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Objective. Myocardial ischemia and reperfusion (I/R) injury is associated with oxidative stress and inflammation, leading to scar
development and malfunction. The marine omega-3 fatty acids (ω-3 FA), eicosapentaenoic acid (EPA), and docosahexaenoic
acid (DHA) are mediating cardioprotection and improving clinical outcomes in patients with heart disease. Therefore, we tested
the hypothesis that docosahexaenoic acid (DHA) supplementation prior to LAD occlusion-induced myocardial injury (MI)
confers cardioprotection in mice. Methods. C57BL/6N mice were placed on DHA or control diets (CD) beginning 7 d prior to
60min LAD occlusion-induced MI or sham surgery. The expression of inflammatory mediators was measured via RT-qPCR.
Besides FACS analysis for macrophage quantification and subtype evaluation, macrophage accumulation as well as collagen
deposition was quantified in histological sections. Cardiac function was assessed using a pressure-volume catheter for up to 14 d.
Results. DHA supplementation significantly attenuated the induction of peroxisome proliferator-activated receptor-α (PPAR-α)
(2:3 ± 0:4 CD vs. 1:4 ± 0:3 DHA) after LAD occlusion. Furthermore, TNF-α (4:0 ± 0:6 CD vs. 1:5 ± 0:2 DHA), IL-1β (60:7 ± 7:0
CD vs. 11:6 ± 1:9 DHA), and IL-10 (223:8 ± 62:1 CD vs. 135:5 ± 38:5 DHA) mRNA expression increase was diminished in
DHA-supplemented mice after 72 h reperfusion. These changes were accompanied by a less prominent switch in α/β
myosin heavy chain isoforms. Chemokine mRNA expression was stronger initiated (CCL2 6 h: 32:8 ± 11:5 CD vs. 78:8 ±
13:6 DHA) but terminated earlier (CCL2 72 h: 39:5 ± 7:8 CD vs. 8:2 ± 1:9 DHA; CCL3 72 h: 794:3 ± 270:9 CD vs. 258:2 ±
57:8 DHA) in DHA supplementation compared to CD mice after LAD occlusion. Correspondingly, DHA supplementation
was associated with a stronger increase of predominantly alternatively activated Ly6C-positive macrophage phenotype,
being associated with less collagen deposition and better LV function (EF 14 d: 17:6 ± 2:6 CD vs. 31:4 ± 1:5 DHA).
Conclusion. Our data indicate that DHA supplementation mediates cardioprotection from MI via modulation of the
inflammatory response with timely and attenuated remodeling. DHA seems to attenuate MI-induced cardiomyocyte injury
partly by transient PPAR-α downregulation, diminishing the need for antioxidant mechanisms including mitochondrial
function, or α- to β-MHC isoform switch.

1. Introduction

Coronary heart disease (CHD) is a significant health concern
in the western world with increasing prevalence and the lead-
ing cause of death in Europe, accounting for €60 billion in
health care costs annually [1]. Timely coronary reperfusion

using either percutaneous coronary intervention (PCI) or
thrombolytic therapy is the most effective strategy for limit-
ing infarct size, preserving left-ventricular (LV) function,
and therefore preventing myocardial injury and the develop-
ment of heart failure [2]. Despite early onset therapies, in
hospital mortality has risen up to 14% and productivity loss
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accounts for 38% of CHD-related health care costs [1].
Therefore, novel therapeutic approaches are required to
reduce MI size, preserve LV function, and improve clinical
outcomes after MI.

Although an early intervention reestablishing coronary
perfusion is essential for myocardial salvage after MI, reper-
fusion itself triggers a further injury [3]. This so-called ische-
mia/reperfusion (I/R) injury is an inherent response to the
restoration of blood flow involving numerous mechanisms
including the increased generation of reactive oxygen spe-
cies (ROS), acute calcium overload of cardiomyocytes, and
opening of the mitochondrial permeability transition pore
(MPTP), leading to uncoupled oxidative phosphorylation
and thus contractile dysfunction. These insults further
aggravate myocardial remodeling after MI, through
increased generation of proinflammatory and proapoptotic
molecules resulting in myocyte death, collagen deposition,
and scar formation, exacerbating the development of heart
failure [4, 5]. In summary, reperfusion itself induces addi-
tional cardiac damage that is responsible for up to 50% of
infarct size, making this cascade of events a viable target
for therapeutic interventions [3]. Currently, there is no
effective clinical therapy preventing the deleterious conse-
quences of myocardial I/R injury. Therefore, attenuating
I/R injury is an important target for cardioprotection and
a promising therapeutic approach to improve clinical out-
comes after an acute MI.

Inflammation is pivotal for the development of heart fail-
ure, and an unrestricted inflammatory response is associated
with worse prognosis after MI [6, 7]. Furthermore, excessive
increases in inflammatory mediators, e.g., cytokines, have
been shown to induce myocardial injury, including impaired
cardiomyocyte contractility and excessive myocardial
remodeling [8–11]. Myocardial reperfusion after ischemia
generates an imbalance between reactive oxygen species
(ROS) and the capacity of cells to defend against them, lead-
ing to increased ROS generation. The inducible transcription
factor peroxisome proliferator-activated receptor-γ (PPAR-
γ) regulates various cardiovascular processes and reduces
I/R injury-induced cardiac inflammation and ROS genera-
tion [12]. Elevated ROS levels consume and surpass the anti-
oxidant capacity of the injured myocardium, significantly
contributing to oxidative stress generation and affecting pro-
tein function, resulting in myocardial damage with morpho-
logical and functional abnormalities [13]. In cardiac I/R
injury, significant sources of ROS are inflammation-
induced phagocyte-type NAD (P) H oxidase and mitochon-
drial metabolism-associated fatty acid oxidation [14, 15].
Excessive ROS generation opens the mitochondrial perme-
ability transition pore (MPTP) further contributing to myo-
cardial injury and contractile dysfunction. Mitochondrial
uncoupling proteins (UCP) have been shown to protect car-
diomyocytes from ROS-induced cell death and heart failure.
Furthermore, UCP overexpression has been reported as an
adaptive mechanism against oxidative stress in various car-
diac pathologies. ROS overproduction and oxidative stress
play key roles for the development of cardiac injury, promot-
ing complications of cardiac reperfusion [16]. Thus, prevent-
ing I/R injury-induced ROS generation is an important target

for the development of novel strategies to preserve cardiac
function after MI.

Polyunsaturated fatty acids (PUFAs) are a group of met-
abolic active lipid molecules. The marine omega-3 fatty acids
(ω-3 FA), eicosapentaenoic acid (EPA), and docosahexaenoic
acid (DHA) are beneficial for health outcomes [17], mediat-
ing cardiovascular benefits in preclinical studies and improve
clinical outcomes in patients with MI, potentially through
modulation of inflammation and antioxidant effects [18,
19]. Long-lasting ω-3 FA intake is reported to reduce mortal-
ity up to 45% and morbidity (myocardial infarction, arrhyth-
mia) in adult patients with cardiovascular disease [20].
Consequently, supplementation is recommended for patients
with prevalent CHD such as a recent MI [21, 22]. DHA is
either obtained from diet but can also be synthesized from
EPA [23, 24]. Thus, various investigations used combinations
of DHA and EPA to investigate ω-3 FA effects on cardiac
health. The OMEGA-REMODEL trial proved that high-
dose DHA/EPA supplementation beginning at the onset of
MI improved LV function after 6 months [18]. However,
underlying mechanisms, signaling pathways, and effectors
of DHA/EPA-mediated prevention of I/R injury-induced
cardiac dysfunction in acute MI remain to be revealed
[24, 25]. DHA/EPA modulate numerous receptors and
decrease the generation of intracellular reactive oxygen spe-
cies with a subsequent diminished activation of redox-
sensitive transcription factors through its incorporation
into cellular membranes. In addition to inflammatory reso-
lution, DHA has numerous effects that include oxygen con-
sumption, mitochondrial energy metabolism, contractile
function, calcium signaling, and ROS generation, poten-
tially protecting the cardiovascular system [26–28].

Previous attempts to translate cardioprotective strategies
for I/R injury from the experimental into the clinical setting
have not been successful, potentially due to an incomplete
understanding of the underlying molecular mechanisms
including inflammation, oxidative stress, calcium overload,
mitochondrial dysfunction, and different cell types affected
[29]. However, most approaches targeted just one mecha-
nism, but several of these mechanisms interact. Therefore,
understanding these interactions and targeting multiple
mechanisms are essential to prevent I/R injury-induced car-
diac dysfunction. DHA and EPA interact with many mecha-
nisms that are associated with the development of I/R injury-
induced cardiac dysfunction including inflammation, ROS
generation, matrix remodeling, and mitochondrial metabo-
lism [26]. Therefore, ω-3 FA are promising therapeutics
and understanding its interactions in myocardial I/R injury
may help to reduce infarct size, prevent the development of
LV dysfunction, and improve clinical outcomes after MI.

2. Materials and Methods

2.1. Animal Protocol. All animals were handled according to
the animal protocol and to the EU Directive 2010/63/EU for
animal research. Experimental procedures have been
approved by the government animal care and use committee
“Landesamt für Natur, Umwelt und Verbraucherschutz
NRW” (50.203.2-BN 43, 28/01). 20–25 g and 10–12 weeks
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old male C57BL/6 mice were purchased from Charles River
(Sulzfeld, Germany). To limit transportation and social
stress, mice were housed at our facility for at least 7 days prior
to the experiments. Animals were placed in plastic cages filled
with autoclaved bedding in a filtered flow cage rack on a 12-
hour light/dark cycle with free access to water and standard
rodent chow. All mice were sacrificed by cervical dislocation
at the end of the experiment.

2.2. Closed Chest Mouse Model of LAD Occlusion. Before sur-
gery perioperative analgesia was performed using carpro-
fen 5mg/kg s.c. and Temgesic 0.1mg/kg s.c. Anesthesia
was then induced with 3% isoflurane (Forene®, Abbott)
and maintained with 0.8% isoflurane in 100% O2. Left
parasternal thoracotomy was performed for implantation
of the ligature (8-0 Prolene suture, Ethicon, Norderstedt,
Germany) around the left descending coronary artery
(LAD). The suture ends were threaded through a sterile
PE10 tube (Becton Dickinson, Franklin Lakes, NJ, USA),
exteriorized through the thoracic wall, and stored subcuta-
neously [30]. After chest closure, cefuroxime suspension
was injected i.p. (50mg/kg, Zinacef; Bristol-Myers Squibb,
Munich, Germany) for antibiotic prophylaxis. Mice were
allowed to recover for 7–10 days from initial surgery
intervention.

2.3. Induction of Myocardial Ischemia and Reperfusion (I/R).
Myocardial ischemia was induced under the same analgesic
and anesthetic measures as described above. The LAD liga-
ture ends were connected to heavy metal picks, and LAD
occlusion for 60min was achieved by pulling the picks apart
as described previously [30]. Myocardial ischemia was con-
firmed by visualization of ST segment elevation in EKG lead
II of Einthoven. The hearts were reperfused after removal of
the LAD ligature. Persistence of ST-segment elevation con-
firmed myocardial infarction. After reperfusion, the hearts
were excised at different time points, dissected free from the
atria and great vessels, and rinsed in ice-cold cardioplegic
solution.

2.4. Experimental Groups and Protocols. To evaluate whether
ω-3 FA pretreatment associated mechanisms mediating car-
dioprotection for I/R injury-induced LV dysfunction, after
implantation of the LAD ligature, C57BL/6N mice were ran-
domly distributed to receive either DHA or control diet (CD)
beginning 7 days prior to I/R and for the duration of the
experiment. DHA and control diets were identical with the
exception of the composition of the ω-3 FA, and 7 days of
diet supplementation has shown to increase DHA concentra-
tions and attenuate inflammation and oxidation in other
pathologies [31–33]. Linoleic acid was used as a source for
ω-6 FA, and amounts were similar in CD and DHA diets.
However, total ω-3 FA contents were similar in control and
DHA diets, but 37% ω-3 FA content in the DHA diet was
DHA and the remaining half was linolenic acid from flaxseed
oil, while in the control diet, the entire amount of ω-3 FA was
linolenic acid (Table 1).

A purified diet with higher linolenic acid concentrations
that is metabolized to arachidonic acid was chosen to isolate

the effects of preformed DHA supplementation from those of
the precursor α-linolenic acid and to avoid variability in stan-
dard chows [34].

2.4.1. In Vivo Functional Analysis Using Millar® Pressure-
Volume Left Heart Catheter.Anesthetized mice (0.8% isoflur-
ane) were ventilated, and the jugular vein was cannulated
with microenathane-033 tubing for hypertonic saline admin-
istration. After warming, the conductance catheter probe was
advanced into the LV through the right carotid artery. Data
collection was initiated after baseline stabilization. TheMillar
catheter uses conductance to determine relative volume units
or “RVU.” Once RVU’s are measured, we then use a known
volume of blood from the individual mouse using mock-up
cylinders with known volumes to convert to a known volume
[35]. Furthermore, inferior vena cava occlusion was used to
measure the end-systolic pressure-volume relationship
(ESPVR) and end-diastolic pressure-volume relationship
(EDPVR), which are the index of ventricular filling pressures.

2.4.2. Immunohistochemistry. For immunohistochemistry,
Vectastain Elite ABC kits and diaminobenzidine (AXXORA,
Lörrach, Germany) were used. Cell density was described as
cells/mm2, as previously reported and evaluated by a histo-
logical technician blinded for group assignment [31–33].
For mouse-derived antibodies, the mouse-on-mouse
(M.O.M) immunodetection kit (AXXORA) was used.
MAC-2 rat anti-mouse antibody (clone 3/38) was used for
macrophages (Cedarlane, Ontario, Canada).

2.4.3. Collagen Content. Excised hearts where fixated in 10%
buffered zinc-formalin followed by paraffin embedding.
5μm sections from the level of the papillary muscle insertion
were stained with hematoxylin and eosin (HE) or picrosirius
red (SR), as previously described [36]. Quantitative analysis
was accomplished by light microscopy with a video-image
analyzer. Planimetric evaluation of collagen was performed
on one section, including all four sites of the left ventricular
myocardium, each at 100x magnification. Data was given as
a percentage of the total left ventricular area. Collagen-
stained vessels and pericardium were excluded.

2.4.4. Flow Cytometry Analyses (FACS). LV tissue was
homogenized, inflammatory cells were labeled with fluores-
cence AB, and single-cell suspensions from the heart were
generated as previously described [37]. The following anti-
bodies from Thermo Fisher and BioLegend (San Diego, CA,
USA) were used: CD45 (AFS98), F4/80 (BM-8), Gr1 (RB6-
8C5), CD11c (N418), CD4 (RM4-5), CD8 (53-6.4), and
B220 (RA3-6B2). In addition, the Annexin V-FITC Apopto-
sis Detection Kit (Thermo Fisher) was used according to the
manufacturer’s protocol. We performed flow cytometry on a

Table 1: Diet composition.

PUFA Control diet DHA diet

Linoleic (18 : 2) 3.00 g/kg 2.9 g/kg

Linolenic (18 : 3) 0.7 g/kg 0.43 g/kg

DHA (22 : 6) 0.0 g/kg 0.26 g/kg
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FACS-Canto II, LSR II, and Fortessa (BD Biosciences, Hei-
delberg, D), and data was analyzed with FlowJo software
(TreeStar, Ashland, OR, USA).

2.4.5. Gene Expression Analysis. Gene expression was mea-
sured on a transcriptional level using Taqman® real-time
quantitative RT-qPCR. FAM-TAMRA-linked customized
primers were used in an ABI Prism 7900HT Sequence Detec-
tion System and SDS2.4 software (Applied Biosystems/Life
Technologies, Karlsruhe, Germany). The mRNA expression
was related to shams and GAPDH using the comparative
ΔΔCt-method [38].

2.4.6. Statistical Analysis. Normal distribution was tested,
and data was presented as mean ± SEM. Statistical analysis
was performed by two-way ANOVA and Bonferroni post
hoc testing (PRISM 5.1; GraphPad, La Jolla, CA, USA). P <
0:05 was considered statistically significant.

3. Results

3.1. DHA Supplementation Attenuates MI-Induced Systolic
and Diastolic Dysfunction. To evaluate whether DHA pre-
treatment attenuates the development of MI-induced LV
dysfunction, we examined the pressure-volume parameters
of LV function in CD- and DHA-pretreated mice 14 days
after 60min of LAD occlusion-induced myocardial infarc-
tion (MI). Left ventricular end-systolic pressure (LVESP)
was not different between sham or MI groups, regardless of
DHA or CD pretreatment (Figure 1(a)). However, left ven-
tricular end-diastolic pressure (LVEDP) significantly
increased in CD mice 14 days after MI, compared to respec-
tive sham. Nevertheless, LVEDP remained at sham levels in
DHA-supplemented mice and was significantly lower com-
pared to CD mice 14 days after MI (Figure 1(b)). Mice with
surgical MI had poorer ejection fraction (EF), but DHA pre-
treatment improved EF in the MI group compared to CD
(Figure 1(c)). Peak pressure decline (dP/dtmin) was reduced
in CD-fed mice compared to sham 14 days after MI. How-
ever, dP/dtmin was sustained at sham levels in DHA-
supplemented mice 14 days after MI and was significantly
higher compared to CD mice at the same time point
(Figure 1(d)). No differences were observed in peak pressure
rise (dP/dtmax) 14 days after MI in CD- or DHA-
supplemented mice compared to respective sham
(Figure 1(e)). Isovolumic relaxation constant (Tau) increased
in CD mice compared to sham 14 days after MI. However,
Tau remained at sham levels in DHA-supplemented mice
and was significantly lower compared to CD mice 14 days
after MI (Figure 1(f)). Two-way ANOVA indicated effects
of DHA supplementation, MI, and an interaction between
EF and Tau. Furthermore, statistical analyses indicated inde-
pendent effects of DHA supplementation and MI on LVEDP
and dP/dtmin.

3.2. DHA Supplementation Modulates Cytokine Expression
after MI. Sham procedure did not induce a sustained cyto-
kine expression 7 days after LAD ligature implantation com-
pared to native animals. However, the murine myocardium
exhibited a marked mRNA upregulation of inflammatory

cytokines after 60min LAD occlusion compared to sham
mice. TNF-α mRNA expression was increased in CD
mice 6 h and 24h after MI, while DHA-supplemented
mice exhibited just a brief induction 6h after MI com-
pared to respective sham. Furthermore, MI-induced
TNF-α mRNA expression increase was significantly lower
in DHA-supplemented mice 6 h and 72 h after MI com-
pared to CD groups (Figure 2(a)). Furthermore, IL-1β
mRNA expression was increased in CD mice 24h and
72 h after MI compared to respective sham, while MI-
induced IL-1β mRNA expression occurred in DHA-
supplemented mice already at 6 h and was terminated
after 24 h. Furthermore, IL-1β mRNA expression was sig-
nificantly greater in CD mice 72 h after MI compared to
DHA-supplemented mice (Figure 2(b)). IL-10 mRNA was
upregulated 72h after MI in both CD- and DHA-
supplemented mice. However, in mice with surgical MI,
the DHA pretreatment was associated with a lower IL-
10 expression than CD 72h after MI (Figure 2(c)). MI-
induced cytokine mRNA expression demonstrated a sim-
ilar pattern in DHA-supplemented mice; however, induc-
tion occurred earlier, levels were lower, and increase was
terminated sooner compared to respective CD mice
(Figures 2(a)–2(c)). Two-way ANOVA indicated indepen-
dent effects of DHA supplementation and MI on TNF-α
mRNA expression and an effect of MI on IL-1β and
IL-10 expressions.

3.3. DHA Supplementation Modifies Inflammatory Response
after MI. Data shown in Figure 3 demonstrate an effect of
DHA supplementation on MI-induced inflammation. CCL2
chemokine expression was increased in CD mice 6 h, 24 h,
and 72 h after MI, while DHA-supplemented mice only
exhibited CCL2 mRNA increases at 6 h and 24h after MI
compared to respective sham. However, CCL2 mRNA induc-
tion was significantly greater in DHA-supplemented mice 6 h
after MI but terminated earlier compared to CD animals
(Figure 3(a)). Furthermore, CCL3 mRNA expression was
increased in CD mice compared to respective sham and
DHA-supplemented mice 72 h after MI, while remained
unchanged in DHA-supplemented mice compared to sham
(Figure 3(b)). Fluorescence-activated cell sorting (FACS)
analysis revealed greater increases in cardiac neutrophil and
macrophage populations in DHA-supplemented mice com-
pared to the CD group 3d after MI (Figures 3(c) and 3(d)).
Most importantly, cardiac macrophage population shifted
from a more proinflammatory Ly6C+ to a more anti-
inflammatory and proremodeling Ly6C- phenotype in
DHA supplemented compared to the CD group
(Figures 3(e) and 3(f)).

In accordance with FACS analyses, MAC-2-stained his-
tological sections revealed a large macrophage accumulation
7 days after I/R injury in both CD- and DHA-supplemented
groups. However, DHA-supplemented mice showed a signif-
icantly greater infiltration of MAC-2-positive cells compared
to CD-fed mice 7 days after I/R injury (Figures 3(g)–3(i)).
Two-way ANOVA revealed effects of MI and an interaction
between DHA supplementation and LAD occlusion on
CCL2 and CCL3 mRNA expressions.
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3.4. DHA Supplementation Modifies Collagen Expression and
Reduces LV Scar Formation after MI. TGF-β mRNA was
increased in both CD- and DHA-supplemented groups 24 h
and 72 h after MI (Figure 4(a)). Collagen I and III mRNA
expressions were also increased in both groups 72 h after
MI compared to respective sham. However, collagen I

mRNA expression was significantly lower in DHA-
supplemented mice compared to the CD group
(Figures 4(b) and 4(c)). Furthermore, analyses of picrosirius
red-stained histological sections revealed less collagen depo-
sition in DHA supplemented compared to CDmice 14d after
MI (Figures 4(d) and 4(e)). Two-way ANOVA indicated the
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Figure 1: Improved cardiac function in DHA-supplemented mice after MI: functional parameters of (a) left ventricular end-systolic pressure
(LVESP), (b) left ventricular end-diastolic pressure (LVEDP), (c) ejection fraction (EF), (d) peak pressure decline (dP/dtmin), (e) peak pressure
rise (dP/dtmax), and (f) isovolumic relaxation constant (Tau), were analyzed 14 d after sham or MI in CD- or DHA-supplemented mice. n = 8
mice per group ∗P < 0:05.
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effects of MI on TGF-β, collagen I, and collagen III mRNA
expressions and an interaction of MI with DHA supplemen-
tation on collagen I expression.

3.5. Myocardial Adaptation Mechanisms toward Ischemic
Injury in DHA-Supplemented Mice. α-Myosin heavy chain
(MHC) mRNA expressions were decreased in both CD-
and DHA-supplemented mice 6 h after MI. However, α-
MHC mRNA expression returned to sham levels in DHA-
supplemented mice, while remained lower in CD mice com-
pared to DHA supplemented and respective sham 72h after
MI (Figure 5(a)). Furthermore, β-MHC expression was sig-
nificantly increased in CDmice 24 h and 72 h after I/R injury,
while DHA-supplemented mice only exhibited a transient
increase in β-MHC expression 24 h after MI compared to
respective sham. Most notably, β-MHC expression was sig-
nificantly greater in CD compared to DHA-supplemented
mice 24h after MI (Figure 5(b)). Glutathione peroxidase 1
(GPx1) mRNA expressions were increased in both CD- and
DHA-supplemented mice 24 h and 72 h after MI. However,
GPx1 mRNA induction was also significantly greater in CD
compared to DHA-supplemented mice 72 h after MI

(Figure 5(c)). Heme oxygenase 1 (HOX-1) mRNA expression
increased in CD mice 72 h after MI compared to DHA sup-
plemented and respective sham. Furthermore, HOX-1
remained at sham levels in DHA-supplemented mice. Two-
way ANOVA indicated the effects of MI on α-MHC, β-
MHC, GPx1, and HMOX-1 mRNA expressions. However,
there were independent effects of DHA supplementation on
β-MHC and HMOX-1 and also an interaction of MI and
DHA supplementation on β-MHC, GPx1, and HMOX-1
mRNA expressions.

3.6. DHA Preconditioning Impacts mRNA Expression of
Enzymes Involved in Fatty Acid Metabolism. Peroxisome
proliferator-activated receptor alpha (PPAR-α) mRNA
expression was lower in DHA-supplemented mice 6 h after
MI compared to respective sham. In opposition, PPAR-α
mRNA expression increased in CD mice 72h after MI com-
pared to DHA-supplemented and respective sham mice
(Figure 6(a)). Mitochondrial uncoupling protein 3 (UCP 3)
mRNA expression was increased in DHA-supplemented
native and sham compared to CD mice. However, UCP 3
mRNA expression decreased in DHA supplemented, while
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Figure 2: mRNA expression profile of inflammatory mediators. (a) TNF-α, (b) IL-1β, and (c) IL-10 mRNA expressions were analyzed in the
murine myocardium of native, sham, and MI-exposed mice that were CD or DHA supplemented. n = 7 mice per group, ∗P < 0:05.
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Figure 3: Continued.
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increased in CD mice 6 h after MI compared to respective
sham and DHA-supplemented mice. 24 h after MI UCP 3
mRNA expression was still reduced in DHA-supplemented
mice, while returned to sham in CD groups with no differ-
ence between CD- and DHA-supplemented mice at this time
point. However, UCP 3 mRNA expression increased in
DHA-supplemented mice, while remained decreased in CD
with a similar expression pattern compared to respective
sham 72h after MI (Figure 6(b)).

4. Discussion

The present study shows for the first time that modulation of
the inflammatory response and adapted energy metabolism
may play a role in the beneficial effect of DHA pretreatment
on reperfused MI. Various studies investigating ω-3 FA
effects on cardiac health report positive effects using either
DHA, EPA, or combinations since DHA is retroconverted
to EPA, especially at higher concentrations as used in our
investigation [22, 24, 39, 40]. The present study used diets
with similar omega-6 FA content and higher preformed
DHA, but not EPA in DHA diet, in order to decrease con-
founding by individual and rate-limiting differences in
long-chain polyunsaturated fatty acid metabolism [41]. Fur-
thermore, the herein used concentration has been shown to
increase DHA serum and tissue concentrations [31, 42],
which was beneficial in pulmonary and neurological diseases

in rodents [32, 33]. Male mice were chosen to eliminate the
complex cardioprotective effects that have been reported for
all estrogen receptor subtypes against I/R injury, and a puri-
fied diet was chosen as the basis for both diets to avoid vari-
ability in standard chows [43].

The observed LV dysfunction in CD mice after reper-
fused MI is in accordance with previous studies from our
groups and others [44–48]. However, in the present study,
DHA supplementation beginning 7 days prior to MI
resulted in sustained systolic and diastolic LV function that
was characterized by lower end-diastolic pressure (EDP),
greater ejection fraction (EF), and reduced isovolumetric
relaxation (Tau) 14 d after 60min LAD occlusion compared
to CD-fed mice, with no difference in end-systolic blood
pressures. These data suggest that DHA pretreatment has
physiological consequences on the development of MI-
induced LV dysfunction, preserving cardiac function in
mice. The observed DHA-induced attenuation of MI-
induced LV dysfunction adds to cardioprotective effects of
other omega-3 FA in a Langendorff perfusion model
reporting that an intravenous bolus of EPA: DHA 6: 1 pro-
tects against myocardial ischemia-reperfusion-induced
injury [23]. Furthermore, preserved LV function in DHA-
pretreated mice 14 days after MI is in line with the clinical
data from the OMEGA-REMODEL trial, demonstrating
that in humans, the combination of DHA and EPA ω-3
FA ethyl ester supplementation beginning after the onset

CD MI
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DHA MI
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7 d 14 d
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Figure 3: In mice with surgical MI, the DHA pretreatment was associated with a different inflammation pattern compared to the CD group.
Cardiac (a) CCL2 and (b) CCL3 chemokine mRNA expressions were analyzed in the murine myocardium of native, sham, and MI-exposed
mice that were CD or DHA supplemented. FACS analyses of cardiac neutrophil and macrophage populations in (c) CD or (d) DHA and
phenotyping of macrophages in (e) CD- or (f) DHA-supplemented mice 3 d after MI. MAC-2 staining of representative histological left
ventricular sections of cardiac macrophages in (g) CD- or (h) DHA-supplemented mice 7 d after MI and quantification (i) n = 7 mice per
group, ∗P < 0:05.
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of STEMI improved LV function after 6 months. In sum-
mary, the preserved LV function in DHA-pretreated mice
after reperfused MI is corroborated by the current clinical
and experimental literature and suggests that DHA pre-

treatment attenuates I/R injury-induced cardiac dysfunc-
tion in mice. Our study goes beyond this to investigate
molecular mechanisms of omega-3 FA-induced cardiopro-
tection following ischemia/reperfusion injury.
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mice per group, ∗P < 0:05. Representative picrosirius red-stained histological sections from (d) CD- and (e) DHA-supplemented mice 14 d
after I/R.

9Oxidative Medicine and Cellular Longevity



Even though ω-3 FA effects have been heavily studied in
the context of MI, little is known about the beneficial meta-
bolic and anti-inflammatory mechanisms that decrease the
risk of heart failure associated with worse prognosis after
MI if unrestricted. Various studies show the therapeutic
potential of attenuating cardiac disease development via
modulating the inflammatory response to various insults [8,
11, 48–50].

In our study, DHA pretreatment was associated with an
attenuation of cytokine expression. Furthermore, DHA leads
to earlier and stronger initiation, but prompter termination
of macrophage chemoattractant CCL2 expression. This data
suggests that DHA treatment results in restricted inflamma-
tion, potentially attenuating remodeling in reperfused MI.

This inflammatory stimulus is also followed by an
increased macrophage infiltration in DHA-treated mice 7 d
after MI, returning to baseline levels after 14 d. This strong
but timely restricted inflammation in DHA-treated mice cor-
roborates our hypothesis of timely and therefore attenuated

remodeling. Accordingly, DHA treatment leads to less colla-
gen deposition, resulting in smaller infarct sizes after reper-
fused MI. In this regard, we found that the peak of
macrophages in DHA mice after 7 d consisted mainly of
alternatively activated Ly6C-positive macrophage pheno-
type, being accompanied by less collagen deposition and bet-
ter LV function in DHA-pretreated mice after 14 d. In
summary, this data suggests that a stronger remodeling stim-
ulus leads to a more rapid and compacted scar formation and
thus smaller infarct size in DHA-supplemented mice. There-
fore, the beneficial effect of DHAmay depend on modulation
of the inflammatory response initiated by MI.

The expression of the myosin heavy chain (MHC) sub-
units is developmentally regulated and inappropriate expres-
sion associated with cardiomyopathies [51, 52]. Furthermore,
heart failure is characterized by numerous molecular changes
in contractile pathways including a switch from α- to β-
MHC isoform [52–54]. β-MHC is characterized by lower
ATP consumption and therefore higher efficiency,
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Figure 5: DHA-related cardiomyocyte adaptation after MI. MHC switch and induction of oxidative enzymes: myocardial (a) α-MHC, (b) β-
MHC, (c) GPX, and (d) HOXmRNA expressions were analyzed in the murine myocardium of native, sham, and MI-exposed mice that were
CD or DHA supplemented. n = 7 mice per group, ∗P < 0:05.
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potentially being advantageous and implying that the α- to
β-MHC shift may be an adaptive response to myocardial
injury [44, 48].

In our study, α-MHC mRNA expression showed a tran-
sient decrease after MI in both CD- and DHA-pretreated
mice, indicative of favorable molecular changes in both
groups (Figure 5(a)). Further, a significant increase in β-
MHC expression was seen in both CD- and DHA-
supplemented mice after 24 h. Interestingly, β-MHC expres-
sion was significantly greater in CD compared to DHA-
pretreated mice 24h after MI, indicative of a lesser need for
cardiomyocyte adaptation after DHA treatment
(Figure 5(b)). Thus, the lower β-MHC mRNA upregulation
in DHA-pretreated mice may be indicative of a cardioprotec-
tive mechanism possibly mediated through improved energy
supply or altered metabolism.

Another important mechanism protecting cardiomyo-
cyte adaption against myocardial injury consists of the
reduction of oxidative stress, which modulates inflamma-
tory response [55, 56]. Glutathione peroxidase (GPx)
reduces peroxides to nonreactive products and decreases
function that induces cardiac matrix remodeling [57].
Also, HOX-1 induction is absent in mice supplemented
with DHA in strong contrast to CD; here, significant
induction of HOX-1 72 hrs after MI strongly indicates
antioxidative mechanisms playing a key role in DHA-
mediated cardioprotection, as reported by others [44].
Therefore, our data show that DHA pretreatment reduced
MI-induced GPx1- and HOX-1 expressions (Figures 5(c)
and 5(d)), suggesting that DHA pretreatment induces
other antioxidative mechanism potentially protecting the
heart from I/R injury-induced LV remodeling.

As to this, cardiomyocytes also protect themselves
against oxidative stress via mitochondrial uncoupling protein
(UCP) 3, separating oxidative phosphorylation from ATP
synthesis and protecting mitochondria from ROS generation

[58]. Supplementation of omega-3 fatty acids specifically
induces cardiac UCP 3 expression, and overexpression pro-
tects cardiomyocytes through reduced ROS generation and
apoptosis from I/R injury cardiomyocyte dysfunction and
preventing cardiomyocyte death, all involved in the develop-
ment of LV dysfunction [59–62]. The induced UCP 3 mRNA
expression seen in the myocardium of DHA supplementa-
tion sham mice is congruent with in vitro and in vivo studies
potentially preventing MI-induced oxidative stress [63–65].
The fact that UCP 3 expression decreases after I/R injury in
DHA-pretreated mice is surprising, but downregulation of
UCP 3 has been reported after I/R injury through the nuclear
transcription factor peroxisome proliferator-activated recep-
tor- (PPAR-) α [66, 67]. We have previously shown that pres-
sure overload-induced hypertrophy as well as repetitive I/R is
associated with a transient downregulation of PPAR-α and
that pharmacological reactivation of PPAR-α as well as
MHC-specific PPAR-α overexpression worsens contractile
function, suggesting that substrate switching from fatty acid
to glucose utilization in the stressed heart may preserve con-
tractile function [58, 68, 69]. Accordingly, we show here a
transient reduction of PPAR-α expression in both CD and
DHA mice after 6 h, but only being significant in DHA-
supplemented mice compared to respective sham. This data
is in accordance with previous results from the above-
mentioned studies but also suggests a cardioprotective effect
of DHA via reduced fatty acid uptake and oxidation. We
hypothesize that significant I/R injury-induced PPAR-α
downregulation in DHA-supplemented mice results in
reduced fatty acid uptake and oxidation. We further specu-
late that reduced β-oxidation in DHA-supplemented mice
may not act as an adequate trigger for early UCP 3 upregula-
tion at this time point. Also, within time, UCP 3 induction
normalizes to sham levels in DHA-supplemented mice,
potentially interconnecting transient UCP 3 downregulation
to PPAR-α expression.
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Figure 6: DHA pretreatment attenuates PPAR expression and enhances uncoupling protein expression post-MI; both are cardioprotective.
(a) Peroxisome proliferator-activated receptor alpha (PPAR-α) and (b) mitochondrial uncoupling protein 3 (UCP 3) mRNA expressions were
analyzed in the murine myocardium of native, sham, and MI-exposed mice that were CD or DHA supplemented. n = 7 mice per group,
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In summary, our data suggest that DHA supplementa-
tion induces cardioprotection from myocardial ischemia
and reperfusion injury through modulation of inflammatory
response with early macrophage attraction but timely and
attenuated remodeling. DHA seems to induce cardiomyocyte
protection at least in part by transient PPAR-α downregula-
tion with subsequently reduced UCP 3 expression and oxida-
tion, diminishing the need for antioxidant mechanisms
including mitochondrial function, or switch of MHC-
isoforms from high ATP consuming α- to energetically more
efficient β-isoforms.

5. Conclusions

Cardiac dysfunction and detrimental myocardial remodeling
after MI are consequences of ROS generation, inflammation,
and altered energy metabolism. Various promising experi-
mental cardioprotective interventions have targeted individ-
ual contributors of I/R injury in animal models but have
failed after translating into the clinical setting. However, MI
is multifaceted and includes inflammation, ROS generation,
and altered energy metabolism. Our study shows for the first
time that DHA interacts with inflammation, ROS generation,
LV matrix remodeling, cardiomyocyte metabolism, and con-
tractile elements and is therefore targeting multiple mecha-
nisms involved in cardiac I/R injury, attenuating MI-
induced development of cardiac dysfunction.
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