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Abstract

Smart homes equipped with anonymous binary sensors offer a low-cost, unobtrusive solution that 

powers activity-aware applications such as building automation, health monitoring, behavioral 

intervention and home security. However, when there are multiple residents living in the smart 

home, the data association between sensor events and residents can pose a major challenge. 

Previous approaches to multi-resident tracking in smart homes rely on extra information, such as 

sensor layout, floor plan and annotated data, which may not be available or inconvenient to obtain 

in practice. To address those challenges in real-life deployment, we introduce the sMRT algorithm 

that simultaneously tracks the location of each resident and estimates the number of residents in 

the smart home, without relying on ground-truth annotated sensor data or other additional 

information. We evaluate the performance of our approach using two smart home datasets 

recorded in real-life settings and compare sMRT with two other methods that rely on sensor layout 

and ground truth-labeled sensor data.

Index Terms—

smart home; time series; multi-resident tracking; multi-target Bayes filter; sensor networks

1 Introduction

SMART homes offer a promising technology that combines sensor networks and artificial 

intelligence algorithms to improve the living experience and productivity of residents. With 

the ability to comprehend and predict the daily activities of residents, smart homes can offer 

context-aware services such as home automation and health monitoring. Home automation 

services can reduce energy consumption and improve living comfort for residents by 

anticipating their behavior inside the smart home. In the case of health monitoring, smart 

homes are capable of detecting behavior patterns that indicate sudden or gradual changes in 

cognitive, mobility, and physical health states. Because a majority of existing smart home 

research is limited to single-resident environments, there remains a challenge of how to 

extend this work to encompass multi-resident scenarios.

In this paper, we introduce a method to tackle the multi-resident tracking problem in smart 

homes. This includes both estimating the number of active residents in the environment as 
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well as associating sensor data with residents. One of the major challenges in multi-resident 

scenarios is associating sensor data with the corresponding individuals who caused the 

change in state. One solution to this data association problem, and to resident tracking in 

general, is attaching tracking devices, including mobile phones or smart watches, to smart 

home residents. In these cases, the residents are responsible for correctly wearing the 

devices at all times and they cannot share their devices with other residents. Those additional 

constraints on the residents are usually inconvenient in practice and not reliable in real-life 

deployment. Moreover, such user-specific sensor devices are tailored toward monitoring one 

persons movements rather than all of the activities that occur within the space, which 

represents valuable information for recognition and analysis of daily activities. Surveillance 

cameras, on the other hand, offer rich information that can be used to recognize the resident 

in the video as well as infer the activity that is being performed. Multiple data fusion and 

tracking algorithms have been proposed in the literature to identify and track each resident in 

multiple video streams [1], [2], [3], [4]. However, in addition to facing challenges with 

lighting and obstruction, cameras are often considered too intrusive to be used in homes due 

to privacy concerns.

Ambient sensors, which include motion sensors, door sensors, temperature/light sensors, and 

contact-based item sensors, offer a low-cost and less-intrusive solution for smart home 

applications. As the data collected by these sensors are not associated with any specific 

resident, the data association problem presents a major challenge when multiple people are 

present in the smart home at the same time. Association can be simplified by assuming that 

the number of residents in the space is constant. Another simplification is to take advantage 

of additional information that may be available, such as the floor plan of the smart home and 

the position of sensors in the space. However, in reality, the number of residents in the smart 

home may change when neighbors, friends or family members come to visit and information 

about floor plans and sensor layouts may be impractical to obtain in real-life deployments. 

In contrast to prior approaches, our proposed multi-resident analysis strategy focuses on 

tracking residents and associating the residents with the sensor data they trigger in the smart 

home without additional information such as the floorplan or sensor layout, while at the 

same time estimating the number of residents that currently inhabit the smart home.

Here we introduce sMRT, an algorithm that performs multi-resident tracking in smart 

environments. Instead of requiring a floorplan and sensor map, sMRT learns the 

spatiotemporal relationship between ambient sensors from available unlabeled sensor data. 

Based on the learned relationships, sMRT then applies a multi-target Gaussian mixture 

probability hypothesis density (GM-PHD) filter to estimate the number of residents that are 

currently present in the smart home, track their locations, and associate each of them with 

triggered sensor events.

To validate the approach, we evaluate sMRT using data collected from actual smart homes 

with ground truth-labeled resident data associations. We compare the performance of sMRT 

with both a local nearest neighbor tracker and a global nearest neighbor tracker, both of 

which utilize a hand-crafted actual sensor layout of the smart home. We evaluate 

performance both for tracking accuracy and accuracy of estimating the number of residents 

present in the smart home at any given time. The result shows that the sMRT algorithm 
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achieves a comparable accuracy than alternative approaches. Additionally, sMRT offers the 

ability to concurrently estimate the number of residents.

2 Related Work

Passive ambient sensors offer an unobtrusive technology for monitoring the daily routine of 

smart home residents. Past research has shown that these sensors provide the information 

needed for activity recognition [5], [6], [7], [8], [9], activity forecasting [10], [11], [12], and 

activity-aware applications. Example activity-aware applications include health monitoring 

[13], [14], [15], [16], [17], [18], [19], behavior intervention [20], home security [21], [22], 

[23], and building automation [24], [25], [26], [27], [28]. However, in a multi-resident 

scenario, the sensor events recorded in a smart home need to be segregated into multiple 

tracks before being consumed by the activity-aware applications. Each track is composed of 

a series of sensor events corresponding to one of the residents inhabiting the smart home.

Past related research has built a foundation for multi-resident tracking in smart homes. The 

multi-resident tracking problem is usually formulated as a data association problem between 

sensor events and the residents inhabiting the smart home. The tracking approaches 

proposed in the literature vary depending on the assumptions of information availability. 

Some work assumes that the floor plan and location of sensors deployed in the smart homes 

are readily available. Other work assumes that the activity and motion model of each 

resident or all residents in the smart home can be constructed using annotated data or 

through controlled experiments. The multi-resident tracking problem can be greatly 

simplified if the number of residents in the smart home is known a priori. In this section, we 

provide a discussion of each of these research directions.

Both Wilson et. al. [29] and Hsu et. al. [30] focus on the design and training of a behavioral 

model to solve the resident tracking and activity recognition problems simultaneously in a 

smart home inhabited with multiple residents. In both works, the number of residents in the 

smart home is specified a priori and remains constant. Provided annotated data, Wilson et. 
al. [29] train a hidden Markov model (HMM) in which the hidden states represent both the 

activity and the location of all residents while the observable states map to all the sensors 

deployed in the smart home. The data association problem is thus equivalent to the HMM 

inference problem and is solved using a Rao-Backwellised particle filter (RBPF). Similarly, 

based on annotated data Hsu et. al. [30] train three conditional random fields (CRF) to 

model the relationship between activities, residents, and sensor events. The data association 

problem is solved using an iterative inference algorithm.

Crandall and Cook [31], [32], on the other hand, formulate the problem of associating sensor 

events with the residents in smart home as a multi-class classification problem. Given 

annotated data and a fixed number of residents to track, a naïve Bayes classifier and a 

Markov model classifier are trained to predict the associated resident with a series of sensor 

events as the input. Their work concludes that there are subtle differences between multiple 

people performing the same activity in the same environment and such differences can be 

detected using machine learning algorithms.
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Other work focuses on estimating the transition probabilities between sensors deployed in 

the smart home. This represents a valuable pre-processing step for multi-resident tracking. 

The graph model that encodes the transition probabilities, also referred to as a Bayes 

updating graph [33], sensor graph [34], or accessibility graph [35], is equivalent to a Markov 

chain where states are mapped directly to all the sensors deployed in the smart home. The 

structure and parameters of the model are derived based on the smart home sensor layout as 

well as annotated sensor data. The models are used in combination with a rule-based tracker 

[33] and a multi-hypothesis tracker [34] to solve the data association problem. These multi-

resident tracking solutions also have the ability to estimate the number of residents in the 

smart home, although they rely on the availability of a hand-crafted sensor graph that is 

based on known locations of sensors in the floorplan as well as annotated data to derive 

transition probabilities.

Provided with the sensor layout and the floorplan of the smart home, Amri et. al. [36] and 

Song and Wang [37] solve the data association problem by modeling the sensor coverage as 

well as the spatial relationships between deployed sensors in the smart home. Amri et. al. 
[36] overlay a square box on the floorplan to model the coverage of motion sensors, and 

formulate the motion sensor-based multi-resident tracking problem within a set-membership 

estimation framework. Song and Wang [37] introduce a unit disk graph to represent the field 

of focus of all sensors and propose a multi-color particle filter to associate sensor events 

with the residents.

De et. al. [38] and Wang et. al. [39] propose the idea of mining possible motion trajectories 

of smart home residents directly from the recorded sensor events. Various data association 

hypotheses are created by fitting the mined trajectories to the incoming sensor events. The 

best hypothesis is chosen so that the average velocity variance among all residents is 

minimized. In order to calculate the average velocity variance, the adjacency and distance 

between sensors are considered as available information. The algorithm performs better if 

the number of residents is known during the trajectory mining phase.

3 Smart Home Datasets and Multi-Resident Tracking in Smart Homes

The multi-resident tracking algorithm proposed in this work analyzes sensor events recorded 

in smart homes equipped with passive ambient sensors. These ambient sensors generate 

information about the location of the residents in the smart home or the interaction between 

the residents and the objects of interest in the home. The states of the sensors are usually 

binary, as they are either “active” or “inactive” at any given moment. The state transition of 

these sensors is usually triggered by resident activity. A sensor will send an “activate” 

message when the state transitions from “inactive” to “active”, followed by a “deactive” 

message when the state transitions to “inactive” again. However, these sensors are all 

anonymous, as they lack the ability to directly identify the resident that triggers the 

messages. As a result, a tracking algorithm is needed to pair sensor messages with the 

associated residents in a smart home occupied by multiple residents.

We introduce sMRT, an algorithm to automate multi-resident tracking in smart 

environments. To illustrate our methods and evaluate the approach implemented in sMRT, 
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we utilize two multi-resident smart home datasets created by the Center of Advanced 

Studies in Adaptive Systems (CASAS) at Washington State University. The floor plan and 

the layout of deployed sensors for these two smart home datasets are shown in Figure 1. The 

dataset named TM0041 (in Figure 1a) contains December 2016 data recorded in a two-

bedroom apartment with two older adult residents monitored by 25 ambient sensors 

distributed among 8 rooms. Occasionally, their child will come and stay in their house for a 

couple of days. The site is coarsely monitored with an average of 2–3 PIR motion sensors 

per room. Residents can enter the house from the garage on the bottom left, from the back 

yard through the door on the right, and through the main entrance located at the bottom 

middle.

Figure 1b shows a second smart home named Kyoto, a two-story town house1. Compared 

with TM004, Kyoto contains a denser grid of sensors. Both scripted and unscripted data has 

been collected in Kyoto and is associated with a number of studies including earlier 

approaches to multi-resident tracking [31]. We analyze data collected in 2009 while two 

residents lived in the apartment and performed their normal, unscripted daily routines. 

Occasionally, friends would visit for a few days, increasing the number of residents in the 

home. Data are collected from 91 sensors installed in 6 rooms: bedrooms, bathroom, 

kitchen, dining room, and living room as well as along hallways. Additionally, magnetic 

door sensors are positioned on front and back exterior doors as well as cabinets, closets and 

refrigerator doors. A few items of interest are equipped with contact sensors where the 

information about resident interaction with these items can provide insights into the activity 

they are performing at the time. Due to limitations of this earlier smart home technology, an 

increased number of false-positive sensor events and out-of-order sensor event sequences 

occur in Kyoto as compared with TM004. This issue has been documented in prior work 

[33].

In both datasets, local PIR motion sensors (sensors with a 1 meter diameter) and area motion 

sensors (sensors that monitor an entire room or large area) send an “ON” message when 

resident motion is detected within the sensor’s field of view (“active” state), and an “OFF” 

message when the motion is no longer detected (“inactive” state). The magnetic door sensor 

sends an “OPEN” message when the door is opened (“active” state) and a “CLOSE” 

message when the door is closed (“inactive” state). Contact-based item sensors produce an 

“ABSENT” message when the item is removed from the sensor (“active” state) and a 

“PRESENT” message when the item is put back into place (“inactive” state). Messages are 

sent to the smart home server which tags them with the time when the messages are 

received. Throughout this paper, we use sensor event to refer to the subset of sensor 

messages that contain an “active state” (or “activate”) message. We do not include the 

corresponding “inactive state” (or “deactivate”) messages as sensor events. The goal of 

multi-resident tracking is to associate each sensor event with the resident who activates the 

sensor.

1.Both TM004 and Kyoto datasets with annotated sensor events to residents association are available at https://www.stevewang.net/
datasets/.
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Table 1 shows a series of sensor messages recorded at Kyoto. Each sensor message is a 3-

tuple consisting of the message timestamp, the sensor ID, and the message content. To 

provide ground-truth information for evaluating multi-resident tracking solutions, external 

annotators label each sensor event with an identifier for the resident(s) who triggers the 

sensor message, as shown in the “Residents” column. Annotators generate labels based on 

information from raw sensor data and a visualization of sensor observations superimposed 

on the smart home floorplan, provided by the ActViz tool2. External annotators prevent 

interrupting resident reports to self-report such labels. This process also improves label 

consistency. As shown in Figure 2, ActViz maps each sensor event to the smart home 

floorplan. Thus, human annotators can examine the motion of each resident alongside their 

previous behavior when annotating each sensor message with the associated resident 

identifiers and associated activity labels. The TM004 dataset used in our evaluation contains 

9 days of annotated data containing 98,506 sensor events. The Kyoto dataset contains 3 days 

of annotated data containing 28,923 sensor events.

In sMRT, we first extract a sensor sequence by ignoring the deactivate messages, as shown 

in Table 2. Each sensor sequence entry is a two-tuple consisting of the sensor ID and the 

time when the sensor event is generated. By focusing on the activate messages, the sensor 

sequence captures the spatiotemporal relationships between the sensors deployed in the 

smart home. In a single resident environment, mutual information (MI) represents the 

likelihood that two sensors generate consecutive events [8] and thus quantizes the 

spatiotemporal relationship between sensors. In a multi-resident scenario, we assume that 

sensor pairs with a stronger MI relationship occur close to each other in the sensor event 

stream. As a result, we can estimate the MI of two sensors by mining the sensor co-

occurrence.

Whenever a sensor is activated, we take a snapshot of the states of all sensors deployed in 

the smart home. Each active sensor in the snapshot represents an observation of a resident 

activity. Thus, we use the term sensor observation to refer to each active sensor in the 

snapshot. Table 3 shows a series of sensor observations extracted from the sensor messages 

in Table 1. Figure 3 demonstrates the relationship between sensor messages, sensor events 

and sensor observations. In the graph, each vertical grid line represents the time a sensor in 

the smart home is activated. The dots in the figure represent the sensor observations that are 

extracted from the sensor messages and the shaded rectangles represent a sensor being in the 

active state. The blue, red and green arrows in the figure connect the sensor observations into 

three sensor tracks associated with three residents (R1, R2, and R3, respectively). The figure 

shows that at any time step when the sensor observations are taken, a resident may be 

associated with multiple sensor events and a sensor event may be associated with multiple 

residents. Some sensor observations, such as sensors “I001” and “D012” in the figure, are 

not associated with any resident. In the context of resident tracking, we use the terms false 
alarms or clutter process to refer to sensor observations that are not associated with any 

resident. The goal of this work is to determine the number of residents in the home (3 during 

this time period) and to associate sensor events with the (three) corresponding tracks.

2.http://www.github.com/TinghuiWang/ActViz.git
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4 sMRT: A Formal Framework of Multi-target Tracking

The objective of this research is to find a solution for multi-resident tracking (MRT) in smart 

homes with anonymous binary sensors that performs robustly in real homes with complex 

everyday behavior conditions. In addition to finding the association between sensor events 

and the corresponding residents, the proposed sMRT algorithm also estimates the number of 

active residents currently in the smart home and relaxes constraints of previous algorithms 

by not requiring additional information such as floor plans, sensor layouts, or resident-

labeled training data.

We formulate the MRT problem as a sequential Bayes estimation (or filtering) problem in 

the framework of finite set statistics (FISST) [40]. We represent the state of each resident in 

the smart home as a random vector x that belongs to a state space X. Thus, the state of all 

residents that are currently in the smart home at time step k can be modeled as a random 

finite set (RFS) Xk = x1, x2, …, xn ∈ ℱ(X), where ℱ(X) is the collection of all finite 

subsets of the state space X. Each element xi((1 ≤ i ≤ n) of the RFS X is a state vector of an 

active resident. The total number of active residents in the smart home, n (i.e., the cardinality 

|Xk| of the RFS Xk), is a random variable defined on ℤ0
+. Given a sequence of sensor events, 

sMRT calculates a Bayes optimal probability density, f(Xk), of the RFS Xk at time step k. 

The number of active residents, or the cardinality of the RFS Xk, is simultaneously derived.

To identify the relationship between the input (a series of sensor events) and the output (the 

probability density of the states of all active residents in the smart home), there are two 

challenges that we address. First, we will construct a dynamic model that predicts the state 

of each resident at the following time step given the current state. This dynamic model will 

serve as the corpus of information for the Bayes estimation process. The construction of 

such a dynamic model should be based solely on a series of recorded sensor events with no 

additional information that raises privacy concerns or is impractical to acquire for real 

homes. Second, we will derive a mathematically rigorous method to estimate the probability 

density of resident states and derive the association between each resident and sensor 

observations in real-time. sMRT addresses these challenges through two phases. First, a 

learning phase constructs the dynamic model by mining the co-occurrence of sensor events. 

Second, a tracking phase predicts the number of residents in the smart home as well as their 

association with the sensor events.

4.1 Learning Phase: Construction of Dynamic Model

In previous work, the dynamic model that encapsulates resident movement in a smart home 

was represented as a Markov chain, or a sensor graph, where the states of the Markov chain 

are mapped directly to the smart home sensors [33], [34]. In a smart home with q sensors, a 

total of q2 transition matrix parameters, each representing the probability of a resident 

moving from one state (sensor location) to another, are estimated through counting [33],[34] 

or a conditional least squares method [35]. However, in those approaches, annotated sensor 

events and additional sensor layout information are required to make an accurate prediction. 

By mapping the states directly to sensors, these dynamic model would perform state 
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prediction based solely on the current resident state without taking into account resident 

states in any of the previous steps.

In contrast, during the sMRT learning phase, we represent each sensor as a m × 1 vector in a 

m-dimensional space Z. The space Z. represents the measurement space. The 

dimensionality m of the measurement space is a hyper-parameter that can be chosen 

depending on the number and density of the sensors that are deployed in the smart home. 

The conditional probability of a resident transitioning from one sensor to another can be 

estimated using the distance between their vector representations in the measurement space 

Z. In a smart home with q sensors, a total of q · m parameters must be estimated. Selecting 

m < q effectively injects dependencies between the conditional probabilities of a resident 

transiting between two sensors, a departure from earlier work in multi-resident tracking. By 

injecting these dependencies, a lesser amount of sensor data is needed to accurately learn the 

dynamic model parameters. Additionally, the model parameters are learned without the need 

for additional information such as the number of residents or sensor layout. With inspiration 

from word embedding used in natural language processing applications [41], we adopt a 

similar skip-gram model to leverage the co-occurrence of sensor events and train a 

generative model to learn the vector mapping between the sensors deployed in the smart 

home and the measurement space Z. (see Section 4.1.1).

On the other hand, rather than mapping resident states directly to smart home sensors, we 

hypothesize that each resident’s movement can be represented as a point target maneuvering 

at constant velocity in the measurement space Z. This hypothesis can be considered as a 

relaxation of the Markov assumption in sensor graphs, where the velocities along all m axes 

represent the information related to the resident states in all previous time steps and can be 

estimated during the tracking.

4.1.1 Sensor Vectorization—Consider a smart home where a total of q binary sensors 

(s1, s2, …, sq) are deployed. Sensors si and sj are adjacent if a resident can travel from si to sj 

without triggering another sensor sk (I ≠ j ≠ k). The goal of sensor vectorization is to find the 

corresponding vector representation z1, z2, …, zq ∈ Z such that if two sensors are adjacent 

(they can be activated in sequence without activating other sensors), they are mapped to two 

vectors close to each other in the measurement space. In other words, the closer zi and zj are, 

the higher is the conditional probability of triggering sensor si after sensor event sj. As a 

result, we can further hypothesize that resident movement in the smart home is equivalent to 

a point target maneuvering in the measurement space.

In a smart home with a single resident, adjacent sensors always show up next to each other 

in the sensor sequence. In a multi-resident scenario, the recorded sensor sequence is a time-

ordered collection of the active sensor messages associated with all residents in the smart 

home, possibly moving through different parts of the home. As a result, adjacent sensors are 

not necessarily next to each other in the sensor event sequence. However, they are more 

likely to show up within c sensor messages apart, where c is an integer that can be selected 

based on the expected number of smart home residents. Thus, we construct a generative 

model that predicts the probability of two sensors being adjacent parameterized by their 

vector representations in measurement space. This probability needs to fit the sensor pair’s 
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co-occurrence observed in the recorded sensor sequence within a window of c sensor 

messages.

Formally, given a sensor sequence containing M sensor messages, ((t(1), s(1)), …, (t(M), 

s(M))), where t(i) is the time of the ith sensor message and s(i) is the corresponding sensor ID, 

we generate a training set where each sensor pair is observed within a window of c sensor 

messages in the sensor sequence, as shown in (1).

training set = s(i), s(j) 0 < j − i ≤ c (1)

We construct a generative model (as shown in Figure 4) that predicts the probability of a 

sensor pair, s and s′, being adjacent, denoted as P (s|s′) = P (s′|s). The training objective of 

the model is to map sensors s1, …, sq into vectors z1, …, zq ∈ Z so that the average log 

likelihood ℒ, as shown in (2), is maximized in the training set.

ℒ = 1
M ∑

i = 1

M
∑

0 < j − i ≤ c
logP s(j) s(i) (2)

The probability of sensor si being adjacent to sensor sj can be defined using a SoftMax 

function based on a score assigned to them, as shown in (3).

P sj si = exp score sj si
∑k = 1

q exp score sk si
(3)

The score value score(sj|si) needs to be larger when the distance between the corresponding 

vectors is smaller. We use a dot product as the similarity measure that defines the score 

function, as shown in (4).

score sj si = score si sj = zi ⋅ zjT (4)

In a smart home containing a small number of sensors, the vector representations of sensors 

in the measurement space can be learned directly using SoftMax cross-entropy loss. To 

reduce the large computational cost of directly learning vector representations for a large 

number of sensors, noise contrast estimation (NCE) [42] is employed.

4.1.2 Linear Gaussian Dynamic Model—With each sensor in the smart home 

mapped into the measurement space, we use a constant velocity model of a point target 

maneuvering in the measurement space to approximate the movement of each resident in the 

smart home. The state vector of each resident is a (2m + 1) × 1 vector x = [xT vT r]T, where 

x is an m × 1 vector representing the location of the resident in space Z, v is an m × 1 vector 

representing the velocity of the resident, and r is an integer representing the resident ID. 

Given the state of the resident, x′, the resident state x at the next time step can be estimated 

Wang and Cook Page 9

IEEE Trans Pattern Anal Mach Intell. Author manuscript; available in PMC 2021 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



using the linear equation as shown in (5). Here, F represents the linear motion multiplier, G 
represents the linear error multiplier, and w represents the velocity error.

x = F ⋅ x′ + G ⋅ w (5)

If w can be modeled using a Gaussian distribution, the probability distribution of the 

resident state at the next time step can be expressed using a linear Gaussian model as in (6). 

Here, Q is the resulting covariance matrix. (The equation derivation is found in the 

supplemental material.)

f x x′ = N x; Fx′, Q (6)

Residents maneuver in the measurement space. Thus, sensor observations (represented by 

the corresponding sensor vectors) offer a noisy measurement of true resident states. If we 

assume that such measurement errors can be modeled as a Gaussian distribution with zero 

mean and a covariance matrix R, the relationship between a sensor observation z and the 

state vector x of the resident can be represented using a linear Gaussian model as shown in 

(7) with linear multiplier H.

f(z |x) = N(z;H ⋅ x, R) (7)

Movement mapped from resident actual trajectories to the measurement space may not 

strictly follow the constant velocity assumption. However, with the help of the GM-PHD 

filter and track maintenance algorithm introduced in Section 4.2, errors between reality and 

the constant velocity assumption can be captured by the Gaussian noise in the dynamic and 

measurement models shown in (6) and (7). Thus, the GM-PHD filter can correct these errors 

based on new sensor observations obtained at each step.

4.2 Tracking Phase: GM-PHD Filter and Track Maintenance

During the tracking phase, a series of sensor observations is extracted from the sensor event 

stream by taking a snapshot of active sensors in the smart home every time a sensor is 

activated. Each active sensor is a measurement of a resident in the smart home. By replacing 

each active sensor with its vector representation in the measurement space, we define an 

observation set as Zk = z1, …, znz  at time step k, where nz is the number of active sensors 

and each element zi is the vector representation of the corresponding sensor. Among these nz 

sensor observations, some are accurate measurements of active residents and some are false 

alarms (or clutter) due to communication errors or sensor failures. Alternatively, some 

residents may still be at home but may not be currently detected by the sensors. Thus, 

instead of creating a one-to-one mapping between each sensor observation and the 

corresponding resident, we also need to consider the possibilities of a new resident entering 

the home, an existing resident leaving the home, residents not being detected, sensor 

observations not being associated with any resident, and one-to-many or many-to-one 

associations between sensor observations and residents. The steps of the tracking phase are 

illustrated in Figure 5.
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To model all of these possibilities, we use a Gaussian mixture probability density (GM-

PHD) filter [43] that propagates the first-order moment of the multi-target probability 

density, or the probability hypothesis density (PHD), based on the dynamic and 

measurement models constructed during the learning phase. Additionally, we propose 

clustering-based track maintenance to associate the PHD predicted by the GM-PHD filter 

with resident identifiers to detect new residents while maintaining the traces of existing 

residents. Finally, each sensor observation, represented as a vector in the measurement 

space, is associated with the resident that is most likely to generate the observation.

The GM-PHD filter is composed of a predictor and a corrector, as shown in Figure 5. Given 

the PHD of multiple residents at time step k − 1, Dk−1(x), the predictor estimates the multi-

resident PHD at time step k, or Dk|k−1(x), based on the linear Gaussian dynamic model in 

(6). The corrector then refines the predicted PHD, Dk|k−1(x), based on the measurement 

model and sensor observations, Zk. The output of the corrector is the Bayes optimal 

estimation of the posterior multi-resident PHD at time step k, Dk(x), which can be used to 

associate sensor events with residents in the smart home. If the multi-resident PHD at time 

step k − 1, Dk−1(x), is in the form of a Gaussian mixture, and the dynamic model and the 

measurement model are both linear Gaussian, the resulting posterior multi-resident PHD, 

Dk(x), is guaranteed to be in the form of a Gaussian mixture, as shown in (8), where Jk is the 

number of Gaussian components in the mixture and wk
(i), mk

(i) and Pk
(i) are the weight, mean 

vector and covariance matrix of the ith Gaussian component, respectively. (The derivation of 

(8) is included the supplementary material.)

Dk(x) = ∑
i = 1

Jk
wk

(i)N x; mk
(i), Pk

(i) (8)

Given the posterior PHD at time step k, we propose a clustering-based track maintenance 

algorithm that estimates the state of each resident, assigns identifiers to the newly-identified 

residents, and associates sensor observations with each resident based on the state 

probability distribution of each identified resident. According to the definition of PHD, the 

expected number of residents in the smart home can be calculated by integrating the PHD 

over the entire state space, as shown in (9).

Nk = ∫ ∑
i = 1

Jk
wk

(i)N x; mk
(i), Pk

(i) dx = ∑
i = 1

Jk
wk

(i) (9)

We first assume that, at any time step, there is at most one newly-detected resident. Thus, 

during the predictor step, we can assign a new resident identifier to the resident ID field of 

the Gaussian mean state vectors for the target birth PHD. Given the measurement model and 

the dynamic model defined in Section 4.1.2, the resident identifier in the mean vector of 

each Gaussian component will remain unchanged while the Gaussian components are 

propagated in time through the GM-PHD filter. By grouping the Gaussian components that 
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share the same resident identifier in the mean vector, the state probability distribution of 

each resident can be derived.

We now consider the case that multiple residents, R1
(k)…Rnr(k)

(k)
, enter the smart home at time 

k. As we assign a single resident identifier, r(k), to all Gaussian components in the target 

birth PHD, the Gaussian components of the PHD, representing the states of all residents 

entering the smart home, share the same resident identifier r(k). As the residents move 

through time, the cardinality of the PHD will eventually approximate the actual number of 

residents, N(k), who enter the home. As a result, when tracking each resident Ri
(k), the 

Gaussian components representing the PHD of those N(k) residents need to be separated into 

N(k) clusters with a unique resident identifier assigned to the Gaussian components for each 

cluster.

In sMRT, we introduce a clustering-based track maintenance algorithm that monitors the 

integral of the PHD associated with each resident identifier. The track maintenance 

algorithm is an iterative six-step process as follows.

1. Given the PHD with resident identifier r in the form of a Gaussian mixture as 

shown in (10), calculate the number of expected residents Nk, r′  as shown in (11).

Dk, r(x) = ∑
i = 1

Jk, r
wk, r

(i) N x; mk, r
(i) , Pk, r

(i) (10)

Nk, r′ = Nk, r − 0.5 = ∑
i = 1

Jk, r
wk, r

(i) − 0.5 (11)

2. Initialize the center of Nk, r′  clusters randomly as α1, …, αNk, r′ .

3. For each cluster, find the Gaussian components in Dk,r(x) with the smallest 

distance between the mean of the Gaussian component and the center of the 

corresponding cluster. Assign those Gaussian components to the cluster so that 

the summation of the weights of all those Gaussian components does not exceed 

Nk, r/Nk, r′ . If there are Gaussian components left not assigned to any cluster, 

assign each of these to the nearest cluster determined by the distance between the 

center of the cluster and the mean of the Gaussian component.

4. Update the cluster center αj to be the weighted mean of all Gaussian components 

assigned to the cluster, as shown in (12).

αj = 1
∑i = 1

Jk, r, jwk, r, j
(i) ∑

i = 1

Jk, r, j
wk, r, j

(i) mk, r, j
(i)

(12)
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In (12), Jk,r,j represents the number of Gaussian components assigned to cluster j. 

The wk, r, j
(i) , mk, r, j

(i)  terms represent the weight and mean of those Gaussian 

components.

5. Repeat steps 3 and 4 until there are no further changes to the association between 

Gaussian components and clusters, or a maximum number of iterations is 

reached.

6. With the Gaussian components segregated into Nk, r′  clusters, a new resident 

identifier is assigned to each cluster and is inserted into the resident ID field in 

the mean vector of each Gaussian component assigned to that cluster.

Finally, each sensor observation zi ∈ Zk is associated with the resident ID r so that the 

likelihood of producing the sensor observation zi is maximized, as shown in (13).

r = argmax
r ∫ f zi x ∑

i = 1

Jk, r
wk, r

(i) N x; mk, r
(i) , Pk, r

(i) dx

= argmax
r

∑
i = 1

Jk, r
wk, r

(i) N z; Hmk, r
(i) , R + HPk, r

(i) HT
(13)

5 Evaluation of sMRT

To evaluate the performance of sMRT, we implement two other methods as baseline for 

comparison. The first method, denoted NN-sg, tracks the residents in the smart home using a 

sensor graph handcrafted according to the sensor layout of the smart home. The sensor 

graph, generated using the GR/ED method proposed by Crandall and Cook [33], determines 

the spatial adjacency between sensors. Whenever a new sensor message arrives, it is 

associated with an existing resident who was last spotted by an adjacent sensor. If no such 

resident can be found, the NN-sg method assumes that a new resident enters the space and a 

new resident identifier is assigned. On the other hand, if a resident has not been detected by 

any sensors for a period of 50 sensor events (this parameter is used by GR/ED [33]), the 

resident is assumed to have left the home or become “inactive”, and thus is removed from 

the list of existing residents. Unlike GR/ED, the NN-sg method only processes active 

sensors.

We also introduce a second method, denoted GNN-sg, as an alternative baseline method. 

GNN-sg further modifies the GR/ED algorithm. Specifically, GNN-sg uses a weighted 

directed sensor graph where the adjacency between any two sensors is determined manually 

according to the sensor layout in the smart home. Each weight, representing the probability 

of a resident triggering two sensors consecutively, is estimated from annotated sample data. 

The association between sensor observation and resident is determined using a global 

nearest neighbor method. At every time step, GNN-sg generates a list of all possible 

associations between sensor observations and all existing active residents. A score is 

assigned to each association hypothesis by accumulating the probabilities of each resident 

moving from the sensor location in previous time step to the new sensor location associated. 
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The association with the highest score is selected and any sensor observation that is not 

associated with any resident is considered the start of a new resident track.

The objective of sMRT is to associate smart home sensor events with the residents who 

trigger them. To evaluate the ability of the algorithm to accomplish this task, we use the 

following two metrics to evaluate the performance of sMRT in comparison with the NN-sg 

and GNN-sg methods. First, we evaluate the association accuracy between sensor events and 

residents. An event association is considered correct if it matches the ground truth resident 

label.

Second, we evaluate whether the tracking algorithm correctly identifies the number of 

residents in the smart home. Evaluation is conducted using the TM004 and the Kyoto 

datasets introduced in Section 3. In the experiment, we require that each valid resident 

identifier be associated with at least three sensor events. In earlier activity recognition 

research, the shortest detectable activities contained at least three events (the “enter home” 

and “leave home” activities) [8]. Thus, if a resident identifier is associated with fewer than 

three sensor events, we consider those sensor events to be false alarms because those events 

are isolated incidents that are not related with any other sensors in the space. Because both 

GNN-sg and NN-sg use the physical sensor location in the smart home as a basis for 

building the sensor graph while sMRT uses an unsupervised sensor vectorization procedure 

to extract the spatiotemporal relationship between sensors from the unannotated sensor data 

directly, we expect GNN-sg and NN-sg to represent performance upper bounds for sMRT.

We define association accuracy as the fraction of total sensor events, D, in which the ground 

truth Y (i) equals the set of predicted resident IDsŶ(i), as shown in (14). Resident IDs include 

the empty set (no resident) or a set of identifiers for one or more residents.

accuracy = 1
D ∑

i = 1

D
1 Y (i) = Y (i)

(14)

A second performance measure uses Hamming loss to give credits to partial matches 

between Y(i) and Ŷ(i). The definition of Hamming loss is shown in (15). In (15), NR 

represents the total number of residents in the dataset.

ℎamming loss = 1
D ⋅ 1

NR
∑
i = 1

D
∑
j = 1

NR
1 yj

(i) = yj
(i) (15)

Moreover, if we focus on each resident that is annotated in the ground truth, we can also 

view sensor event to resident association as a binary classification problem. The two classes 

are events that are associated with a particular resident (+) and events not associated with 

that resident (−). In this approach, we can measure the precision, recall and F1-score for 

each resident.

The multi-label accuracy and Hamming loss values for both the TM004 and the Kyoto 

datasets are shown in Table 4. Performance using per-resident classification metrics for the 
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TM004 and Kyoto datasets are shown in Tables 5 and 6, respectively. While macro averages 

are commonly reported when the classes are imbalanced, we are also interested in results on 

a per-datapoint bases. Thus, we provide micro and macro averages in Tables 5 and 6.

For TM004, sMRT’s accuracy is 0.80, similar to the performance of NN-sg, and 0.03 lower 

than GNN-sg method. Using the Hamming loss metrics, sMRT scores 0.08, which is 0.01 

better than the NN-sg method and 0.01 higher than the GNN-sg method. The Hamming loss 

of sMRT shows that only 8% of the associations are not identified by the sMRT algorithm. 

Unlike NN-sg and GNN-sg, the sMRT results are achieved without using annotated data or 

sensor topologies.

When we consider each separate resident in the TM004 dataset, as shown in Table 5, sMRT 

achieves a higher precision but a lower recall compared to the other two methods. Among 

the four residents labeled in the TM004 dataset, residents R1 and R2 are in the smart home 

most of the time, associated with 32,272 and 17,873 sensor events respectively. Residents 

R3 and R4 are likely visitors who trigger only 1,202 and 11 sensor events, respectively. 

However, the 11 sensor events associated with R4 are separated by sensor events triggered 

by other residents. As a result, those 11 sensor events are regarded as isolated sensor events 

by both NN-sg and sMRT and no resident identifier is produced.

However, in the Kyoto dataset where the sensors are more densely deployed with greater 

noise and less reliability, sMRT has a difficult time reliably tracking the residents compared 

to NN-sg and GNN-sg. By analyzing the sensor vectors learned by sMRT and the tracking 

results, we find that the main cause of the decrease in the performance of sMRT is that some 

sensors that are not physically adjacent to each other according to the sensor layout have a 

relatively short distance in the measurement space. The sensors exhibiting such an error 

either generate events only a few times in the dataset (recorded within 3 days) or have a 

higher probability of noise. For example, on one of the days, the bathroom door on the 

second floor was not closed properly, resulting in sensor D005 continually sending “OPEN” 

and “CLOSE” messages while another resident is downstairs in the living room triggering 

motion sensor M004. As a result, sMRT identifies sensors D005 and M004 as being close to 

each other in the measurement space while they are actually far from each other in the home.

Figures 6 and 7 show the accuracy and Hamming loss values of sMRT, NN-sg and GNN-sg 

when there are different numbers of residents in the smart home using the TM004 dataset. 

As the number of active residents in the smart home increases, the performances of sMRT 

and NN-sg decrease. However, baseline GNN-sg achieves a better accuracy when there are 4 

resident in the smart home. One explanation for this anomaly is the small sample size for 4 

residents. There are only 11 time steps when 4 residents are in the home, as shown in Table 

5. In contrast, there are > 1, 000 sensor events for the other cases. According to the 

Hamming loss shown in Figure 7, we find that sMRT is more accurate in grouping the 

sensor events triggered by the same resident than NN-sg, though the performance is 0.01 

lower than GNN-sg when there are two or three residents.

We also evaluate these methods based on their ability to estimate the number of active 

residents currently present in the smart home. In earlier multi-resident tracking research, a 
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resident is considered to be inactive if the resident has not been detected by any sensors for 

over 100 seconds, or 50 consecutive sensor events on average [33]. Since sMRT and both 

baseline methods operate based on discrete time steps, we count an existing resident as 

active when a sensor event is triggered within the next 50 time steps. This rule is applied to 

both the ground truth and the result of NN-sg to determine the number of active residents in 

the smart home. In the case of sMRT, the likelihood of a resident being active at any time 

step, or present in the home, can be calculated by integrating the PHD distribution as shown 

in (9). If the likelihood > 0.5, we consider the resident to be active.

Table 7 shows the average absolute value of the error between the number of active residents 

identified by three candidate algorithms and the ground truth. As indicated by these results, 

both the sMRT and NN-sg methods, on average, are accurate for resident cardinality 

estimation as the average errors of both methods are smaller than 1, while GNN-sg generates 

a higher number of resident identifiers and fails to estimate the number of active residents as 

accurately as the other methods.

Ideally, we want the sensor events associated with the same residents to match the resident 

identifier predicted by the tracking algorithm. However, in the experiments, we find the 

segmentation errors, where the sensor events that are associated with the same resident are 

split into multiple tracks with different resident identifiers, may affect the real-life 

performance when the tracking algorithm is used for activity-aware applications. By 

counting the number of valid resident identifiers generated by each method, as shown in 

Table 4, both sMRT and GNN-sg results in a higher number of valid resident identifiers 

compared to the NN-sg method. The result indicates that both sMRT and GNN-sg tend to 

generate more resident identifiers and associate the sensor events that are triggered by same 

resident associated with those identifiers.

During the propagation of PHD in sMRT, a one-to-one relationship between sensor 

observations and residents is still assumed. sMRT handles the many-to-one relationship 

between sensor observations and residents by properly setting the parameters for the clutter 

process, namely λc and c(z). These two parameters serve as counterweights to prevent the 

rapid increase of cardinality estimation when a resident triggers two sensor observations at 

the same time. However, when a resident is at a location where the sensors are more densely 

populated, the chances that a many-to-one association between sensor observations and 

residents may be higher than what the clutter process parameters can handle. As a result, 

sMRT will spawn a new resident track. Not long afterward, the original track may terminate 

itself. The behavior of sMRT may thus lead to a higher count of valid resident identifiers 

while still maintaining an accurate estimation of the number of active residents in the smart 

home. However, adjacent sensor events that are associated to the same resident are likely to 

still be adjacent, even when a new resident identifier is assigned.

In contrast, the segmentation errors observed for GNN-sg are caused by keeping multiple 

resident identifiers valid at the same time. In similar cases where a resident is spotted by 

multiple sensor observations, GNN-sg simultaneously creates multiple resident identifiers 

associated with each of those sensor observations. Based on the GNN policy, the sensor 

events are separated into different tracks in an interleaved fashion. It is more likely, 
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compared to sMRT, that the adjacent sensor events associated with the same resident are 

assigned to different resident identifiers. This behavior causes an increase in the predicted 

number of valid resident identifiers and an inaccurate estimation of the number of active 

residents in the smart home. Moreover, even though GNN-sg results in a better accuracy and 

Hamming loss score (i.e., GNN-sg is more accurate in grouping the sensor events triggered 

by same resident together), the result is less effective in activity-aware applications where 

the continuity of sensor events is an important factor.

In a multi-resident smart home, the assumption of one-to-one associations between sensor 

events and residents may not hold, especially when multiple residents are performing joint 

activities and are moving together as a group (e.g., cooking together). Even though all of the 

tracking algorithms assume a one-to-one association, differences in enforcing this 

assumption results in different levels of tracking capabilities for joint-activity scenarios. 

Both baseline methods, NN-sg and GNN-sg, treat the one-to-one association as a rule. 

Therefore, if multiple residents trigger the activation of the same sensor, the algorithms can 

only associate the sensor observation to one of the residents. In cases when multiple 

residents are performing joint activities in a local area, GNN-sg will generate additional 

parallel tracks, leading to an over-estimation of the number of active residents in the smart 

home as shown in Table 7. In contrast, even though sMRT does not explicitly model joint 

activities, it predicts the sensor they will next jointly trigger through sensor vectorization in 

combination with a constant velocity model. As a result, sMRT can track resident joint 

activity in a local space. However, in the case of multiple residents moving together, e.g. 

going downstairs together to the kitchen in the morning, the performance of sMRT depends 

on the length of the sequence when residents move together. Since sMRT’s corrector is 

derived based on the assumption that there is a one-to-one association between sensor 

observation and resident, the integral of the PHD corresponding to each resident (i.e., the 

sum of weights of Gaussian components associated with each resident) will decrease. 

However, as there is still a sensor observation during the procedure and both residents are 

likely to be associated with the sensor observation, the sum of weights of both residents will 

decrease but their sum will still reach1. Thus, when the multiple residents go separate ways, 

the PHD integral of each resident may still be higher than the birth PHD and the tracks 

identified by the sMRT algorithm can be maintained.

Finally, we compare the computational complexity of sMRT and the baseline algorithms. 

NN-sg associates each existing resident with the nearest or most-likely sensor observation. 

Given n sensor observations, and N currently-active residents, NN-sg’s worst case runtime is 

O (nN). GNN-sg attempts to find the best one-to-one assignment between sensor 

observations and existing residents. Using an efficient method such as the Hungarian 

algorithm, this could be accomplished in time O(n3). The sMRT tracking is composed of a 

GM-PHD filter track and a clustering-based maintenance algorithm. Assuming a maximum 

of J Gaussian components in the mixture and a m-dimensional measurement space, GM-

PHDO updating bounded by is O (nJm3). The worst-case complexity of sMRT’s track 

maintenance is O (N Jmi), where i is the number of iterations that lead to clustering 

convergence.
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6 Conclusion

In this work, we introduce the sMRT algorithm that solves the multi-resident tracking 

problem in smart homes equipped with anonymous binary sensors. sMRT contrasts with 

previous work by learning the spatiotemporal relationship between sensors using un-

annotated sensor data recorded. We evaluate the performance of sMRT using two smart 

home datasets recorded in real-life settings with human-annotated ground truth of 

associations between each sensor events and the residents living in the smart home. The 

performance of sMRT is compared with two other methods, NN-sg and GNN-sg, that rely 

on a provided sensor layout, smart home floor plan, and annotated sensor data.

The results support our hypothesis that sMRT is capable of tracking multiple residents with 

similar accuracy to the methods that are provided with additional information. sMRT can 

also provide a rough estimation of the number of active residents in the smart home. 

However, the performance of sMRT depends on the reliability of sensors that are deployed 

in the smart home and the accuracy of the sensor events that are recorded, as the recorded 

sensor data is the only source of information. The other limitation of sMRT is the higher 

possibility of segmentation errors when tracking residents in a location where sensors are 

comparatively more densely deployed.

In the future, sMRT can be refined by exploring alternatives to the simple constant velocity 

model presented in this paper so that a better accuracy can be achieved in predicting the next 

sensor event a resident will trigger. Moreover, further investigation can focus on analyzing 

the placement, spatial coverage and density of ambient sensors in the smart home and their 

impact on multi-resident tracking.
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Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Floor plan and the locations of sensors deployed in CASAS smart homes. (a) Smart home 

TM004 with 25 motion sensors. (b) Smart home site Kyoto with 65 motion sensors, 15 door 

sensors and 11 item sensors.
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Fig. 2. 
A screen shot of the ActViz annotation software used in this research to generate the ground 

truth of the association between sensor events and the residents in the smart home.
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Fig. 3. 
Multi-resident tracking graph showing the association between residents and sensor events 

and the relationship between sensor messages, sensor events and sensor observations. The 

figure is generated using the sensor messages recorded in the Kyoto dataset from the same 

time period as Tables 1–3. The arrows in the graph show the movement of all the active 

residents with respect to sensor observations.
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Fig. 4. 
The generative model of sensor vectorization.
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Fig. 5. 
The sMRT tracking phase.
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Fig. 6. 
Accuracy score as a function of number of active residents for sMRT, NN-sg and GNN-sg 

using the TM004 dataset.
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Fig. 7. 
Hamming loss as a function of number of active residents for sMRT, NN-sg and GNN-sg 

using the TM004 dataset.
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TABLE 1

An example of sensor messages recorded in the Kyoto dataset. Each sensor message is a three-tuple consisting 

of the timestamp, sensor ID and message content. The resident and activity columns are labels provided by 

annotators. These serve as ground truth for performance evaluation of multi-resident tracking algorithms. The 

messages highlighted in bold font also represent sensor events.

Timestamp Sensor ID Message Resident

02/06/2009 17:52:28 M025 ON R2,R3

02/06/2009 17:52:32 M025 OFF R2,R3

02/06/2009 17:52:35 M025 ON R2,R3

02/06/2009 17:52:36 M025 OFF R2,R3

02/06/2009 17:52:37 M045 ON R1

02/06/2009 17:52:38 M025 ON R2,R3

02/06/2009 17:52:44 M045 OFF R1

02/06/2009 17:53:31 M024 ON R3

02/06/2009 17:53:32 M019 ON R2

02/06/2009 17:53:33 M021 ON R2

02/06/2009 17:53:33 M025 OFF R2,R3

02/06/2009 17:53:34 M021 OFF R2

02/06/2009 17:53:34 M018 ON R2

02/06/2009 17:53:36 M051 ON R2

02/06/2009 17:53:36 M024 OFF R3

02/06/2009 17:53:38 M019 OFF R2

02/06/2009 17:53:39 M018 OFF R2

02/06/2009 17:53:57 M051 OFF R2

02/06/2009 17:54:03 M051 ON R2

02/06/2009 17:54:27 M045 ON R1
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TABLE 2

Sensor sequence extracted from sensor messages shown in Table 1.

Time Tag Sensor ID

02/06/2009 17:52:35 M025

02/06/2009 17:52:37 M045

02/06/2009 17:52:38 M025

02/06/2009 17:53:31 M024

02/06/2009 17:53:32 M019

02/06/2009 17:53:33 M021

02/06/2009 17:53:34 M018

02/06/2009 17:53:36 M051

02/06/2009 17:54:03 M051

02/06/2009 17:54:27 M045
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TABLE 3

Sensor observations, recorded each time a sensor is activated.

Time Tag Observation

02/06/2009 17:52:35 M025, I012, I011

02/06/2009 17:52:37 M045, I012, I011

02/06/2009 17:52:38 M045, M025, I012, I011

02/06/2009 17:53:31 M024, M025, I012, I011

02/06/2009 17:53:32 M019, M024, M025, I012, I011

02/06/2009 17:53:33 M021, M019, M024, M025, I012, I011

02/06/2009 17:53:34 M019, M018, M024, I012, I011

02/06/2009 17:53:36 M019, M051, M018, M024, I012, I011

02/06/2009 17:54:03 M051, I012, I011

02/06/2009 17:54:27 M045, M051, I012, I011
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