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Rheumatoid arthritis (RA) is an autoimmune disease characterized by erosive arthritis, which has not been thoroughly cured yet,
and standardized treatment is helpful for alleviating clinical symptoms. Here, various bioinformatics analysis tools were
comprehensively utilized, aiming to identify critical biomarkers and possible pathogenesis of RA. Three gene expression datasets
profiled by microarray were obtained from GEO database. Dataset GSE55235 and GSE55457 were merged for subsequent
analyses. We identified differentially expressed genes (DEGs) in RStudio with limma package, performing functional enrichment
analysis based on GSEA software and clusterProfiler package. Next, protein-protein interaction (PPI) network was set up
through STRING database and Cytoscape. Moreover, CIBERSORT website was used to assess the inflammatory state of RA.
Finally, we validated the candidate hub genes with dataset GSE77298. As a result, we identified 106 DEGs (72 upregulated and
34 downregulated genes). Through GO, KEGG, and GSEA analysis, we found that DEGs were mainly involved in immune
response and inflammatory signaling pathway. With the help of Cytoscape software and MCODE plug-in, the most prominent
subnetwork was screened out, containing 14 genes and 45 edges. For ROC curve analysis, eight genes with AUC >0.80 were
considered as hub genes of RA. In conclusion, compared with healthy controls, the DEGs and their closely related biological
functions were analyzed, and we held that chemokines and immune cells infiltration promote the progression of rheumatoid
arthritis. Targeting the eight biomarkers we identified may be useful for the diagnosis and treatment of rheumatoid arthritis.

1. Introduction

Rheumatoid arthritis (RA) is an autoimmune disease, mainly
destroying synovium and joints, characterized by autoanti-
bodies that target immunoglobulin G (known as rheumatoid
factor, RF) and citrullinated proteins (called anticitrullinated
protein antibodies, ACPAs) [1]. Some epidemiological stud-
ies conducted in western countries showed that the preva-
lence of rheumatoid arthritis is about 0.5-1.0% [2, 3].
Rheumatoid arthritis is a complicated disease due to the
changeable clinical manifestations and complications in dif-
ferent patients or disease stages, which brings difficulties to
the clinical work of doctors.

The serological detection of autoantibodies is a crucial
indicator in the diagnosis and prognosis of rheumatoid

arthritis, but about 25% of patients are seronegative and thus
may experience a delay in diagnosis as well as initiation of
drug therapy [4]. Moreover, it was estimated that 50% of
seropositive patients had negative serum test results at the
beginning of the disease [5]. Previous studies have shown
that proinflammatory cytokines in inflammatory synovium,
such as interleukin-8, can stimulate osteoclasts proliferation
and then result in bone resorption of RA patients [6–8].
However, some scholars found that bone destruction may
also occur in ACPA-positive individuals without detectable
inflammation conditions [9]. A recent study supporting the
latter result demonstrated that monoclonal ACPAs derived
from B cells in the synovial fluid of RA patients have obvious
epitope specificity, which promotes the differentiation of
osteoclasts in cell cultures [10]. Although the pathogenetic
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insights, classification criteria, and therapeutic strategies of
RA have been updated in the past 20 years, some patients
are still unable to achieve satisfactory clinical remission or
have serious adverse reactions to antirheumatoid therapy,
so more efforts are required to address these unmet needs.

The microarray technology has emerged for more than
20 years, which makes it possible to analyze the complete
transcriptional information of various cell types and tissues
[11]. Studies based on gene expression analysis have obtained
new findings, elucidating how the transcriptome varies
among distinct phenotypes and stages of disease [12, 13].
The Gene Expression Omnibus (GEO) is a user-friendly
repository, in which stores microarray, next-generation
sequencing, and other forms of genomics data for users to
query and download. Here, we aimed to dissect biomarkers
and inflammation state of rheumatoid arthritis by compre-
hensively applying multiple bioinformatics analysis tools
including R packages from Bioconductor, STRING database,
CIBERSORT website, Cytoscape, and GSEA software. The
findings in our study may contribute to novel ideas for better
diagnosis and treatment of rheumatoid arthritis.

2. Materials and Methods

2.1. Data Download and Processing. Three microarray
datasets GSE55235, GSE55457 [14], and GSE77298 [15]
were obtained from the GEO database (https://www.ncbi
.nlm.nih.gov/geo). A total of 20 normal synovial tissues and
23 diseased specimens were enrolled from dataset GSE55235
and GSE55457, whose detection platforms were identical
(GPL96, HG-U133A). The dataset GSE77298 was based on
GPL570 platform (HG-U133 Plus 2), containing 7 synovium
samples from healthy controls (HC) and 16 from RA patients.
According to the research plan, the former two datasets were
merged as training dataset to explore hub genes, and mRNA
profiles of GSE77298 were used to assess whether the discov-
ered hub genes have excellent diagnostic value for RA.

Data processing was divided into four steps. First, the
three probe expression matrix files (∗series_matrix.txt)
downloaded from GEO database were normalized and log2
transformed. Next, we matched the platform annotation file
with each probe expression matrix and well-annotated
probes were retained. For multiple probes corresponding
to one gene, the average expression value was taken for fur-
ther analysis. Third, we merged the expression matrix of
GSE55235 and GSE55457 into one, and the order of samples
in dataset was rearranged. Last, R package sva, installed from
Bioconductor (https://bioconductor.org/), was applied to
eliminate the heterogeneity caused by different experimental
batches and platforms.

2.2. Identification of DEGs. Differentially expressed genes
(DEGs) were screened out by limma package [16] based on
the comparison of expression values between HC samples
and RA samples. The screening criteria for DEGs were as fol-
lows: log2 fold change (FC) should be greater than 2 or less
than -2 and adjusted p value <0.05. The analysis results were
presented by heatmap and volcano map drawn in RStudio
software (version:1.2.1335).

2.3. Functional Enrichment Analysis. The Bioconductor
package clusterProfiler [17] was applied to carry out Gene
Ontology (GO) and KEGG pathway analysis for DEGs.
Based on the threshold p value <0.05, GO terms and signal
pathways with significant enrichment were screened out.
Gene Set Enrichment Analysis (GSEA) is a software codeve-
loped by UC San Diego and Broad Institute [18, 19], which
assesses whether a predefined gene set shows statistically
significant differences between two biological phenotypes
(e.g., HC and RA). Expression dataset collapsed to gene
symbol and phenotype information were uploaded to
GSEA for enrichment analysis with default parameters.
Hallmark gene sets (h.all.v7.1.symbols.gmt) selected in the
present study were downloaded from Molecular Signatures
Database (MSigDB) [20, 21]. Enrichment results with nom-
inal p value <0.01 as well as FDR <0.25 were considered
statistically significant.

2.4. Immune Infiltration Analysis. Online analysis tool
CIBERSORT(https://cibersort.stanford.edu/), a method for
calculating the cell proportion of complex tissues based on
gene expression profiles, is superior to other methods in
terms of large-scale analysis of RNA mixtures [22]. In this
study, we used CIBERSORT to characterize the inflamma-
tion state of RA and healthy joint tissue with default signa-
ture gene file (22 types of immune cells). The analysis result
was filtered according to p value <0.05, and the immune cell
composition of each sample was shown in barplot.

2.5. PPI Network Construction and Module Analysis. In order
to explore the mutual relationship between proteins encoded
by different genes, DEGs were imported into STRING web-
site (version:11.0) for further analysis [23]. The lowest inter-
action score should be greater than 0.4 and isolated nodes in
the network were removed. Next, we output the analysis
results to a TSV format file and used Cytoscape software
(version:3.7.1) for details processing and module analysis.
MCODE [24] is a plug-in downloaded from Cytoscape App
Store, which can find closely connected nodes in a complex
network based on topology. Therefore, we applied this
plug-in to detect critical modules in PPI network with default
parameters.

2.6. Verification of Hub Genes by ROC Analysis. Genes in the
most significant module identified by MCODE plug-in were
selected as candidate hub genes. To evaluate the role of can-
didate genes in the diagnosis of RA, receiver operating char-
acteristic (ROC) curve analysis was conducted in RStudio
with pROC package [25]. The genes with area under curve
(AUC) >0.8 as well as p value <0.05 were considered as hub
genes of RA.

3. Results

3.1. Identification of DEGs. By using limma package to ana-
lyze the differential expression of the integrated dataset, we
obtained 106 DEGs composed of 72 upregulated and 34
downregulated genes. DEGs screened by threshold were visu-
alized by volcano map (Figure 1(a)). The expression of top 25
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upregulated and downregulated genes ordered by adjusted p
value in each sample was shown by heatmap (Figure 1(b)).

3.2. GO and KEGG Enrichment Analysis. Enrichment analy-
sis conducted by clusterProfiler package revealed the biolog-
ical functions and pathways related to DEGs. As is shown in
Figure 2(a) and Table 1, GO annotation of DEGs consists
three parts (BP, CC, MF) and top 8 terms of each category
were listed. GO analysis results revealed that the biological
functions of DEGs were mainly related to immune cells infil-
tration and inflammatory signaling pathway. The top 10
pathways of KEGG analysis (Figure 2(b) and Table 2) indi-
cated that DEGs were involved in signal transduction and
inflammatory response-related pathways, such as chemokine
signaling pathway, cytokine-cytokine receptor interaction,
Th cells differentiation, IL−17 signaling pathway, and Toll-
like receptor signaling pathway.

3.3. GSEA Analysis. The overall expression data and hallmark
gene sets were loaded into GSEA software for further analy-
sis. Hallmark gene sets contain 50 gene sets, representing
well-annotated biological functions or processes determined
by integrating multiple MSigDB datasets. According to the
filter threshold of analysis results, complement and inter-
feron alpha response gene sets were significantly upregulated
in RA samples. Normalized Enrichment Score (NES) and
nominal p value were presented in the upper right corner of
the plot (Figures 3(a) and 3(b)).

3.4. Immune Infiltration Analysis. CIBERSORT analytical
tool can accurately calculate levels of 22 types of leukocyte
subpopulations in synovial tissues profiled by microarray.
Based on significance threshold p value <0.05, 4 samples
(GSM1332203, GSM1332205, GSM1332206, GSM1332208)
were abandoned. Figure 4(a) shows the composition of
immune cells in 23 RA samples and 16 normal samples. Wil-
coxon test was conducted to determine whether there was a
significant difference in immune cell infiltration between
RA and HC samples. In violin plot (Figure 4(b)), it was
revealed that memory B cells, plasma cells, CD8 T cells, acti-
vated CD4 memory T cells, T cells follicular helper, mono-
cytes, and macrophages M1 were abundant in RA synovial
membrane.

3.5. PPI Network Construction andMCODE Plug-in Analysis.
PPI network constructed by STRING database was adjusted
and visualized by Cytoscape (Figure 5(a)). Upregulated genes
were marked with red color, and downregulated genes were
blue. The diameters of nodes were positively correlated with
their connectivity degree. In order to figure out the core mod-
ules of complex network, we performed MCODE plug-in
analysis and identified 5 modules. The most significant mod-
ule with the highest score (module score:6.923) was shown in
Figure 5(b), containing 14 genes and 45 edges.

3.6. Validation of Hub Genes with GEO Database. The 14
genes screened by MCODE plug-in, which could be used to
distinguish RA patients from healthy controls, were consid-
ered as candidate hub genes. To further validate the expres-
sion of these 14 genes in synovium of other patients, we

selected GSE77298 as testing dataset and performed ROC
analysis in RStudio. The analysis results were available in
Figure 6. Among the 14 genes, eight genes (CCR5, CCL5,
CXCL9, CXCL10, CXCL13, PNOC, TLR8, and CD52) with
AUC more than 0.80 were considered as hub genes, indicat-
ing that they have the capability to diagnose RA patients with
excellent specificity and sensitivity.

4. Discussion

Rheumatoid arthritis is an autoimmune nature joint disease
with irreversible cartilage destruction and bone erosion [1].
If not treated promptly and effectively, RA can seriously
reduce the quality of life and even cause disability. There is
no doubt that understanding diseases at the molecular level
will help to improve their diagnosis and treatment [26, 27].
Up to now, various biomarkers have been identified to be
associated with rheumatoid arthritis and may be selected as
therapeutic targets, but the detailed mechanism of gene reg-
ulation leading to disease progression remains elusive [28,
29].

In our study, we aimed to identify biomarkers of RA and
uncover their biological functions through bioinformatics
analysis. Dataset GSE55235 and GSE55457 were selected as
training dataset in our analysis. As a result, 72 upregulated
and 34 downregulated DEGs, at least 4-fold change between
RA and normal samples, were screened out. Next, the DEGs
were annotated by performing functional enrichment analy-
sis, and we observed that these genes were closely related to
immune response and inflammatory signaling, such as
humoral immune response, chemokine signaling pathway,
antigen receptor-mediated signaling pathway, Th17 cell dif-
ferentiation, and IL-17 signaling pathway. Previous studies
have shown that the infiltration of Th17 cells in synovium
is a typical pathological change of RA [30, 31], which releases
abundant IL-17A, IL-17F, IL-6, and mediates the activation
of neutrophils. An animal experiment indicated that block-
ade of IL-17 can delay the destruction of articular cartilage
by inhibiting local inflammatory reaction in the collagen-
induced arthritis (CIA) mice [32]. In addition to cytokines,
chemokines were also suggested to be involved in systemic
inflammatory disorders [33–35]. It has been reported that
elevated plasma chemokine level was discovered in RA
patients, and CXCL10 can be served as a diagnostic bio-
marker for active rheumatoid arthritis [36]. Similarly, the
GSEA results based on all gene expression information
revealed that 2 gene sets (interferon alpha response and com-
plement) were significantly enriched in RA phenotype at
nominal p value <0.01. Considering the crucial role of
inflammatory response and leukocyte infiltration in the path-
ogenesis of RA, we carried out CIBERSORT analysis to
explore the differences between two groups in the distribu-
tion of immune cells. Compared with healthy controls, mem-
ory B cells, plasma cells, activated CD4 memory T cells, T
cells follicular helper, monocytes, and M1 macrophage were
abundant in RA synovial membrane, which was consistent
with the published studies [37, 38].

A PPI network of DEGs was established using STRING
website and Cytoscape software. With the help of MCODE
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Figure 1: Visualization of differentially expressed genes (DEGs). (a) DEGs screened by threshold (adjusted p value <0.05 and |logFC| >2)
were presented by volcano map. (b) Heatmap showed the expression of top 25 upregulated and downregulated genes ordered by adjusted
p-value.
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Figure 2: Results of functional enrichment analysis. (a) GO analysis results of DEGs, top 8 terms of each category were listed. (b) The top 10
pathways of KEGG analysis.
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plug-in, we screened out the most significant subnetwork,
which consists of 14 nodes and 45 edges. Moreover, we vali-
dated the above 14 genes by performing ROC analysis with
the testing dataset GSE77298. As a result, 8 genes with p value
<0.05 as well as AUC >0.80 showed excellent diagnostic
value for rheumatoid arthritis, and thus were considered as
hub genes of RA, including CCR5, CCL5, CXCL9, CXCL10,
CXCL13, PNOC, TLR8, and CD52.

The chemokine system is a large and complicated family,
containing more than 50 ligands and 25 receptors [39]. Che-
mokines can be divided into four subfamilies, known as CXC,
CC, CX3C, and XC, according to the position difference of

cysteine residues. Correspondingly, there are four types of
receptors that can bind to their ligands and have the ability
to trigger a Gαi-mediated signaling pathway [40, 41]. In
inflammatory diseases like rheumatoid arthritis, chemokines
mediate the migration of leukocytes into synovial membrane,
participating in angiogenesis, endothelial activation, synovial
hyperplasia, and regulation of cartilage metabolism [42–45].
Pandya [36] found that chemokine CXCL9, CXCL10,
CXCL13, CCL4, and CCL22 were significantly higher in the
blood plasma of RA patients compared to healthy people by
multivariate discriminant analysis. Besides, various studies
based on targeting of chemokines and their receptors have

Table 1: GO analysis results of DEGs (top 8 terms of each category were listed).

Ontology ID Description Adj. p value Count

BP GO:0050900 Leukocyte migration 2.33E-08 18

BP GO:0050851 Antigen receptor-mediated signaling pathway 2.33E-08 15

BP GO:0002449 Lymphocyte mediated immunity 6.91E-08 15

BP GO:0051249 Regulation of lymphocyte activation 6.91E-08 17

BP GO:0050853 B cell receptor signaling pathway 2.54E-07 10

BP GO:0002429 Immune response-activating cell surface receptor signaling pathway 3.05E-07 16

BP GO:0030098 Lymphocyte differentiation 4.36E-07 14

BP GO:0006959 Humoral immune response 4.36E-07 14

CC GO:0009897 External side of plasma membrane 1.28E-08 17

CC GO:0042571 Immunoglobulin complex, circulating 7.02E-06 7

CC GO:0019814 Immunoglobulin complex 8.86E-06 9

CC GO:0042101 T cell receptor complex 0.008265 5

CC GO:0001772 Immunological synapse 0.012398 3

CC GO:0072562 Blood microparticle 0.012678 5

CC GO:0042613 MHC class II protein complex 0.030215 2

CC GO:0098802 Plasma membrane receptor complex 0.033455 6

MF GO:0034987 Immunoglobulin receptor binding 8.86E-06 7

MF GO:0008009 Chemokine activity 1.34E-05 6

MF GO:0045236 CXCR chemokine receptor binding 1.51E-05 4

MF GO:0042379 Chemokine receptor binding 5.51E-05 6

MF GO:0003823 Antigen binding 7.28E-05 8

MF GO:0005125 Cytokine activity 7.80E-05 9

MF GO:0048018 Receptor ligand activity 0.000201 12

MF GO:0001664 G protein-coupled receptor binding 0.002229 8

Table 2: Top 10 pathways of KEGG analysis.

ID Description Adj. p value Count

hsa04060 Cytokine-cytokine receptor interaction 1.44E-05 13

hsa04061 Viral protein interaction with cytokine and cytokine receptor 0.000459 7

hsa04062 Chemokine signaling pathway 0.002564 8

hsa04659 Th17 cell differentiation 0.003911 6

hsa03320 PPAR signaling pathway 0.005839 5

hsa04658 Th1 and Th2 cell differentiation 0.011245 5

hsa04657 IL-17 signaling pathway 0.011245 5

hsa04640 Hematopoietic cell lineage 0.01248 5

hsa04620 Toll-like receptor signaling pathway 0.013885 5

hsa05020 Prion diseases 0.026379 3
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Figure 3: GSEA analysis of DEGs. (a) Enrichment plot for complement. (b) Enrichment plot for interferon alpha response.
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Figure 4: Immune infiltration analysis performed by CIBERSORT. (a) Barplot showed the composition of immune cells in 23 RA samples
and 16 normal samples. (b) The content of 22 types of immune cells in HC (blue color) and RA (red color) samples was compared.
p value <0.05 was considered statistically significant.
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been widely taken out for therapeutic purposes. Tofacitinib
is a Janus kinase inhibitor and has been proved to inhibit
chemokines secretion in synovium, including CXCL10,
CXCL13, and CCL2 [46]. In animal experiments, the use
of receptors inhibitors also achieved fine therapeutic effect.
J‐113863, an antagonist of CCR1, has positive effects on
the CIA model of murine [47], and adjuvant-induced
arthritis in rats can be inhibited by Met-RANTES, a drug
blocking CCR1 and CCR5 [48]. All these findings sug-
gested that chemokines act as a key factor in the patholog-
ical process of RA and deserve more attention.

TLR8, a gene encoding Toll-like receptor 8, was predom-
inantly expressed in peripheral blood leukocytes, playing a

fundamental role in antimicrobial immune responses and
autoimmune inflammation [49]. TLR7 and TLR8 are located
at the membranes of endosomal compartment, involved in
recognizing viral RNA [50, 51]. Toll-like receptor signaling
pathway, stimulated by the adaptor protein MyD88, modu-
lates NFкB, IRF-7, and MAPK activation, resulting in the
release of proinflammatory cytokines and cell adhesion mol-
ecules [52]. CD52, also known as EDDM5, is a low molecular
weight glycoprotein that is abundant in B and T cells [53].
Alemtuzumab, the first therapeutic anti-CD52 antibody,
has been shown to be effective in the treatment of autoim-
mune diseases such as RA and inflammatory bowel disease.
However, in recent studies, alemtuzumab has been found to
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Figure 6: Validation of candidate hub genes by ROC curve analysis. Among the 14 genes screened out by MCODE plug-in, eight genes with
AUC more than 0.80 were considered as hub genes of RA.
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result in long-term immunosuppression, particularly deplet-
ing CD4+ T cells, and increase the risk of opportunistic infec-
tion [54, 55]. Therefore, in the future clinical practice, it is
essential to pay attention to the dynamics of immune recon-
stitution and the results of immunosuppression. Unlike the
genes discussed above, PNOC is rarely mentioned in previ-
ous rheumatoid arthritis studies, and thus needs more explo-
ration. This gene encodes a preproprotein, which is the
precursor of nociceptin. A previous study demonstrated that
the mRNA expression of PNOC and NOP was suppressed by
lipopolysaccharide as well as inflammatory cytokines [56]. In
the current study, PNOC gene is upregulated in RA patients,
which may stimulate the secretion of cytokines, further
aggravate the inflammatory response of synovium and
become a vicious circle.

5. Conclusions

In summary, we integrated multiple bioinformatics tools and
found that chemokines and immune cell infiltration were
extremely critical factors in the progression of rheumatoid
arthritis. The eight hub genes we identified may serve as
potential therapeutic targets for RA and further investiga-
tions are required to support our conclusions.
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