Table 5.
Model | Level-0 | Level-1 | Level-2 | Level-3 | MicroF1 | ||||||||||||
|
Pa | Rb | F1 | P | R | F1 | P | R | F1 | P | R | F1 |
|
||||
CNNc [16] | 0.908 | 0.940 | 0.924 | 0.380 | 0.236 | 0.291 | 0.351 | 0.415 | 0.380 | 0.250 | 0.231 | 0.240 | 0.841 | ||||
LSTMd [16] | 0.896 | 0.936 | 0.916 | 0.294 | 0.288 | 0.257 | 0.324 | 0.262 | 0.289 | 0.714 | 0.192 | 0.303 | 0.832 | ||||
BERTe [16] | 0.942 | 0.894 | 0.917 | 0.323 | 0.502 | 0.393 | 0.468 | 0.489 | 0.478 | 0.574 | 0.152 | 0.240 | 0.834 | ||||
BERT_IDPf [16] | 0.929 | 0.938 | 0.934 g | 0.394 | 0.446 | 0.418 | 0.568 | 0.385 | 0.459 | 0.667 | 0.231 | 0.343 | 0.856 | ||||
RoBERTah | 0.931 | 0.920 | 0.925 | 0.355 | 0.464 | 0.402 | 0.556 | 0.385 | 0.455 | 0.600 | 0.231 | 0.333 | 0.843 | ||||
RoBERTa_IDP | 0.933 | 0.920 | 0.926 | 0.371 | 0.489 | 0.422 | 0.578 | 0.400 | 0.473 | 0.636 | 0.269 | 0.333 | 0.847 | ||||
XLNETi | 0.908 | 0.948 | 0.927 | 0.358 | 0.273 | 0.309 | 0.484 | 0.353 | 0.408 | 0.530 | 0.384 | 0.445 | 0.848 | ||||
XLNET_IDP | 0.933 | 0.920 | 0.926 | 0.361 | 0.471 | 0.409 | 0.577 | 0.431 | 0.493 | 0.625 | 0.192 | 0.294 | 0.846 |
aP: precision.
bR: recall.
cCNN: convolutional neural network.
dLSTM: long short-term memory network.
eBERT: bidirectional encoder representations from transformers.
f_IDP: The model is further trained on the in-domain unlabeled corpus.
gHighest F1 values are indicated in italics.
hRoBERTa: robustly optimized bidirectional encoder representations from transformers pretraining approach.
iXLNET: generalized autoregressive pretraining for language understanding.