Skip to main content
. 2020 Jul 29;8(7):e17958. doi: 10.2196/17958

Table 5.

Performance of deep-learning methods with different language representation models.

Model Level-0 Level-1 Level-2 Level-3 MicroF1

Pa Rb F1 P R F1 P R F1 P R F1
CNNc [16] 0.908 0.940 0.924 0.380 0.236 0.291 0.351 0.415 0.380 0.250 0.231 0.240 0.841
LSTMd [16] 0.896 0.936 0.916 0.294 0.288 0.257 0.324 0.262 0.289 0.714 0.192 0.303 0.832
BERTe [16] 0.942 0.894 0.917 0.323 0.502 0.393 0.468 0.489 0.478 0.574 0.152 0.240 0.834
BERT_IDPf [16] 0.929 0.938 0.934 g 0.394 0.446 0.418 0.568 0.385 0.459 0.667 0.231 0.343 0.856
RoBERTah 0.931 0.920 0.925 0.355 0.464 0.402 0.556 0.385 0.455 0.600 0.231 0.333 0.843
RoBERTa_IDP 0.933 0.920 0.926 0.371 0.489 0.422 0.578 0.400 0.473 0.636 0.269 0.333 0.847
XLNETi 0.908 0.948 0.927 0.358 0.273 0.309 0.484 0.353 0.408 0.530 0.384 0.445 0.848
XLNET_IDP 0.933 0.920 0.926 0.361 0.471 0.409 0.577 0.431 0.493 0.625 0.192 0.294 0.846

aP: precision.

bR: recall.

cCNN: convolutional neural network.

dLSTM: long short-term memory network.

eBERT: bidirectional encoder representations from transformers.

f_IDP: The model is further trained on the in-domain unlabeled corpus.

gHighest F1 values are indicated in italics.

hRoBERTa: robustly optimized bidirectional encoder representations from transformers pretraining approach.

iXLNET: generalized autoregressive pretraining for language understanding.