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• Plastic fragments are dispersed in air,
and can be inhaled.

• There is limited information on the dis-
tribution of microplastics in air samples.

• They may cause adverse effects on the
respiratory system and beyond.

• The exposure risk of inhaled MPs
for human (respiratory) health is
unresolved.
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It is increasingly recognized that the ubiquity of convenient single-use plastic has resulted in a global plastic
pollution challenge, with substantial environmental and health consequences. Physical, chemical, and bio-
logical processes result in plastic weathering, with eventual formation of debris in the micro to nano size
range. There is an increasing awareness that plastic fragments are dispersed in the air and can be inhaled
by humans, which may cause adverse effects on the respiratory system and on other systems. Urban envi-
ronments are often characterized by high concentrations of fine airborne dust from various sources. To date,
however, there is limited information on the distribution, shape, and size of microplastics in the air in urban
and other environments. In this article, we review and discuss our current understanding of the exposure
characteristics of airborne plastic debris in urbanized areas, focusing on concentration, size, morphology,
presence of additives and distributions of different polymers. The natural and extend data are compiled
and compared to laboratory-based analyses to further our understanding of the potential adverse effects
of inhaled plastic particles on human health.
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1. Rationale

Humansuse plastic because it is highly convenient (Hahladakis et al.,
2018). Consequently, plastic debris is found throughout the world
(Andrady, 2017; Eerkes-Medrano et al., 2015; Dris et al., 2016; Mahon
et al., 2017; Bläsing and Amelung, 2018). Plastics are environmentally
persistent. However, once released into the environment, they are ex-
posed to continuous processes such as chemical weathering, photo-
oxidation, biological decomposition andmechanical forces, which affect
their structural integrity and result in fragmentation (Hidalgo-Ruz et al.,
2012; Kubowicz and Booth, 2017). More than 4000 chemicals are cur-
rently used in plastic food packaging alone (Zimmermann et al.,
2019). With more than 5000 different types of plastic on the market,
the number of chemicals used to make plastics is likely larger
(Zimmermann et al., 2019). Plastic debris (subsequently referred to as
microplastics (MPs)) is therefore highly heterogeneous in terms of
chemical composition, diameter, shape, specific density, and colour.
These characteristics are key factors for their environmental distribu-
tion and bioavailability (Rocha-Santos and Duarte, 2015). Fragments, fi-
bres and films are the most common shapes of plastic debris found in
different environments worldwide (Wagner and Lambert, 2018). In ad-
dition to the presence of various additives, MPs also sorb hydrophobic
organic contaminants (HOCs) (Wright and Kelly, 2017; Gasperi et al.,
2018; Wardrop et al., 2016). Sorption of elements such as cadmium,
zinc, nickel, and lead may also occur (Wright and Kelly, 2017;
Rochman et al., 2014). MPs are considered priority pollutant vectors in
the Stockholm and Basel Convention based on their potential adverse
health effects (Gallo et al., 2018).

In addition to sorbing various toxicants, exposure of MPs to different
environmental conditions may enable the formation of microbial
biofilms on these MPs (Besseling et al., 2017; Foulon et al., 2016). Bio-
film not only can significantly modify the physical properties of MPs,
such as size and density (McCormick et al., 2014), but can also result
in MPs serving as a vector for microbial pathogens (Foulon et al., 2016).

Due to their increasing presence in the environment and their ubiq-
uitous distribution, MPs are among the most prominent environmental
problems faced by government agencies around the world (Catarino
et al., 2018; Nizzetto et al., 2016).

This review addresses the role of MPs as an emerging airborne pol-
lutant with emphasis on the potential effects of inhaled MPs on
human health. Although exposure to microplastics, for example,
through ingestion of food can also have adverse health effects, this re-
view is focused on microplastics as an inhaled toxicant and/or airborne
vector for toxicants and pathogens. To this end, we first discuss the
source and fate ofmicroplastics in the air, based on studieswith both in-
door and outdoor sources. We then discuss their potential effects of in-
halation on human health.

2. Microplastics in the atmosphere: sources and fate

Despite their importance, data on the distribution, shape and size of
MPs in the atmosphere remains disjointed (Gasperi et al., 2018). Several
sources can contribute to the release of MPs into the air, including the
synthetic fabrics from clothing, tire erosion (especially from automo-
biles and trucks), household objects, waste incineration, building mate-
rials, sewage sludge, landfills, abrasive powders, 3D printing, and the
resuspension of polymer fragments in urban dust (Catarino et al.,
2018; UNEP, 2016). Fig. 1 shows the main sources of atmospheric MPs.

In the few reported studies that have characterized the morphology
of MPs in the atmosphere, fibres (length> 5 μm,with 3 μm length to di-
ameter) have been themost commonly reported form (Dris et al., 2015;
Dris et al., 2016; Cai et al., 2017). The increasing use of synthetic fibres
with a diameter of 1–5 μm by the textile industry has contributed di-
rectly and indirectly to textiles as a source of fibrous MPs (Gasperi
et al., 2018). Nylon, polyester, polyolefin, and acrylic are typical man-
made microfibres. Their release into the atmosphere is related to the
use of textiles and thewashing/drying process (Cesa et al., 2017). A sin-
gle garment may release approximately 1900 fibres per wash (Browne
et al., 2011). Industrially, cutting and grinding processes for polymeric
materials can contribute to the formation and release of these particles
in the air (Wright and Kelly, 2017).

MPs may also be released into the atmosphere as a result of wind-
driven transport from dried sludge by-products applied to agriculture
soils (Kasirajan and Ngouajio, 2012). It is known that synthetic fibres,
particles, and microbeads can be found in the sludge of wastewater
treatment plants (WWTPs) (Li et al., 2018; Mahon et al., 2017) and
may subsequently become airborne.

In cities, MPs accumulate in soil and road dust. Polymeric materials
of lowdensitymay be easily suspended/resuspended in the atmosphere
by wind and vehicular traffic flow (Abbasi et al., 2018). Automotive
wear and tear from car tyres are recognized as a source of microplastics
in the atmosphere throughmechanical abrasion (Kole et al., 2017). Syn-
thetic rubber consists of a hydrocarbon-based polymer (styrene-1.3-
butadene rubber (SBR)). Material generated by automotive tire abra-
sion is commonly reported as a particulate matter (PM) constituent in
air pollution studies (Wright and Kelly, 2017). Tyre wear particles
may represent between 0.8 and 8.5% of PM10 mass fraction and
1–10% of PM2.5 in the air (Panko et al., 2019). In the Netherlands, it is
estimated that 17,000 t of rubber tyre-wear are released into the envi-
ronment every year (Verschoor, 2014). In Germany, emissions can
reach up to 92,594 t per year (Kole et al., 2017). The estimated global av-
erage of per capita tyre wear emissions is 0.81 kg per year (Kole et al.,
2017).

Modelling 3D printers are another potential source of MPs in the air.
Fused deposition modelling (FDM) printers commonly use filament
materials such as thermoplastics (acrylonitrile butadiene styrene
(ABS), polylactic acid (PLA), polyamide (nylon) and polyethylene tere-
phthalate (PET)). During the printing process the emission of non-
engineered nano or ultrafine particles may occur. A study by Zhang
et al. (2017) reported a particle concentration of up to 106 particles/
cm3 with mean particle sizes of 20 to 40 nm during an experiment
where a 3D printer using acrylonitrile butadiene styrene (ABS) fila-
ments was run inside a test chamber.

Although some studies report specific sources of MPs in the atmo-
sphere, few investigations have quantified and characterized the pres-
ence of MPs in urban air (Prata, 2018). A study in the Greater Paris



Fig. 1.Main sources of indoor and outdoor plastic debris released into the air and subject to human inhalation.
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region analysed synthetic fibres present in the atmosphere using pas-
sive sampling. They reported the deposition of 29–280 particles/m2/
day or 3.5–7.6 × 1010 MPs/year (Dris et al., 2015). Cai et al. (2017) re-
ported that in the city of Dongguan (China), the concentration of fibrous
and non-fibrous MPs from atmospheric deposition varied from 175 to
313 particles/m2/day. The length of most fibres ranged from 200 to
700 μm. A study conducted by Liu et al. (2019) in Shanghai investigated
the potential source and spatial distribution of atmospheric MPs using
an active suspended particulate sampler. Fibres comprised 67% of all
MPs along with fragments (30%) and granules (30%). Synthetic com-
pounds comprised 54% of the observed particles. In contrast, Stanton
et al. (2019) reported that atmospheric depositions sampled from the
roof of three campuses of the University of Nottingham (UK) had a
high prevalence of natural textile fibres (97.7%) compared to extruded
textile fibres. In London, Wright et al. (2020) found 15 different poly-
mers in the air with deposition rates ranging from 575 to 1008 parti-
cles/m2/day. The large majority of observed MPs in this study were
fibres (92%).

Abbasi et al. (2018) analysed dust deposits collected in Asaluyeh,
Iran, and found an abundance of fibrous MPs (approximately 1 particle
per m3) with sizes ranging from 2 μm–100 μm. Dehghani et al. (2017)
detected 88 to 605 polymeric fragments, ranging in size from 250 to
500 μm, for every 30 g of road dust deposited on the streets of the cen-
tral district of Tehran (Iran).

Outdoor airborneMPs levels are likely to be underestimated as they
may simply be aggregated with other particles as a component fraction
of atmospheric particulate matter (Prata, 2018). So far, no studies have
reported the overall contribution of microplastics as a fraction of atmo-
spheric PM. Particle size, density, meteorological factors and geographic
factors, such as precipitation rates, wind speed and direction, tempera-
ture, and urban topography, may directly affect the behaviour, trans-
port, and residence time of MPs in the atmosphere (Prata, 2018).

Furthermore, airborne microplastics are a potential source of
microplastic pollution in marine environments. It is estimated that be-
tween 1.15 and 2.41 million tonnes of plastic waste enter the ocean
every year from rivers (Lebreton et al., 2017). Airborne MPs may also
enter waterways by deposition. Conversely, it is not known to what ex-
tent water-derived MPs can be a source of airborne MPs. Table 1 shows
the current reported characteristics of observedmicroplastics in the air.

A preliminary study by our group (unpublished) of a high vehicular
traffic street in São Paulo, Brazil, detected the presence of different poly-
mer fibres in the air (Fig. 2).

Most human exposure to airborneMPsmay occur indoors (Catarino
et al., 2018). This has important consequences because Americans and



Table 1
Characteristics of naturally weathered plastic particles observed in the air.

Study Study site Environment Sampling approach Polymer typesa Shape Colours

Dris et al. (2016) Paris Outdoor Atmospheric deposition - Passive sampling PET, PA Fibre N/A
Cai et al. (2017) Dongguan Outdoor Atmospheric deposition - Passive sampling PE, PP, PS Fibre, foam,

fragment, film
N/A

Dris et al. (2017) Paris Indoor/outdoor Atmospheric deposition - Passive sampling PP, PA, PE Fibre N/A
Zhou et al. (2017) Yantai Outdoor Atmospheric deposition - Passive sampling PET, PE, PVC, PS Fibre, foam,

fragment, film
White, black, red, transparent

Dehghani et al. (2017) Tehran Outdoor Street dust – Fibre, spherules,
fragment

Transparent, red, blue, green,
white, yellow, orange, pink, grey

Catarino et al. (2018) Edinburgh Indoor Atmospheric deposition - Passive sampling – Fibre –
Liu et al. (2019) Shanghai Outdoor Total suspended particulate sampler PET, PE, PES, PAN,

PAA, RY, EVA, EP,
ALK

Fibre, fragment,
granule

Yellow, grey, blue, black, red,
transparent, brown, green,

Stanton et al. (2019) Nottingham
region

Outdoor Atmospheric deposition - Passive sampling N/A Fibre Black/grey, blue

Abbasi et al. (2018) Asaluyeh Outdoor Street dust/suspended dust - PM ambient
filter sampler

– Fibre, spherules,
fragment, film

White-transparent, red-pink,
blue-green, black-grey,
yellow-orange

Wright et al. (2020) Central
London

Outdoor Atmospheric deposition - Passive sampling PAN, PES, PA, PP,
PVC, PE, PET, PS,
PUR, PPR

Fibre, fragment,
film, granules,
foams

N/A

a PET: polyethylene terephthalate, PE: polyethylene, PES: polyester, PAN: polyacrylonitrile, PAA: poly(N-methyl acrylamide), RY: rayon, EVA: ethylene vinyl acetate, EP: epoxy, ALK:
alkyd resin, PP: polypropylene, PA: Polyamide, PS: polystyrene, PVC: polyvinyl chloride, PUR: polyurethane, PPR: polymerized petroleum resin.
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Europeans spend on average 90% of their time indoors, whether at
home or at work (ASHRAE, 2010; E.C., 2003). A study conducted by
Vianello et al. (2019) assessed the exposure of humans to indoor air-
borne microplastics using a breathing thermal manikin (simulating
human respiration). All samples contained microplastics, primarily
polyester (59–92%), with concentrations between 1.7 and 16.2 parti-
cles/m3. Similarly, Gasperi et al. (2015) found indoorMP concentrations
ranging from 3 to 15 particles/m3 in several private apartments and one
office. The authors observed a gradient of indoor concentrations accord-
ing to the sampling height, suggesting that MPs are resuspended from
the floor due to human activity. Dris et al. (2017) found a concentration
of fibres ranging from 190 to 670 fibres/mg in household dust collected
using a conventional vacuum cleaner. Catarino et al. (2018) estimated
fibre exposure during a meal (via dust fallout) of 13,731–68,415 air-
borne particles/year/capita in a household. High indoor concentrations
may be explained by the presence of multiple MP sources (household
objects and synthetic fabrics clothing) and the various mechanisms in-
volved in their dispersion such as ventilation rate, airflow, room parti-
tion and climatic conditions (Dris et al., 2016; Catarino et al., 2018).
Fig. 2. Fragments of polymer particles present in the air in the city of São Paulo analysed by trans
Santos Galvão, Chemical Analyses Laboratory, Institute for Technological Research (IPT), São P
3. Potential effects on human health

Several studies have been published in recent years showing that
MPs can have a deleterious toxicological effect on marine organisms
through, for example, accumulation, obstruction, and inflammation in
organs after translocation (Lei et al., 2018; Andrady, 2017; Syberg
et al., 2017; Jeong et al., 2017; Sussarellu et al., 2016). However, many
of the published toxicological studies use primary MPs; this method
does not accurately represent the potential for damage from particles
exposed to various environmental conditions (Wright and Kelly, 2017;
Thompson et al., 2009). As discussed earlier in this review, plastic debris
(secondary particles) is weathered through environmental exposure,
which results in the formation of irregular shapes, a wide size distribu-
tion, and a variety of surface properties, and depends on their life cycle
(comprising mechanical (erosion, abrasion), chemical (photooxidation,
hydrolysis), and biological (degradation by microbes) processes).

Thus, the physical and chemical properties of secondary MPs differ
from the primary microspheres often used for laboratory ecotoxicity
testing. Studies testing the toxicology of secondary MPs are still lacking
missionmicroscopy and infrared spectroscopy attached to themicroscope (by Luciana dos
aulo, Brazil).
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due to technical limitations in isolating ormimicking their environmen-
tal characteristics in the laboratory. The complexity of chemical cock-
tails attached to plastic debris makes safety assessment a challenge.
Most current studies focus on plasticizers such as bisphenol A (BPA)
that are used as additives in polycarbonate plastic production and
have been shown to leach and cause adverse health effects in humans
through estrogenic activity (Vandenberg et al., 2007). Zimmermann
et al. (2019) studied the toxicity of 8 commonly used plastics. The re-
searchers used cell cultures to investigate the effects of the mix of
chemicals in each product. They found that many plastics contain
chemicals that induced general toxicity (six out of ten products), oxida-
tive stress (four out of ten products) and endocrine-disrupting effects
(three out of ten products).

3.1. Inhalation, deposition, and translocation

It is unclear to what extent exposure to airborne MPs is a threat to
public health. Discussion of the potential adverse effects of airborne
MPs on human health has only recently emerged (Wright and Kelly,
2017; Gasperi et al., 2018; Prata, 2018). The fate of inhaled MPs and
their uptake in lung tissue is one of many unknowns. For example,
there is only one report of polymeric fibres in human lung tissue,
which was published more than 20 years ago (Pauly et al., 1998). In
that study, polymeric and cellulosic fibres were found in 97% of malig-
nant lungs (n = 32/33) and in 83% of non-neoplastic lungs (n = 67/
81). The analysed fibres had lengths up to 135 μm and showed little in-
dication of deterioration, which may indicate their bioresistance and
biopersistence in lungs. This single study shows that polymeric fibres
have the potential to penetrate into deeper parts of the lungs and high-
lights the need for confirmation of these findings and more in-depth
analyses. Importantly, studies on, for example, asbestos fibres have
shown that despite their length, such fibres can be deposited in the al-
veolar region of the lung. This result is based on thefinding that asbestos
fibres with lengths ranging from 50 to 200 μmwere found in the alveo-
lar cavity despite their long size (Barlow et al., 2017; Timbrell, 1965). Al-
though physical characteristics of polymeric and asbestos fibres differ,
both are known to resist biodegradation (Pauly et al., 1998).

Particle deposition in the lung is a function of its “aerodynamic di-
ameter” (particle size expressed in terms of settling speed)
(Donaldson et al., 1993). Fibre diameter plays a major role in its breath-
ability, while length is a key determinant of its persistence and toxicity.
Pleural mesotheliomas are usually associated with fibres over 8 μm in
length and less than 0.25 μm in diameter (Donaldson et al., 1993). Fur-
thermore, it is known that the efficiency of fibre deposition increases
with a decrease in diameter (Donaldson et al., 1993).

Fibres can be deposited in terminal bronchioles, alveolar ducts, and
alveoli, resulting in chronic inflammation, granulomas or fibrosis
(Greim et al., 2001; Beckett, 2000). The severity of tissue damage is usu-
ally a function of an inhaled dose over time (Warheit et al., 2001). Greim
et al. (2001) suggested that the interaction between cells and particles/
fibres can cause inflammation, which in turn induces cell proliferation
and secondary genotoxicity due to the continuous formation of reactive
oxygen species (ROS). Overproduction of ROS results in oxidative stress,
causing chronic inflammation and contributing to the pathogenesis of
lung diseases.

Fibre persistence in the lung is related to its aerodynamic properties
(Tian and Ahmadi, 2013). The fibre length to diameter ratio determines
their uptake by alveolar macrophages and affects mucociliary clearance
rates. Usually, long, thin fibres are incompletely phagocytosed and are
more biologically active than short fibres (Donaldson et al., 1993).
These persistent particles can translocate into the epithelial layers
(Donaldson et al., 2011) and induce acute or chronic inflammatory
processes.

Occupational exposure studies associate inhalation of pristine MPs
with an increased incidence of interstitial lung disease (Abbasi et al.,
2018; Boag et al., 1999; Eschenbacher et al., 1999). Occupational
exposure to polyvinyl chloride (PVC) dust was associated with exer-
tional dyspnoea and decreased pulmonary function in factory workers
(Soutar et al., 1980). A study conducted by Atis et al. (2005) evaluated
the respiratory effects of occupational polypropylene flock exposure.
The risk of respiratory symptoms increased 3.6-fold in polypropylene
flocking workers when compared to controls. Lung biopsies from
workers exposed to different airborne synthetic fibres (acrylic, polyes-
ter (terylene) nylon) revealed different degrees of inflammation, gran-
ulomas and interstitial fibrosis (Pimentel et al., 1975).

These observations from occupational medicine, combined with the
recent detection of MPs in airborne samples, point to a possible risk for
human exposure via inhalation. Collectively, these studies suggest that
there may be a link betweenMP exposure and development of intersti-
tial lung diseases. The initial triggers for development of interstitial lung
diseases are largely unknown. Further research in this area may reveal
whether naturally weathered MPs could serve as a trigger.

3.2. Lung cell cultures

Few studies have investigated the potential toxic effects of micro-
and nanoplastic particles on cultured human epithelial lung cells as a
model for pulmonary toxicology. Xu et al. (2019) evaluated the effects
of polystyrene nanoparticles (25 nm and 70 nm diameter) on the
human alveolar epithelial A549 tumour cell line. The results show that
these nanoparticles can significantly affect cell viability, can activate in-
flammatory gene transcription, and can change the expression of pro-
teins associated with cell cycle and pro-apoptosis. Dong et al. (2020)
revealed that polystyreneMPs can cause inflammatory and cytotoxic ef-
fects in human lung epithelial BEAS-2B cells by inducing the formation
of reactive oxygen species (ROS).

However, to date, there are no published in vitro studies of pulmo-
nary toxicity based on environmentally relevant conditions or on pri-
mary lung cell cultures. The cited studies used pristine microplastic
spheres.

4. Emerging pollutants?

Plastic waste is one of the greatest contemporary environmental
challenges. Airborne MPs (fragments, fibres and membranes) have
been reported in remote, desolated and uninhabited regions, such as
the French Pyrenees (Allen et al., 2019), Rocky Mountain National
Park, USA (Wetherbee et al., 2019), and regions of the Artic (Bergmann
et al., 2019).

In light of the COVID-19 pandemic, concerns about plasticwaste pol-
lution in the healthcare systemhave increased due to an unprecedented
demand for single-use products such as vinyl gloves, face masks, plastic
ventilator components, visors, gowns, and bags; all of these products are
produced from polymeric materials (Fadare and Okoffo, 2020). The
global medical plastics market is projected to grow from USD 25.1 bil-
lion in 2020 to USD 29.4 billion by 2021 (Research and Markets,
2020). In China, as of Feb 2020, 14.8millionmaskswere being produced
daily (Xinhuanet, 2020). Inadequate disposal of these materials is be-
coming a threat to waterways, soils and possibly also the air.

The usual methods of observation, detection and characterization of
polymeric particles are limited by a sizeminimum of 50 μm, leaving im-
portant questions to be answered regarding the physical/chemical
properties and toxicological potential of smaller particles. To date, few
studies have quantified and characterized airborne MPs. The available
data indicate that MPs are biopersistent, ubiquitous and numerous.

The exposure risk of inhaled MPs for human (respiratory) health is
also unresolved. One of the main questions to be answered is whether
and how naturally weathered inhaled MPs may cause or contribute to
the pathogenesis of different pulmonary diseases. Data on exposure
characteristics such as concentration, size,morphology, and distribution
of different airborne polymers are prerequisites for understanding the
potential effects of MPs on human health.
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Although occupational studies show pulmonary effects associated
with MP inhalation, the doses tested in these studies are probably
higher than those of actual environmental concentrations. However,
an important difference is that sorption of co-pollutants such as transi-
tion metals, organic compounds, and pathogenic microorganisms is
likely lower on the surface of occupational particles than on environ-
mental particles. Many of the deleterious health outcomes associated
with MPs may be related to the desorption of these contaminants in
the respiratory system following inhalation. Another question to be ad-
dressed is whether inhaled MPs can translocate to the blood and/or be
carried to mediastinal lymph nodes.

Given the heterogeneous characteristics, sources, and fates of MPs, it
is necessary to reconceptualize microplastics as a new class of contam-
inant, rather than as a single pollutant - as suggested by Rochman et al.
(2019). Combined with the realization that inhaled MPs constitute a
significant threat to humanhealth, as discussed in this review and an in-
creasing number of reports, new avenues of research are needed to ad-
dress the plastic pollution challenge.
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