how an individual functions throughout daily life.

Differences in threat response may exist between different populations [1–3]. Although 

typically adaptive, avoidance can become pathological if it persists out of proportion to the 

threat, or fails to extinguish when the threat is no longer present. For instance, pathological 

avoidance behavior is present in all anxiety disorders and in post-traumatic stress disorder 

(PTSD) [4]. Interestingly, avoidance correlates with anxiety disorder severity [5,6], 

suggesting the individual differences in avoidance responding may directly contribute to 

anxiety. Understanding avoidance behavior may be key in identifying those individuals who 

are vulnerable to develop anxiety disorders, and could allow early interventions to prevent 

anxiety disorders.

Just as humans show individual and group differences in avoidance behavior, animals also 

show individual differences and strain differences. For example, our laboratory has 

investigated avoidance using the outbred Sprague-Dawley rat as well as the inbred Wistar-

Kyoto (WKY) rat. The WKY rat shows a variety of behaviorally inhibited behaviors, 

including increased social avoidance [7] and decreased exploration in a novel environment 

such as the open field and elevated plus maze [8,9]. Interestingly, the WKY rat also 

demonstrates enhanced acquisition of avoidance and impaired extinction of avoidance 

responding, when contrasted with the SD rat [10–12]. Compared to SD rats, WKY rats are 

more motivated to actively escape and avoid foot shock [13,14], and the enhanced 

motivation for negative reinforcement may be a key process underlying these differences in 

avoidance behavior between strains.

Since avoidance is, by its nature, an acquired behavior, the onset of avoidance can be 

examined as a learning process. Avoidance has been posited as a learned reaction to 

environmental stimuli perceived to be threatening [15,16], where the avoidance behavior is 

reinforced by the perception of relief [17–19]. Because the reinforcement for avoidance is 

the absence of an expected aversive event, avoidance learning is more complicated than 

simple stimulus-response associations and has attracted a long theoretical history, 

exemplified by two-factor theory [20,21] and opponent-process theory [22]. Moreover, 

successful avoidance is associated with dopamine release in the mesolimbic system, part of 
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the incentive-motivation-reward circuitry [23,24], and further implicating the reinforcement 

value of preventing an expected aversive event.

Computational models, such as reinforcement learning (RL) models, are useful in providing 

insights into behavior that are difficult or impossible to obtain with an experimental 

approach. RL models attempt to fit a simple mathematical learning rule onto individual 

subject data by discovering a set of parameters (such as learning rate, tendency to explore vs. 

exploit, and subjective value of a reward or punisher) that allow the model to most closely 

reproduce that individual’s trial-by-trial performance. These RL models have been 

successfully applied to trial-by-trial data from humans on simple associative learning tasks, 

and have shown systematic differences in average parameter values obtained from various 

neurological and psychiatric patient groups [17,25–27], thus identifying potential 

mechanisms that could be driving group differences in behavior. For example, RL modeling 

of data from a probabilistic categorization task indicated that Veterans with severe self-

reported PTSD symptoms tended to value ambiguous or neutral outcomes more negatively 

than peers with few to no PTSD symptoms [28], suggesting that differences in outcome 

evaluation may contribute to PTSD symptoms. Similarly, RL modeling of the same 

probabilistic categorization task in patients with opioid addiction indicated a heightened 

tendency to change response strategies after an unexpected rule violation (i.e., “lose-shift”), 

compared to never-addicted controls [29], implying a tendency to overvalue short-term gains 

over strategies to maximize long-term reward. Interestingly, RL models have been linked to 

similar learning theories as avoidance behavior [20,22], and the training algorithms used in 

RL models use a concept of prediction error (mismatch between actual vs. expected reward 

or punishment) that has been shown to correlate with dopaminergic responses to 

reinforcement [30–32].

However, the RL model approach has not been widely applied to animal data. This is partly 

because animal studies generally have small sample sizes, which decreases the statistical 

reliability of RL model-fitting techniques. Those studies for which RL models have been 

applied typically examined a group of “healthy” outbred rats on simple forced-choice tests, 

often examining behavior when manipulating the probability of rewards [33–36]. To date, 

there has been a dearth of studies applying RL model techniques beyond simple, discrete-

trial forced-choice learning paradigms. Recent work by Langdon et al. [37] considered a 

rodent version of a gambling task, and found that learning from punishment corresponded 

with the degree of risk preference in individual rats. Zhukovsky et al. [38] screened rats for 

anxiety prior to cocaine self-administration; RL modeling suggested that rats with high, but 

not low cocaine escalation failed to exploit previous reward learning and showed increased 

perseveration. Thus, using the RL model in animal models of psychopathology may shine 

new light on the pathophysiology of neurological and psychological disease.

In our previous work [39], we applied an RL model to simulate group data from a 

previously-published study showing differences between rat strains in learning active 

avoidance. The model successfully reproduced acquisition curves and also demonstrated 

“warm-up,” a feature demonstrated by SD but not WKY rats that may be important in the 

development of nonpathological avoidance. Importantly, the model suggested differences 

between strains in latent variables including learning rate and explore/exploit bias. In this 
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prior study, the RL model was qualitatively fit to group data from each rat strain, and 

therefore, the focus was to describe how different model parameters could contribute to 

observed behavioral differences. In the current study, we apply an RL model to trial-by-trial 

data from individual animals with the goal to uncover individual differences in latent 

variables that could produce the observed group-level differences in behavior.

In the present study, we take advantage of a recently-published large dataset (n=40 per 

strain) on an active avoidance task in outbred Sprague-Dawley (SD) rats and in inbred 

behaviorally-inhibited WKY rats [40]. We use the RL model, as previously employed to fit 

human individual data, but apply it to individual rat trial-by-trial data to extract estimated 

parameters for each individual rat. Then the extracted parameters are evaluated to determine 

whether they differ between strains, suggesting qualitative differences in how the two strains 

approach the avoidance task.

2. METHODS

2.1 Empirical Data

Animal behavioral data were collected using a lever press escape-avoidance task, where the 

animal learned to lever press in order to avert an aversive event (foot shock). The full 

experimental methods and behavioral data have been previously published [40].

To review briefly, 40 Sprague-Dawley (SD) and 40 Wistar-Kyoto (WKY) rats were given 12 

acquisition sessions; each composed of 25 trials. Each trial began with a danger signal (tone, 

maximum 72-s duration) that could be followed by a shock period (maximum 72-s duration) 

during which mild (1.0mA, 0.5s) foot shocks were delivered at a rate of 1 per 3.5s. A lever 

press during the danger signal and prior to foot shock was scored as an avoidance response, 

terminated the danger signal, and initiated a 180-s intertrial interval (ITI) during which a 

safety signal (flashing light) was presented. An avoidance response resulted in omission of 

the foot shock for that trial. If no avoidance response was made within 72-s from the start of 

the danger signal, foot shock commenced. A lever press during the shock period was scored 

as an escape response, terminated the shock period, and initiated an ITI. All sessions started 

with a 60-s habituation period (no tone, light, or shock). Lever presses during the ITI were 

scored as inter-trial responses (ITRs) and lever presses during the habituation period were 

scored as anticipatory responses. Three sessions occurred each week with a minimum of 48-

h between sessions. Figure 1A illustrates example events at the start of an acquisition 

session. Figures 1B–D summarize group and individual-level data from the experiment, in 

terms of percent avoidance responses across sessions.

2.2 Data Recoding

During the experiment, the onset and termination of danger signals, shocks, safety signals, 

and lever press responses were recorded during each session. For computational modeling, 

session data were discretized into a series of 12-s “timesteps.” At each timestep, three binary 

variables recorded whether the danger signal, safety signal, and shock were present (1) 

during any part of that timestep or absent (0). At each timestep, the animal’s response was 

scored as 1 if at least one lever press occurred during that timestep, or 0 if no lever presses 
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occurred. Finally, two variables coded whether the animal was in the experimental chamber 

(1=yes, 0=no) or in the home cage (1=yes, 0=no).

Although each rat experienced 12 acquisition sessions each including 25 trials, the exact 

duration of each trial (and therefore, number of timesteps) was variable, depending on how 

often the animal terminated a trial via an escape or avoidance response. Total in-chamber 

time averaged 5670 timesteps (i.e. about 18.9h) for the SD rats (std. dev. 376; range 5230–

6922 timesteps) and 5386 timesteps (i.e. about 18.0h) for the WKY rats (std. dev. 156; range 

5135–5846 timesteps); the fact that WKY rats spent significantly less time in the 

experimental chamber than SD rats (Wilcoxon rank sum test with continuity correction, 

W=1247, p<.001) is consistent with their higher rate of avoidance responding (since an 

avoidance response immediately terminates the trial).

Since sessions lasted about 1.5h on average (i.e. about 450 timesteps) and occurred on 

alternate days, with animals returning to the home cage between sessions, an additional 

46.5h (13,950 timesteps) were inserted between sessions to simulate home cage time. In 

pilot work (not shown), results did not change appreciably if the duration of simulated home 

cage time was reduced to as few as 500 timesteps between sessions; accordingly, 

“overnight” home cage periods were simulated as 500 timesteps (i.e., 100 min simulated 

time), to decrease computer processing time per simulated rat. For each timestep of 

simulated “overnight” period, the danger, safety, shock, lever press, and chamber variables 

were all set to 0 but home cage was set to 1.

2.3 RL Model

A reinforcement learning (RL) model was applied to each rat’s timestep-by-timestep 

behavior. The RL model was adapted from the actor-critic model [41–43] as used to simulate 

rat lever-press avoidance learning by Myers et al. [39], and schematized in Figure 2. Code 

was programmed in C using the XCode (version 5) programming environment (Apple, Inc., 

Cupertino CA).

2.3.1 Action Selection in the Actor Module—At each timestep t, a stimulus vector S 
was presented representing the experimental stimuli experienced by the rat at that timestep 

(in this case, a set of 5 binary values coding presence or absence of danger signal, safety 

signal, shock, and whether the animal was in the experimental chamber or in the home 

cage). Given S at timestep t, the actor module selected one action to execute in response. 

The probability of selecting lever press response, from among all possible responses r, was 

calculated using a softmax function [44]:

Pr press = ef press, S / ef press . S + ef otℎer, S where f r, s
= ∑s mr, sSs + Pcr, sSs /β Eq.1

For simplicity, possible responses were limited to lever pressing (press), or other, which 

included all other possible behaviors available to the rat (e.g. grooming, rearing, exploring, 

or sleeping); the lever press response was defined as unavailable when the rat was in the 

home cage (which has no lever). For the five input stimuli s, Ss=1 if that stimulus was 
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present and Ss=0 if not. The m-values were policies that represent tendency to select a 

particular action r in the presence of stimulus s; m-values were initialized to 0.01 (indicating 

a small chance of spontaneously emitting each possible behavior at the start of training). ϐ 
was an “exploration” parameter governing the tendency to choose the response with the 

highest expectancy value (ϐ near 0; “exploitation” of prior knowledge) or choose a response 

at random (ϐ near 1; “exploration” of new responses). P was a “perseveration” parameter 

that encoded the tendency to repeat (P>0) or avoid (P<0) prior actions, regardless of 

reinforcement. These prior actions were stored in a working memory trace, where cr,s held a 

record of the last response r when stimulus s was present. The c-values were initialized to 0, 

and updated after each timestep as cr,s ←1 for the current r and s; for all other stimulus-

response pairs, the working memory trace decayed as cr,s ← 0.95*cr,s.

Regardless of m-values calculated at the current timestep, the action selected by the model at 

timestep t was constrained to be the rat’s actual behavior at timestep t (i.e. r=press if 

response=1 in the datafile, else r=other).

After an action was executed at time t, reinforcement R was presented to the model at time t
+1; the value of R was calculated based on whether the animal did or did not experience 

shock during timestep t+1. Following Myers, Smith et al. [39], R could take one of three 

values: if at least one shock was present, R=Rshock (presumably a large negative value); 

otherwise, R=0 unless the action selected at time t was lever press, in which case R=Rpress (a 

small negative value indicating the “cost” of emitting a lever press in terms of energy 

expenditure as well as the missed opportunity to engage in other behaviors). In our prior 

paper [39], the relative difference (ratio) between Rshock and Rpress appeared more important 

than the absolute values of each, so Rshock was allowed to vary as a free parameter, while the 

value of Rpress was held fixed at −0.2.

2.3.2 State Evaluation in the Critic Module—The critic module maintained a vector 

of expectancy values Vs encoding expected contribution from each stimulus s to the 

expected outcome; the total expectancy E(t) was the sum of these weights, for all stimuli s 
that were present at timestep t:

E t = ∑
s

V sSs Eq.2

All Vs were initialized to 0.0, and so E(0)=0.

Prediction error PE, which was the difference between the actual and expected outcomes, 

was computed using a variation on the temporal difference rule (see [45]), adapted for 

avoidance learning paradigms (following [46,47]):

PE = R + γ*E t + E t − 1 Eq.3

Here, γ was a discount factor implementing temporal discounting (see [45]). In effect, 

smaller γ (near 0) means that immediate rewards and punishments were more important 

than outcomes expected sometime in the future; larger γ (near 1) would be appropriate for 
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situations where there may be many steps (many sequential individual behaviors) required to 

reach a goal.

PE was then used to update the policies and values, increasing the likelihood that the model 

would repeat actions that previously resulted in positive outcomes (or expectation of positive 

outcomes), and reducing the likelihood that the model would repeat actions that previously 

resulted in punishing outcomes (or expectation of punishing outcomes). In the critic, for all 

stimuli s that were present at the prior timestep:

V s V s + αPE Eq. 4

Here, α was the learning rate in the critic, which was a free parameter. The V-values were 

clipped at ±10, to prevent weights growing out of bounds. In the actor, for response r chosen 

by the rat at the prior timestep, and each stimulus s that was present:

mr, s ε PE − mr, s Eqn. 5

Here, ε was the learning rate in the actor. In our prior paper [39], the value of ε was held 

fixed at 0.005.

In summary, the basic model reported here (termed Model A) contained five free parameters: 

learning rate α, exploration parameter ϐ, shock magnitude Rshock, perseveration parameter 

P, and discount factor γ. For each rat, each of these parameters was assessed across a range 

of values, as shown in Table 1; the range and stepsize for each parameter were established 

based on preliminary simulations (data not shown) to establish ranges within which model 

behavior was stable and which appeared to produce reasonably good fit for all rats 

simulated. In addition, we explored whether there was additional explanatory power to be 

gained by adding additional free parameters ε or Rpress, as described further below.

2.4 Model Fitting

For each possible combination of parameter values, model fit was assessed by computing 

negative log likelihood estimates (negLLE) to estimate the a priori probability of the data, 

given that particular combination of free parameter values:

negLLE = − ∑
t

1n matcℎ r, t Eq. 6

Here, match(r,t) was the probability of the model selecting the same response r as the rat did 

at time t; i.e., if the rat made at least one lever press, then match(r,t)=Prob(press), else 

match(r,t)=1-Prob(press). Overnight timesteps were excluded from this calculation, as the 

rat’s behavior was not monitored in the home cage. Thus, negLLE was computed over the 

in-chamber timesteps, which (as noted above) ranged from 5146–6933 timesteps depending 

on the time an individual rat had spent in the chamber.
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Estimated parameters for each rat were defined as the configuration of parameter values (α, 

ϐ, Rshock, P, and γ for Model A) that together resulted in the smallest negLLE (closest to 0) 

for that rat’s data. As a lower estimate, a model implementing random action selection 

(Pr(press)=0.5 for all timesteps) applied to a rat dataset containing 6000 in-chamber trials 

would produce negLLE=4158; as an upper bound, a perfect model (i.e., Pr(press)=1 for 

those timesteps where the rat made a lever press and Pr(press)=0 for all remaining timesteps) 

would produce negLLE=0.

2.5 Model Comparisons

In addition to the “default” model (Model A), with five free parameters as shown in Table 1, 

we also considered whether additional free parameters could improve model fit. Specifically, 

we also examined Model B in which Rpress, the “opportunity cost” of lever press, was 

allowed to vary (in a range from −2 to +0.2, by stepsize 0.2), and Model C in which ε, the 

learning rate in the critic was allowed to vary (in a range from 0.0 to 0.01 by stepsize 0.001).

By definition, these two larger models (with 6 free parameters each) fit the data at least as 

well as the smaller Model A (with 5 free parameters), since the optimal parameter values 

identified in Model A could also be instantiated in the larger models. However, in evaluating 

models, it is ideal to obtain the best, most parsimonious explanation of the data: i.e., closest 

simulation of animals’ behavior with fewest free parameters (k).

In assessing model fit while taking model complexity into account, we used the Bayesian 

information criterion (BIC), defined as BIC=k*ln(n)+2*negLLE, where n is the number of 

observations (here, number of timesteps) and negLLE is the negative log likelihood (smaller 

numbers indicate better fit of the model to the data); low values of BIC indicate a better, 

more parsimonious fit [48]. Previous work has suggested criterion that a 10-point decrease 

in BIC indicates a significantly better model fit [49]; if the more complex model does not 

result in significantly reduced BIC, then the simpler model is to be preferred.

2.6 Group Comparisons

Next, for the “best” model identified above, we compared whether the estimated parameters 

and model fit metrics derived for individual rats differed as a function of strain, using mixed-

design ANOVA (with Greenhouse-Geisser correction for data that failed assumption of 

sphericity) followed by univariate post-hoc tests with Bonferroni correction for multiple 

comparisons; we also used Pearson correlation to examine relationships between estimated 

parameter values and behavioral performance (percent avoidance responses).

As a confirmation that the model was actually learning the task in a principled way, we 

recorded m-values (weights in the actor module) and V-values (state values in the critic 

model) at the end of acquisition session 12 under the estimated parameters for each rat. 

Because each stimulus is associated with two m-values (one providing a weight in favor of 

the press response and one providing a weight in favor of the other response option), we 

calculated a difference score between the m-weight from each stimulus to the press response 

minus the m-weight from that stimulus to the other response; d-score>0 indicates a bias for 

the actor module to select a press response, while d-score<0 indicates a bias not to press. 

There is only a single V-value for each stimulus, with positive values indicating expectation 
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of positive outcomes by the critic module, and negative values indicating expectation of 

negative outcomes.

2.7 Behavioral Recovery Studies

Finally, as a check on the validity of estimated parameters, we conducted behavioral 

recovery studies. We used the estimated parameters for each rat to build a simulated rat, 

which was then trained on the same behavioral protocol as the animals, i.e. 12 sessions of 25 

acquisition trials. Now, however, the model was allowed to select and express its own 

behaviors, and execution of a lever press response terminated the trial (as in Figure 1A). For 

each trial, we recorded whether the model executed an escape, avoidance, or no response, 

identical to the animal protocol. Each simulated rat was run 100 times, with the model 

weights re-initialized at the start of each run, and the average avoidance responses per 

session were computed.

We then used the data from the individually-simulated rats to compare avoidance 

performance across sessions as a function of strain in the same way as it was previously 

done for the real animals [40] using mixed ANOVA (within-subjects factor of session, 

between-subjects factor of strain).

2.8 Statistical Analysis

Statistical analyses were carried out using R version 3.6.3 [50]; for mixed-design ANOVA 

(type III SS), the ez package for R [51] and the aRnova plug-in for R Commander were used 

[52]. Where data did not meet tests for equality of variance (Levene’s test p≥0.05) or 

normality (Shapiro-Wilk test p≥0.05), non-parametric tests were used. Criterion for 

significance was set at 0.05 (two-tailed); where noted, Bonferroni correction was used to 

adjust alpha to protect against inflated risk of Type I error under multiple comparisons.

3. RESULTS

3.1 Summary of Behavioral Data

As shown in Figure 1B, the existing behavioral data indicated that both rat strains increased 

avoidance responding across the 12 training sessions; there was also a main effect of strain, 

where WKY animals showed higher percentage of trials with an avoidance response than SD 

animals (Mann-Whitney U=308, p<.001). On average, WKY animals made significantly 

more total lever presses over the course of an experiment than SD animals (SD mean 671.0, 

std. dev. 166.5; WKY mean 757.0, std. dev. 129.7; Welch’s t(75.6)=2.68, p=.009) and 

experienced significantly fewer shocks (SD mean 449.1, std. dev. 345.7; WKY mean 258.3, 

std. dev. 288.9; t(78)=2.58, p=.012). This is consistent with numerous prior datasets showing 

facilitated acquisition in the WKY rat compared to SD rat [10–12]. However (and also 

consistent with prior datasets), within each strain, there was considerable individual 

variation, as shown by the acquisition curves for individual SD (Figure 1C) and WKY 

(Figure 1D) rats, with more variability in SD than in WKY.
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3.2 Model Comparisons

Figure 3 shows results for each of the three models examined, including the default model 

with 5 free parameters (Model A, k=5), Model B which allowed Rpress to vary (k=6) along 

with the 5 free parameters of Model A, and Model C which allowed ε to vary (k=6) along 

with the 5 free parameters of Model A. Figures 3A,B show that estimated parameters did not 

vary widely across the models, indicating some stability of optimal parameter values. The 

one minor exception was in Model B, where Rpress was allowed to vary; here, mean values 

of Rpress were somewhat more strongly negative than the value of −0.2 used in the other 

models, and mean values of Rshock were correspondingly also more strongly negative than 

other models. Figure 3C shows model-fitting values (negLLE) for each model. By definition, 

model fit was as least as good in the larger models than in the smaller model. Specifically, 

mean BIC was 4107 in Model A, 4103 in Model B, and 4090 in Model C.

Using the criterion of at least a 10-point decrease in BIC as indicating a significant change 

[49], allowing Rpress to vary did not significantly improve model fit (only a 4-point 

improvement in Model B relative to Model A), but allowing ε to vary did improve model fit 

(17-point improvement in Model C relative to Model A). Accordingly, the analyses that 

follow are based on results obtained with Model C.

3.3 Group Comparisons

3.3.1 Between-Strain Differences in Estimated Parameters—Figure 4 shows 

mean parameter values for the SD and WKY groups under Model C (with k=6, including ε 
as a free parameter). Since the data failed Mauchly’s test of sphericity (W<.001; p<.001), 

Greenhouse-Geisser correction was used to adjust degrees of freedom (epsilon=0.21). Mixed 

ANOVA, with six within-subject factors representing the six parameters and one between-

subject factor of strain, indicated main effects of parameter (F(1.05, 81.9)=213.4, p<.001) 

and strain (F(1,78)=16.1, p<.001), as well as an interaction between strain and parameter 

(F(1.05, 81.9)=18.50, p<.001).

To examine between-strain differences on individual parameters, we conducted post-hoc 

tests on each parameter (alpha corrected to 0.05/6=0.0083). The data were non-normal 

(Shapiro-Wilk test, p<0.025 for every parameter in both strains), so non-parametric tests 

(Wilcoxon rank sum) were used. These revealed significant strain differences in ε (W=1128, 

p<.002) and Rshock (W=1208, p<.001); strain differences in P approached corrected 

significance (W=1066, p=.01). No other strain differences approached significance (α: 

W=676, p=0.23; ϐ: W=940, p=0.13; γ: W=758, p=.68).

Overall, Model C succeeded in fitting the individual animal data better for SD rats than 

WKY rats, reflected in lower negLLE (SD: mean 1917.4, SD 457.4; WKY: mean 2121.5, 

310.6) and also BIC (SD: mean 3886.6, SD 914.7; WKY: mean 4294.6, SD 621.1; Wilcoxon 

rank sum test W=551, p=.016).

3.3.2 Relationship Between Estimated Parameters and Behavior—Next, we 

explored the relationship between estimated parameters and animal behavior, scored as total 

percent avoidance (Figure 5) Considering the full set of 80 animals, there were strong 
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negative correlations between avoidance behavior and estimated values of ε (Spearman’s rs 

= −.32, p = .004), ϐ (rs = −.44 , p < .001), Rshock (rs = −.70, p < .001), and P (rs = −.61, p 

= .001), while there were weak positive correlations between avoidance behavior and α (rs 

= .11, p = .35) and γ (rs = .16 , p = .16). Figure 5 shows two SD rats with very poor learning 

(% Avoidance < 25%); results were similar when these two points were excluded.

The negative correlations of ϐ, Rshock, and P with behavior would be as expected: lower 

tendency to explore, more strongly negative valuation of shock, and decreased perseveration, 

would all be expected to promote learning and expression of avoidance responses; the 

negative correlation of ε with performance may appear paradoxical, as higher learning rates 

would typically be associated with better learning, but in this case lower values of ε may 

protect the model from instability, producing incremental weight change in the actor rather 

than overwriting prior learning with large weight changes when an unexpected outcome is 

experienced.

Because there was considerably more variability in performance among the SD than WKY 

rats, we also performed correlation testing for each strain separately (alpha adjusted 

to .05/6=.0083); the general pattern of negative correlations of behavior with ε, ϐ, Rshock, 

and P remained in each strain separately, (Table 2), although correlations were generally 

weaker in the WKY rats (probably partly reflecting the fact that there was less variability in 

performance among inbred WKY rats); an exception is the relationship between behavior 

and Rshock, which was stronger in WKY than SD.

Additionally, we analyzed the correlation between shocks and shock valuation (Rshock). 

There was a strong positive correlation between total number of shocks experienced and 

estimated value of Rshock (i.e., more strongly negative value of Rshock associated with fewer 

shocks experienced) (r=0.58, p<.001); this relationship remained even after controlling for 

the effect of strain (partial r=0.54, p<.001). For each animal, we calculated a total “shock 

cost,” defined as the absolute value of the animal’s estimated value of Rshock times the 

number of shocks that animal experienced [53]; there were no strain differences in this total 

“shock cost” (SD mean 835.5 std. dev. 509.6; WKY mean 784.1, std. dev. 572.2; Welch’s 

t(77)=0.42, p=0.67).

3.3.3 M and V Values at the End of Training—Finally, as a confirmation that the 

model had learned the task in a principled way under these estimated parameters, Figure 6A 

shows d-scores (m weights in the actor module, shown as difference between bias to press 

vs. not press) at the end of the final acquisition session. Positive d-scores indicates the 

probability of performing a lever press, whereas negative d-scores indicate the probability of 

withholding from lever pressing. As expected, d-scores are positive for danger and shock 

signals, and negative for the safety signal; d-scores are near zero for the two contexts, in the 

absence of these signals.

To examine possible strain differences in relative weighting of actions for the different 

stimuli, mixed ANOVA was performed on d-scores with within-subject factors of signal/

context inputs (5 levels) and between-subjects factor of strain. Since Mauchly’s test 

indicated violation of the assumption of sphericity (W=0.001, p<.001), Greenhouse-Geisser 
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correction was used (epsilon=.32) to adjust degrees of freedom. The ANOVA revealed 

significant within-subject effects of signal (F(1.3,88.8)=166.66, p<.001) and a signal x strain 

interaction (F(1.3,88.8)=3.74, p=.045), with no main effect of strain (F(1,78)=0.13, p=.717). 

Post-hoc tests (Welch’s t-test, alpha adjusted to .05/5=.001) revealed that strain differences 

in d-score for the Danger and Safety signals approached corrected significance, with WKY 

having stronger positive d-scores for Danger than SD (t(73.8)=2.25, p=.028) while SD had 

stronger negative d-scores for Safety than WKY (t(77.9)=2.08, .041); strain differences in d-

scores for Shock, Chamber, and Home did not approach significance (all t<2, all p>.100). 

Results are similar if the two “non-learner” SD animals (identified in Figure 5) are excluded 

from analysis.

In the critic module, expectancy weights (V-values) appeared similar across strains (Figure 

6B). Overall, state values were negative for the danger signal, shock, and the experimental 

chamber (where danger was experienced); V-values were positive for the safety signal, and 

near zero for the home cage (where danger, safety, and shock were never experienced). 

Again, Mauchly’s test indicated violations of the assumption of sphericity (W=.001, 

p<.001), so Greenhouse-Geisser correction was used (epsilon=.29) to adjust degrees of 

freedom. As expected, there was a significant effect of signal (F(1.2,90.5)=89.83, p<.001), 

but no main effect of strain or signal x strain interaction (both p>.100), indicating no reliable 

differences in V-values across strains.

3.4 Behavioral Recovery

As a measure of both reliability and predictive value of the RL model, behavioral recovery 

simulations were performed for both strains (Figure 7). Each curve in Figures 7B,C 

represents the performance of one simulated rat, averaged across 100 simulation runs using 

the estimated parameters for that rat. Within each strain, qualitative patterns are similar to 

the avoidance behavior observed in the individual animals (compare Figures 1C,D), with 

faster learning among WKY simulations and more variability among SD simulations.

Similarly, when the results from simulated rats are averaged for each strain (Figure 7A), the 

curves are qualitatively analogous to the grouped behavioral data (see Figure 1B). Mixed-

design ANOVA was used to quantitively compare simulated strains; since Mauchly’s test 

indicated violations of the assumption of sphericity (W<.001, p<.001), Greenhouse-Geisser 

correction was used (epsilon=.21) to adjust degrees of freedom. As expected, there was a 

significant effect of session (F(2.3,180.2)=225.87, p<.001) as well as a main effect of strain 

(F(1,78)=12.85, p<.001) and a session x strain interaction (F(2.3,180.2)=5.29, p=.004), 

indicating faster learning in the WKY simulations than in the SD simulations, consistent 

with the empirical data.

4. DISCUSSION

Avoidance behavior is critical for an organism to interact with and ultimately survive within 

its environment. Acquisition and expression of avoidance may differ between individuals or 

populations, as in the increased and persistent avoidance observed in patients with anxiety 

and anxiety-related disorders such as PTSD. Thus, understanding the learning properties that 

may contribute to acquiring avoidance behavior would be useful. Animal models have been 
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utilized to help understand avoidance behaviors, yet these behavioral models are limited by 

the costs in time and animals to parametrically explore all of the critical variables. In this 

regard, computational models are extremely useful, but reinforcement learning models have 

not yet been widely applied to animal behaviors, as animal studies tend to have low subject 

numbers. Thus, the current manuscript attempts to describe animal avoidance behavior by 

applying an RL model to a relatively large sample size of behaviorally inhibited WKY rats 

and outbred SD rats.

Using the performance of individual rats on an active avoidance task, the current study 

showed that an RL model was able to extract latent parameters to describe underlying 

learning processes. After estimating parameters for each animal, simulations incorporating 

these parameters were able to recapitulate both quantitative strain differences observed in the 

rats, as well as qualitative patterns of individual learning curves. This extends the findings of 

our previous work showing the ability of RL models to simulate both WKY and SD strains 

in this active avoidance task [39]. However, whereas the prior work used top-down 

assumptions to construct “SD-like” and “WKY-like” models, the current work shows that 

strain differences in behavior can emerge from a bottom-up, data-driven approach that does 

not embed pre-existing assumptions about the two strains. This data-driven approach 

allowed us to examine what parameters might differ across strains after the model had been 

fit individually to each animal in both strains.

Comparing across strains, the Rshock parameter significantly differed, with WKY rats 

tending to have larger (more strongly negative) values. One interpretation of the increased 

Rshock in WKY rats may be an enhanced motivation to escape or avoid foot shock, which 

would presumably result in faster and greater acquisition of avoidance as observed in WKY 

rats compared to SD rats [13,14]. Although the Rshock parameter in the model cannot 

differentiate between physical or psychological pain, we previously demonstrated that pain 

threshold using vocalization and flinch were similar between SD and WKY rats [14], 

suggesting that strain difference in Rshock may be more associated with psychological 

valuation of shock. This is supported further by the negative correlation between Rshock and 

number of shocks experienced. Further, this is congruent with the risk/loss aversion 

literature [54–57], as increased avoidance behavior coincides with a more negative 

evaluation of punishment.

Additionally, the estimated learning rate in the actor (ε) parameter was significantly slower 

in WKY than SD rats. This was an unexpected finding, as we did not assume any strain 

differences in ε in our previous modeling study [39]. The idea that WKY are slower to 

modify response rules to prevent footshock may appear paradoxical given their quicker 

acquisition of avoidance behavior. However, as noted above, lower values of ε may protect 

the model from instability, producing incremental weight change in the actor rather than 

overwriting prior learning with large weight changes when an unexpected outcome is 

experienced. Slower learning rate in the actor would also be expected to lead to slower 

extinction, as observed in WKY behavior [12,40,58]. The current bottom-up modeling 

approach thus identified an additional feature that may distinguish avoidance learning 

between SD and WKY strains, one that is not obvious from examination of behavioral data 

alone.
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Strain differences in estimated values for the perseveration parameter (P) also approached 

corrected significance, with SD rats showing higher values of P than WKY rats (Figure 4C). 

In the context of the RL model, the tendency to perseverate reflects a bias to continue 

repeating recent actions, regardless of reinforcement. In the current paradigm, one result of a 

high value of P would be that a rat which has recently emitted a lever press response would 

be likely to repeat that action, while one which has not recently emitted a lever press 

response would be less likely to spontaneously emit such a response. For example, in the 

escape/avoidance paradigm, sessions are separated by overnight time in the homecage, 

where no lever is available (and lever press responses cannot occur). Animals with high 

value of P might be less likely to spontaneously switch to emitting lever press responses 

when returned to the experimental chamber at the start of the next session. Consistent with 

this interpretation, our lab has previously demonstrated that SD rats display “warm-up”, a 

decreased rate of lever pressing behavior at the beginning of an avoidance session, compared 

to WKY who often emit lever presses on the very first trial of a session [10]. Indeed, our 

prior modeling paper showed that variations in P could help explain warm-up and several 

related phenomena in rats [39].

In addition to strain differences in P, our prior paper also suggested reduced values of the 

exploration parameter ϐ in WKY rats [39]. In the current bottom-up approach, SD and 

WKY rats did not differ in ϐ, although the values of ϐ were numerically lower in WKY than 

SD (Figure 4C). We also found no significant strain differences in temporal discounting of 

expected future outcomes (γ). In their own right, the lack of significant difference between 

strains for each these parameters indicates decreased support for alternative explanations of 

avoidance behavior. WKY rats have demonstrated a decreased exploratory tendency in open 

field and elevated T-maze [9,59], data which have been used to define WKY as an 

behaviorally inhibited strain. Although WKY show decreased exploratory behaviors, it does 

not appear to directly contribute to the differences in active avoidance acquisition between 

SD and WKY rats. Likewise a tendency to overvalue immediate/recent reward has been 

proposed to be involved in anxiety-like behaviors [60,61], as well as in comorbid disorders 

such as depression [62] and substance abuse [63], which are disorders that seem to share 

similar behavioral and neurobiological mechanisms as anxiety [64,65]. Again, this 

overvaluing of immediate reward did not appear to contribute to the increased avoidance 

seen in the WKY strain.

Despite strain differences in the estimated learning rate in the actor (ε), no significant 

difference was found between strains in estimated values of learning rate in the critic (α), 

indicating WKY and SD rats learn state valuations at a similar rate. Interestingly, the dorsal 

striatum is often considered the biological correlate of the actor, whereas the critic is usually 

associated with the mesolimbic dopamine system [66–68]. Our lab has found that WKY and 

SD rats have differences in synaptic plasticity (long-term potentiation) in memory and 

valuation circuits [69,70], which seems parallel to the idea of reduced learning rate in the 

actor, and provides a potential linkage to neural mechanisms that could contribute to the 

behavioral differences seen between these strains.

While the current findings do not rule out the possible contributions of critic learning rate, 

delay discounting, or explore/exploit tendencies in behaviorally inhibited WKY animals, the 
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contribution of the RL model is to suggest that these factors are not necessary to explain the 

observed behavior, and that a more parsimonious description of the results would focus on 

strain differences in the motivational value of punishers and in learning action-selection 

rules. This in turn could suggest future empirical experiments to examine brain substrates of 

reward and punishment to see if important strain differences exist.

In addition to examining estimated parameter values, we also examined the weights learned 

in the actor model, examined as d-values for making the “press” response to each of the 

stimuli. Our prior empirical work indicated that SD and WKY rats used danger and safety 

signals differently after acquisition of avoidance [14]. Specifically, WKY rats were more 

likely than SD rats to lever press in the presence of danger signals, whereas SD rats were 

more likely than WKY rats to withhold lever pressing in the presence of safety signals. 

Based on these previous results, it was expected that learned m-values for “lever press” in 

the presence of the danger signal would be stronger in simulated WKY rats compared to SD 

rats. Likewise, m-values opposing (inhibiting) “lever press” in the presence of the safety 

signal were expected to be stronger for simulated SD rats than WKY rats. Our results are in 

partial agreement with these findings, as results from the model showed strain differences in 

the expected directions, although falling short of significance. Similarly, no strain 

differences were seen in the critic as marked by learned V-values. This could indicate a 

subtlety of the animal data which is not well-captured by the model, but it could also reflect 

the fact that learned stimulus-response patterns at the end of acquisition do not differ greatly 

across strains, i.e., the important strain differences may emerge during learning, rather than 

in a well-learned behavior. At this point, further behavioral studies are indicated to better 

understand the ways in which signals control behavior in SD and WKY rats, but RL models 

could be useful by allowing researchers to search a large space of possible experimental 

manipulations relatively quickly and cheaply, without cost of animal life, to determine which 

specific future experiments may be most likely to generate robust between-group 

differences.

Another interesting point emerging from the model concerns the within-subject relationships 

between estimated parameters and behavioral performance (Figure 5; Table 2). Among SD 

rats, the relationship between γ and performance was significant. Among WKY rats, the 

correlation between Rshock and performance was much stronger than the comparison in SD 

rats, while that between γ and performance was significant in SD but not WKY. While 

negative results must be interpreted with caution due to reduced power after subdividing the 

data, this pattern nevertheless suggests an interesting difference between strains. At least in 

“control” SD rats, avoidance behavior increased with decreasing γ. A lower valuation of γ is 

associated with the tendency to prefer immediate rewards and discount future rewards. This 

falls in line with recent studies linking temporal discounting with the brain substrates that 

mediate avoidance learning [71,72]. The lack of correlation observed in WKY for γ - as 

well as β and P - may simply reflect their uniformly high level of performance. Despite this, 

both SD and WKY rat performance correlated with Rshock. This appears to fit with existing 

data in that reinforcement valuation plays a critical role in how individuals attain high rates 

of avoidance [13,73–75].
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An alternative explanation for our data is that SD rats may be intentionally delaying an 

avoidance response in order to delay subsequent trials, thus postponing future punishment. 

This approach has been previously described as “sloth” behavior [76]. However, as noted 

above, γ, a measure of delay discounting, did not differ significantly between strains but 

was, if anything, numerically lower in SD (Figure 4F). Indeed, recent studies from our 

laboratory showed that removing the immediacy of danger signal termination upon lever 

pressing increased avoidance latency and decreased total avoidance responding regardless of 

strain, thus resulting in increased immediate punishment [77]. Thus, the current data support 

the idea that psychological valuation of shock is a primary driving factor behind avoidance 

behavior.

The current study, however, is not without limitations. First and most important, the current 

study (like any latent parameter analysis method) is correlative and cannot establish 

causation. That is, it can detect patterns in the dataset, and propose mechanistic variables 

(such as Rshock) that could produce these patterns, but it cannot definitively prove that the 

hypothesized mechanisms are driving behavior. Rather, the model suggests plausible 

mechanisms that are sufficient to explain the observed behavior. These results must be 

validated in additional datasets, and tested with empirical studies in which the mechanisms 

can be explicitly manipulated to examine their effects on behavior. Another limitation of the 

current study was its focus on empirical data obtained from male rats. Female SD and WKY 

rats have shown different tendencies in avoidance learning [11,78]. Thus, future work should 

investigate avoidance behavior in female rats using the RL model.

Although RL modeling has proven useful in understanding reinforcement learning, the 

model may not encompass all aspects of reinforcement learning. RL modeling alone fails to 

represent neurobiological mechanisms that may account for the behavior. On the other hand, 

previous studies have shown RL models to correlate with dopaminergic activity in striatum 

during reward [30–32]. Further, the RL model does not consider how learning may be 

modulated by emotional or neurochemical states. Thus, important factors that distinguish 

WKY and SD rat learning may still be veiled despite the use of RL modeling. Nevertheless, 

the current study does suggest that strain differences in the motivational value of aversive 

stimuli can adequately explain observed differences in avoidance behavior.

5. Conclusions

In conclusion, the RL model successfully described WKY and SD rat behaviors in the 

acquisition of an active avoidance task. The RL model identified latent parameters that 

influenced avoidance acquisition in both SD and WKY rats. Further, the model simulated 

the performance of individual rats. The valuation of punishers (or aversive stimuli and 

events) appears to play a significant role in how behaviorally inhibited and non-inhibited 

animals acquired avoidance behavior. Overall, motivational processes seem to be the 

underlying factor leading to individual differences in this avoidance task. This work opens 

the door to expand the use of RL modeling of animal behaviors in avoidance as well as other 

animal behavioral tasks.
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Figure 1. 
Empirical data from the avoidance task. (A) Schematic of acquisition session. Each session 

begins with a 60s habituation period, during which no experimental stimuli are presented. 

Each trial consists of a danger signal (yellow bars, maximum 72s), shock period (maximum 

72 s) during which shock and danger signal are present (red bars, only present if an 

avoidance response is not made, i.e., Trials 1 and 2, but not 3), and 180s ITI period during 

which safety signal is present (green bars). If the rat makes a lever press (blue arrow) during 

the shock period, it terminates the shock and danger signal and initiates the ITI (escape 

response, see Trial 2). If the rat lever presses during the danger period (initial 72 s of the 

trial), it terminates the danger signal, causes omission of the shock period, and initiates the 

ITI (avoidance response, see Trial 3). Overall session time (in sec) depends on whether/

when the animal emits escape and avoidance responses. (B) Both rat strains showed 

acquisition of the avoidance response across training sessions, with a main effect of faster 

learning in the WKY than SD rats. (C) The group data in (B) mask considerable individual 

variation among the SD rats; individual rats’ acquisition curves vary, showing some animals 

acquired quickly to near 100% performance, while others seldom emitted avoidance 

responses even after 12 training sessions. Note that (after the first session) animals typically 

emitted escape responses on those trials where they did not make avoidance responses. (D) 

The data from individual WKY animals also show individual variation, with some WKY rats 

showing robust acquisition even in the first training session, and most exhibiting reliable 

avoidance responding after 5 or 6 sessions. Errors bars in (B) indicate ±1 SEM.
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Figure 2. 
Schematic of the actor-critic model. At each timestep t, input vector S specifies the presence 

(1) or absence (0) of each of a set of stimuli (danger signal, safety signal, and shock) and 

contextual cues (experimental chamber or home cage). The actor module learns a set of 

policies ms,r specifying how strongly each stimulus s should promote response r. Based on 

these policy values, the actor selects an action (lever press or another behavior), which may 

evoke an external outcome R, such as shock. Meanwhile, the critic module learns a set of 

values Vs indicating the expected outcome when each stimulus s is present. Prediction error 

(PE) is then computed as the difference between the actual outcome at timestep t and the 

outcome that was predicted based on available evidence at time t-1. PE is then used to 

update the policies and values, reducing the likelihood of repeating actions that were 

followed by punishing outcomes (e.g., shock), and increasing the likelihood of repeating 

actions that were followed by rewarding outcomes (e.g. omission of an anticipated shock). 

The actor also maintains a working memory trace cs,r that decays with time since r was 

selected given stimulus s.
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Figure 3. 
Comparison of three models - the “default” Model A with 5 free parameters α, β, Rshock, P, 

and γ; Model B which includes the same five free parameters as well as Rpress (6 free 

parameters); and Model C which includes the five free parameters plus ε (6 free parameters). 

(A,B) Mean best-fit parameter values obtained under each model are also similar, although 

Model B (which allows Rpress to vary) has somewhat more negative values of both Rpress 

and Rshock, compared to the other models. (C) The models are similar in terms of ability to 

fit the empirical data (negative log-likelihood estimate, negLLE), with Model C providing 

numerically best fit (lowest negLLE). Results reported in Figures 4–7 are based on the best-

fitting Model C. Y-axes are in arbitrary units; f in (A,B) indicates parameter values that are 

fixed in a model. Error bars indicate ±1 SEM for free parameters.
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Figure 4. 
Mean best-fit parameter values for the SD and WKY groups. WKY rats had more negative 

values of Rshock (subjective value of the shock as a punisher) and lower values of ε (learning 

rate in the actor), compared to SD rats (both p<.002); the strain differences in P 

(perseveration) also approached corrected significance (p=.01), indicating less perseveration 

in the WKY. Error bars indicate ±1 SEM. Double asterisks indicate significance at p<.0083; 

single asterisk indicates .0083<p<.05.
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Figure 5. 
Relationship between behavior (percent avoidance responses across the acquisition training) 

and estimated parameter values. Across all 80 animals, rats showing more avoidance tended 

to have smaller values of ε (learning rate in the actor, p=.004), smaller values of ϐ (less 

exploration, p<.001), larger (more negative) values of Rshock (subjective value of shock, 

p<.001), and smaller values of P (less perseveration, p<.001). Results are similar if the two 

SD animals with poor performance (<25% avoidance) are excluded. These scatterplots 

include jitter to avoid overlapping points.
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Figure 6. 
(A) Mean weights in the actor module (“m-values”) at the end of acquisition session 12, 

shown as a d-score (weight from each stimulus to “press” response minus the weight from 

that stimulus to “other” responses). The d-scores were positive for danger and shock signals, 

indicating a bias for the actor to select “press” when danger or shock is present; negative for 

safety, indicating a bias to select “other” when safety is present; and near zero for the 

contextual stimuli. (B) Mean weights in the critic module (“V-values”) at the end of 

acquisition session 12. As expected, weights were strongly negative for the danger signal, 

the shock, and the experimental chamber context (where danger and shock were 

experienced), positive for the safety signal, and near zero for the home cage (where danger, 

safety, and shock were never experienced). Y-axes are in arbitrary units; errors bars indicate 

±1 SEM.
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Figure 7. 
Results of behavioral recovery simulations. (A) Group performance, averaged across the 

simulated rats in each strain, using the best-fit parameters estimated for each rat. (B) 

Individual learning curves for the 40 simulated SD rats; each curve shows average percent 

avoidance responses for one simulated rat, averaged over 100 simulation runs per rat. (C) 

Individual learning curves for the 40 simulated WKY rats. All results are averaged over 100 

simulation runs per rat. Errors bars in (A) indicate ±1 SEM.
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Table 1.

Summary of parameters in the actor-critic model, with range (minimum and maximum absolute value) and 

stepsize explored for the “basic” model, Model A (with 5 free parameters), and two alternate models: Model B 

(which also allowed Rpress to vary), and Model C (which also allowed ε to vary).

Parameter Function Model A (5 free parameters) Model B (allow Rpress to 
vary)

Model C (allow ε to 
vary)

α Learning rate in the critic (Eqn. 4) Range [0..0.01] by 0.001 Same as A Same as A

β Exploration parameter (Eqn. 1) Range (0..1] by 0.1 Same as A Same as A

P Perseveration parameter (Eqn. 1) Range [−0.05..+0.50] by 0.05 Same as A Same as A

γ PE discount factor (Eqn. 3) Range [0..1] by 0.1 Same as A Same as A

Rshock Reinforcement value of shock (Eqn. 
3)

Range [−10..+1] by 1.0 Same as A Same as A

Rpress Reinforcement value of lever press 
(Eqn. 3)

Fixed at −0.2, as in [39] Range [−2..+0.2] by 0.2 Same as A

ε Learning rate in the actor (Eqn. 5) Fixed at +0.005, as in [39] Same as A Range 0..0.01 by 0.001
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Table 2.

Spearman correlation rs (and two-tailed p-value) for correlations between rat performance (% avoidance, 

averaged across the 12 acquisition sessions) and estimated values of each parameter, for SD and WKY strains.

α ε β Rshock P γ

SD (n=40) +.24 (p=.130) −.33 (p=.041*) −.46 (p=.003**) −.41 (p=.010*) −.69 (p<.001**) +.48 (p=.002**)

WKY (n=40) −.07 (p=.680) −.10 (p=.540) −.27 (p=.095) −.76 (p<.001**) −.25 (p=.120) −.21 (p=.190)

*
p<.05;

**
p<.0083.
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