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Abstract

Large amounts of missing data could distort item parameter estimation and lead to
biased ability estimates in educational assessments. Therefore, missing responses
should be handled properly before estimating any parameters. In this study, two
Monte Carlo simulation studies were conducted to compare the performance of four
methods in handling missing data when estimating ability parameters. The methods
were full-information maximum likelihood (FIML), zero replacement, and multiple
imputation with chain equations utilizing classification and regression trees (MICE-
CART) and random forest imputation (MICE-RFI). For the two imputation methods,
missing responses were considered as a valid response category to enhance the accu-
racy of imputations. Bias, root mean square error, and the correlation between true
ability parameters and estimated ability parameters were used to evaluate the accuracy
of ability estimates for each method. Results indicated that FIML outperformed the
other methods under most conditions. Zero replacement yielded accurate ability esti-
mates when missing proportions were very high. The performances of MICE-CART
and MICE-RFI were quite similar but these two methods appeared to be affected dif-
ferently by the missing data mechanism. As the number of items increased and missing
proportions decreased, all the methods performed better. In addition, the information
on missing data could improve the performance of MICE-RFI and MICE-CART when
the data set is sparse and the missing data mechanism is missing at random.
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Missing data are a common issue in educational assessments, and it may occur for a

variety of reasons (Shi et al., 2019). For example, respondents may forget to answer

some items inadvertently or they may not have enough time to answer some items at

the end of an examination due to test speededness. It is also possible that respondents

may prefer to omit some items just because they are unsure about the right answer.

Since the presence of missing data could yield negative consequences such as bias in

parameter estimates and decrease in statistical power (Roth, 1994), researchers devel-

oped several techniques to handle missing responses. In practice, omitted items are

often regarded as wrong answers (i.e., zero replacement), based on the logic that

respondents would have answered the item to get a score if they had really known the

right answer (De Ayala et al., 2001). In addition to zero replacement, full-information

maximum likelihood (FIML) and multiple imputation (MI) methods have also been

highly recommended for dealing with missing responses (Schafer & Graham, 2002).

Recently, the capabilities of MI have been further improved as MI and recursive par-

titioning methods were combined within a multivariate imputation by chained equa-

tions (MICE) framework (Van Buuren, 2007).

In item response theory (IRT), respondents’ ability levels are estimated based on

their responses to a set of items. The presence of missing responses can have a detri-

mental influence on the parameter estimates when the methods to handle missing data

are not suitable (Andreis & Ferrari, 2012). Therefore, previous studies have compared

the performance of different methods including FIML, MI, and zero replacement for

dealing with missing data within the IRT framework (e.g., Culbertson, 2011; De

Ayala et al., 2001; Finch, 2008). Recently, there has been a growing interest in

employing data mining methods (e.g., random forest, classification and regression

trees) to handle missing data. Previous research showed that data mining methods

outperformed traditional methods for handling missing data when estimating item

parameters for IRT models (e.g., Andreis & Ferrari, 2012; Edwards & Finch, 2018);

however, no studies made a thorough comparison of data mining methods and tradi-

tional missing data techniques for ability estimation in the context of IRT.

The purposes of the current study are twofold. First, this study aims to investigate

the performance of different methods to handle missing data when estimating IRT

ability parameters under several conditions. In the first simulation study, we compared

the accuracy of ability estimates when missing responses were handled by FIML, zero

replacement, MICE with classification and regression trees (MICE-CART), and

MICE with random forest imputation (MICE-RFI). Simulation conditions were sam-

ple size, test length, missing data proportion, and missing data mechanism. Depending

on the missing data mechanism, missing values themselves can also provide useful

information considering that they are related to other observed values or values of

missing data themselves. Therefore, the second purpose of the current study was to

investigate whether incorporating missing responses into the imputation process with

MICE could yield more precise ability estimates. The second simulation study was an

extension of the first simulation study where we recoded missing responses as a new

response category and used them in the imputation to improve the performance of
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MICE-CART and MICE-RFI. As for the first simulation study, the accuracy of result-

ing ability estimates was evaluated under different test lengths, sample sizes, missing

data mechanisms, and missing proportions.

Literature Review

Missing Data Mechanisms

Handling missing data properly is an important task when estimating item and person

parameters from a sparse response matrix. The decision regarding how missing data

should be dealt with depends on several factors, and one of them is the missing data

mechanism. Previous studies have already provided comprehensive discussions for

the following missing data mechanisms: missing completely at random (MCAR),

missing at random (MAR), and not missing at random (NMAR), and interested read-

ers are encouraged to see Rubin (1976) and Graham (2012) for a comprehensive

understanding of missing data analysis. To formulate the missing data mechanisms,

let Y (I 3 J) be a response matrix with observed values Yo and missing values Ym,

and R (I 3 J) be the corresponding missing indicator matrix. Each element Rij equals

to 1 if the observation value Yij is missing and 0 otherwise. Rubin (1976) used the

conditional distribution of R given Y to distinguish three missing data mechanisms.

MCAR occurs when missingness is a completely random process, which means that

there is no systematic cause for missing data, and the probability of missingness only

depends on the probability distribution of R: P(R| Yo, Ym) = P(R). For MAR, the

probability that a variable is missing depends on other observed variables in the data

and it can be expressed as P(R| Yo, Ym) = P(R| Yo). When data are NMAR, the miss-

ingness is due to the variable itself, its covariates with other observed variables, or

other unobserved variables in the study.

In practice, when researchers assume that missingness in response data occurs by

chance, this condition represents MCAR (Huisman & Molenaar, 2001). If a respon-

dent skips some items due to not knowing the correct answer, this condition may be

an example of either MAR or NMAR based on the assumption regarding the under-

lying missingness mechanism (Finch, 2008). Specifically, the condition is considered

as MAR when missing values are related to other measured variables such as a

respondent’s responses to other items (Sulis & Porcu, 2017). For example, respon-

dents’ ability levels could be reflected by the number of correct answers if estimated

ability levels were partly related to missing responses (De Ayala et al., 2001). De

Ayala et al. (2001) argued that highly proficient respondents only omitted items for

which they did not know the answer. However, less proficient respondents were

unable to distinguish items well and except for skipping unknown items, they might

also skip items that they could have answered correctly if they spent enough time on

the items. Unlike MAR, NMAR occurs when missing data are directly related to the

value of the missing variable itself (Edwards & Finch, 2018). For example, items that

respondents are expected to answer incorrectly are more likely to be skipped. In

large-scale assessments, both MAR and NMAR are commonly seen. When the
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missing data mechanism is either MCAR or MAR, both FIML and MI could produce

highly accurate parameter estimates (Little & Rubin, 2002). In addition, the zero

replacement method assumes unanswered items are unknown to respondents, which

might be either MAR or NMAR. Therefore, all these missing data mechanisms

(MCAR, MAR, and NMAR) were investigated in the current study.

Methods to Handle Missing Responses

As previously mentioned, omitted items are often regarded as wrong answers (i.e.,

zero replacement) in large-scale educational assessments. For example, in PISA

(Programme for International Student Assessment), TIMSS (Trends in International

Mathematics and Science Study), and PIRLS (Progress in International Reading

Literacy Study), missing responses are typically scored as incorrect when estimating

abilities for students (Martin et al., 2007; Organisation for Economic Co-operation

and Development, 2009). This approach assumes that respondents who skip some

items on the test do not have adequate proficiency to find the correct answer and thus

their missing responses should be considered incorrect. For a dichotomous item, the

correct answer would be recoded as 1, the wrong or omitted answers would be recoded

as 0 by using the zero-replacement method. However, previous research suggests that

when the zero replacement method is used to handle missing data, this could result in

highly biased estimates (Finch, 2008; Mislevy & Wu, 1996) because respondents may

have to skip some items for different reasons, such as lack of test-taking engagement,

anxiety, and test speededness. Therefore, treating missing responses as incorrect could

lead to the underestimation of respondents’ true ability levels.

FIML is one of the most commonly used approaches to deal with missing data. It

uses the maximum likelihood algorithm with all available data to estimate para-

meters, instead of replacing or imputing missing values (Eekhout et al., 2015). With

FIML, respondents who have missing values in item A would be ignored when esti-

mating item A’s parameters. But, if they respond to item B, their information in item

B would still be used for item B’s parameter estimates. FIML could handle the esti-

mation of parameters and their standard errors in a single step, which is more efficient

and effective compared with data imputation methods (Graham, 2009). Furthermore,

previous research showed that FIML tends to yield unbiased parameter estimates

when the type of missingness is either MCAR or MAR (Enders & Bandalos, 2001).

Finally, FIML is the default missing data technique in most IRT software programs,

making this method convenient to use in practice (Edwards & Finch, 2018).

To date, MI has been widely used for handling missing data (e.g., Leacy et al.,

2017; Rezvan et al., 2015). Following a Bayesian approach, MI creates multiple plau-

sible data sets, with missing values replaced by imputed values, and then appropriately

combines results from each of the plausible data sets (Sterne et al., 2009). Although

several adaptations of MI have been proposed in the literature (e.g., Sulis & Porcu,

2008; Van Buuren & Oudshoorn, 1999), in this study we only discuss MICE-based

methods. The MICE framework assumes that data are drawn from a multivariate
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distribution, and each incomplete variable can be imputed by iteratively sampling

from a conditional distribution (Van Buuren & Oudshoorn, 1999). Specifically, let I =

(I1, I2, . . ., Ik) be a set of k items where each of the items may be partially observed.

When the missing data mechanism is MAR, Ik is imputed from the conditional distri-

bution P(Ik jI t
1, I t

2, . . . , I t
k�1) where t represents a Gibbs sampler iteration counter.

This approach provides greater flexibility in large data sets when there are different

data types to impute. In addition, various estimation algorithms can be adopted within

the MICE framework, such as MICE-CART and MICE-RFI. CART refers to classifi-

cation and regression trees. It constructs a predictive model in the form of decision

trees, by using a set of predictors and cut points to split the sample into several sub-

groups (Friedman et al., 2001). The splitting process is repeated several times to pro-

duce the most accurate model with the best split and the most homogenous subgroups.

In each subgroup (also called leaf), the outcome variable can be either categorical or

continuous, and it draws from the conditional distribution for a set of predictors that

satisfy cut points (Akande et al., 2017). Van Buuren (2012) mentioned that the CART

method shows its strengths when dealing with outliers, nonlinear relationships, and

nonnormal distributions. These strengths also make CART a suitable method for data

imputation. RFI refers to random forest imputation. Unlike CART that only creates a

single decision tree, RFI creates a number of decision trees, which often yields higher

variances across samples (Hastie et al., 2009). Therefore, RFI employs bootstrap meth-

ods to select a random subset of predictors for the splits on each iteration and aggre-

gates results to identify the most stable predictive model. If there is a collinearity issue

due to high correlations among predictors, RFI can address this issue by using highly

correlated predictors in different iterations (Hayes et al., 2015).

Previous studies suggest that using either CART or RFI within the MICE frame-

work could get unbiased parameter estimates with appropriate confidence intervals

(Doove et al., 2014; Shah et al., 2014). In the context of IRT, MICE-RFI and MICE-

CART were found to produce more accurate estimates for item parameters (Edwards

& Finch, 2018), but no literature discussed their performance in the context of ability

estimation. In this study, we assumed that respondents skipped items because they

did not know the correct answers. Under this assumption, the presence of missing

responses for a given item can inform the imputation of other items with missing

responses. To utilize missing responses in the imputation process, missing responses

can be recoded as a separate response category and included as predictors when

replacing missing responses with imputed values. In the second simulation study, we

applied this strategy to the imputation procedures with MICE-CART and MICE-RFI,

which were denoted as MICE-CART2 and MICE-RFI2.

Simulation Study 1

Data Generation

The first Monte Carlo simulation study was conducted using the mirt (Chalmers,

2012) and mice packages (Van Buuren & Groothuis-Oudshoorn, 2010) in R (R Core
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Team, 2019). Data were generated under the 3PL (three-parameter logistic) IRT

model. According to the 3PL model, the probability of a respondent with the ability

parameter u responding to item i correctly can be expressed as

Pi uð Þ= ci + 1� cið Þ e1:7ai u�bið Þ

1 + e1:7ai u�bið Þ , ð1Þ

where u is the ability parameter, ai is the discrimination parameter, bi is the difficulty

parameter, and ci is the lower asymptote, which is also known as the pseudo-

guessing parameter (Birnbaum, 1968). The item parameter distributions were

selected based on the simulation guidelines suggested by previous studies (Bulut &

Sunbul, 2017; Feinberg & Rubright, 2016). Specifically, the ability parameters fol-

low a normal distribution, u ~ N(0, 0.7); difficulty parameters follow a uniform

distribution, b ~U(21.5, 1.5); discrimination parameters follow a log-normal distri-

bution, a ~ ln N(0.3, 0.2); and pseudo-guessing parameters follow a beta distribution,

c ~ Beta(20, 90). The selected sample sizes were 500, 1,000, and 3,000, respectively.

The test length was modified using three conditions: 20, 40, and 60 items. Missing

data proportions were 5%, 15%, 30%, and 40%.

The first study generated three types of missing data, MCAR, MAR, and NMAR.

For MCAR, the desired proportions of missingness (5%, 15%, 30%, or 40%) were

created randomly by replacing original responses with missing responses. For MAR,

we divided the respondents into two groups based on the number of correct responses

and split the data into two parts based on the mean value. The approach for generat-

ing MAR and NMAR was borrowed from previous research (Edwards & Finch,

2018; Enders, 2004; Finch, 2008). For MAR, the first data set including the high-

ability group was generated with lower missing proportions and the second one

including the low-ability group was generated with higher missing proportions. The

average missing proportions were ensured to be equal to the desired missing propor-

tions. For example, under 40% missing data condition, the high-ability group was

generated about 30% missing data and the low-ability group was generated around

50% missing data. Finally, the average missing proportions were equal to 40%.

These missing data were MAR because the missing values were related to observed

variables—the number of correct responses to the nonmissing items. It should be

noted that we did not use ability parameters for the MAR condition since missing

data related to the latent traits could also be considered as NMAR cases (e.g., Rose

et al., 2010; Sulis & Porcu, 2017).

Data generation with NMAR was similar to that of MAR. For NMAR, each

examinee’s incorrect responses in the initial data set were assigned a higher probabil-

ity of being missing while correct responses were assigned a lower probability of

being missing. The mean missing proportions of the entire data set were equal to the

desired proportions (i.e., 5%, 15%, 30%, or 40%). Again, we use the 40% missing

data condition to describe the simulation process. For each item, incorrect responses

were generated around 50% missing data, and correct responses were generated

around 30% missing data. The average missing proportions were equaled to 40%.

Xiao and Bulut 937



This was considered as NMAR because missing responses were related to their true

values directly.

Data Analysis

For the MICE-CART and MICE-RFI methods, the current study conducted 20 itera-

tions to impute five data sets in each replication. MICE-RFI grew 10 trees, which

was the default number in the mice package. This study selected expected a poster-

iori (EAP) to estimate ability parameters. EAP is a noniterative technique based on

the numerical evaluation of the mean and variance (Bock & Mislevy, 1982). The for-

mula for the EAP estimation can be expressed as

�u =

P
Xk

k = 1

q

L Xkð ÞA Xkð Þ

P
k = 1

q

L Xkð ÞA Xkð Þ
, ð2Þ

where Xk refers to a Gauss–Hermite quadrature point, L Xkð Þrefers to the likelihood

function of Xk given the response data fx1, x2, . . . , xng, and A Xkð Þ refers to the corre-

sponding quadrature weight. EAP for ability estimates could be suitable for all

response patterns, including all zero or perfect score patterns. Therefore, several

studies adopted this technique for the ability parameter estimation in IRT (e.g.,

Sakumura & Hirose, 2017; Sinharay, 2016).

The outcomes of interest in this study were the comparisons between true ability

parameters (based on the complete data sets) and estimated ability parameters (based

on the data sets by using different methods to handle missing values). Bias, root mean

square error (RMSE), and Pearson correlation between true ability parameters and

estimated ability parameters were used to evaluate the precision of ability estimates

for each condition. Bias was computed as

Bias =

PN
j = 1 uj � uj

� �
N

, ð3Þ

and RMSE was computed as

RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
j = 1 uj � uj

� �2

N

s
, ð4Þ

where uj represents the estimated ability parameter for respondent j j = 1, . . . , Nð Þ
after missing data were handled, uj represents respondent j’s true ability parameter

based on the complete data set, and N represents the sample size. The smaller values

of bias and RMSE indicated more accurate ability estimates. The Pearson correlation

coefficient was calculated as
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r
uj, uj

=
cov �u, uð Þ

s�usu

, ð5Þ

where cov �u, uð Þ represents the covariance between estimated and true ability para-

meters, s�u represents the standard deviation of �u, and su represents the standard

deviation of u. The higher correlations indicated more accurate ability estimates. It

should be noted that we used estimated ability parameters based on the complete data

sets to represent ‘‘true’’ values rather than ability parameters generated from the nor-

mal distribution since the estimation errors include two parts: one from the missing

data methods and the other from the ability estimation method—EAP. Using the esti-

mated ability parameters could exclude the estimation error caused by EAP. For all

conditions described above, 100 replications were conducted. Since the mean bias

value for each condition was close to zero to three decimal places, the results were

not presented. The average RMSE and correlation results were reported.

Results of Simulation Study 1
Missing Completely at Random Results. Figure 1 shows the RMSE results of ability

estimates for MCAR across different simulation conditions. As the missing propor-

tion increased, RMSE increased for all methods. Zero replacement was the least

accurate method with respect to RMSE. It produced the largest RMSE value when

the sample size was 500, the test length was 20, and the missing proportion was 40%

(RMSE = 0.583). In general, FIML produced much smaller RMSE values, but when

the sample size was 1,000, the test length was 60, and the missing proportion was

5%, the performance of MICE-RFI (RMSE = 0.078) was slightly better than FIML

(RMSE = 0.079), followed by MICE-CART (RMSE = 0.088) and zero replacement

(RMSE = 0.177). Although MICE-CART performed slightly better than MICE-RFI

under most conditions, differences in the RMSE results were quite small. However,

MICE-RFI always produced lower RMSE values than MICE-CART when the test

length was 20, the sample size was 500, regardless of missing proportions. In gen-

eral, increasing the test length improved the performance of missing data handling

methods, but the sample size did not appear to affect RMSE results.

Figure 2 shows the correlation values between true and estimated ability para-

meters. Similar to the RMSE findings, zero replacement performed the worst across

all simulation conditions. It produced the smallest correlation value when the sample

size was 500, the test length was 20, and the missing proportion was 40% (r = .725).

As the missing proportions increased, correlation values decreased for all methods,

regardless of the sample size and test length. Compared with the other methods,

FIML performed the best especially under the conditions with higher missing propor-

tions. There was only one exception when the sample size was 1,000, the test length

was 60, and the missing proportion was 5%, FIML, MICE-CART, and MICE-RFI

yielded very similar correlation values (MICE-RFI: r = .997; FIML and MICE-

CART: r = .996). In general, there were very negligible differences between MICE-

CART and MICE-RFI. The sample size had no impact on the correlation results.
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Missing at Random Results. Figures 3 and 4 present the average RMSE and correlation

results for MAR. In MAR, the performance gap between zero replacement and the

other three methods narrowed down. Even though zero replacement performed the

worst under most conditions, it was able to outperform MICE-RFI when the missing

proportion was 40%, the test length was 20, and the sample size was either 500 or

1,000. Especially when the sample size was 500, the missing proportion was 40%,

the test length was 20, MICE-RFI produced the largest RMSE and the lowest correla-

tion values (RMSE = 0.470, r = .830). FIML always yielded small RMSE and large

correlation values, followed by MICE-CART. The smallest RMSE and the largest

correlation values were obtained when the sample size was 3,000, the missing pro-

portion was 5%, the test length was 60, and the missing data handling technique was

FIML (RMSE = 0.083, r = .996). Increasing missing proportions and shortening the

test length resulted in higher RMSE and lower correlation values; however, sample

size had no impact again. When missing proportions increased, the performance dif-

ference between MICE-CART and MICE-RFI became more apparent.

Figure 1. Average RMSE values across the different simulation conditions when missing data
type is MCAR.
Note. RMSE = root mean square error; MCAR = missing completely at random; FIML = full-information

maximum likelihood; MICE-CART = multiple imputation with chain equations utilizing classification and

regression trees; MICE-RFI = multiple imputation with chain equations utilizing random forest imputation.
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Not Missing at Random Results. Figures 5 and 6 show the average RMSE and correla-

tion results for NMAR. In NMAR, zero replacement outperformed the other three

methods when missing proportions were 5%, regardless of the sample size and test

length. Furthermore, it was the only unbiased method since it produced bias and RMSE

values of 0 and the correlation result of 1. Under other conditions, FIML always yielded

smaller RMSE and larger correlation values, followed by MICE-CART, MICE-RFI,

and last by zero replacement. Similarly, only the missing proportion and test length

conditions had a noteworthy impact on the accuracy of ability estimates.

Simulation Study 2

Data Generation and Analysis

The second Monte Carlo simulation study was designed based on the findings from

the first study. The MAR and NMAR conditions in the first simulation study indi-

cated that lower ability respondents were more likely to skip items and items were

Figure 2. Average correlation values across the different simulation conditions when
missing data type is MCAR.
Note. MCAR = missing completely at random; FIML = full-information maximum likelihood; MICE-CART

= multiple imputation with chain equations utilizing classification and regression trees; MICE-RFI =

multiple imputation with chain equations utilizing random forest imputation.
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more likely to be skipped if respondents were not able to answer correctly. Therefore,

the assumption of zero replacement was met more properly and its performance in

handling missing data was improved substantially. This finding inspired us to

improve the performance of the MICE-based methods by using missingness as auxili-

ary information in the imputation process. Therefore, the second simulation study

included two new methods, MICE-CART2 and MICE-RFI2, which considered miss-

ing responses as a separate response category. In addition, we removed the sample

size conditions, considering sample size had little to no impact on the results in the

first simulation study. To test the performances of MICE-CART2 and MICE-RFI2

more properly, we focused only on higher missing proportions, 30%, 40%, and 70%.

The missing proportion of 70% was added to create a new condition in which the

response data set is highly sparse and thus handing missing data properly would have

significant consequences in terms of ability estimation. The three test length condi-

tions were also included in the second simulation study. However, the second simula-

tion study only focused on the MAR and NMAR conditions because missingness in

the response data had useful information under these two mechanisms. We adopted

Figure 3. Average RMSE values across the different simulation conditions when missing data
type is MAR.
Note. RMSE = root mean square error; MAR = missing at random; FIML = full-information maximum

likelihood; MICE-CART = multiple imputation with chain equations utilizing classification and regression

trees; MICE-RFI = multiple imputation with chain equations utilizing random forest imputation.
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the same method as the first simulation study when generating response data with the

MAR and NMAR patterns.

For both MICE-CART2 and MICE-RFI2, we followed an iterative process. First, all

missing values in dichotomous responses were recoded as a new category ‘‘2’’ except

for Item 1 from which the imputation process was initiated. Second, the recoded items

were used in the imputation process to replace missing values of Item 1. Next, the miss-

ing values (i.e., Category 2) of Item 2 were turned into their original status (not avail-

able) and imputed by using Item 1 (now Item 1 had no missing values) and other items

on the test. This process was repeated until missing data for all items were imputed. For

each condition, this study ran 20 iterations to get five MIs to get the combined results.

There were 10 trees to grow for MICE-RFI methods. The second simulation study fol-

lowed the same data analysis and evaluation criteria as the first study.

Results of Simulation Study 2
Missing at Random Results. Table 1 shows the mean bias, RMSE, and correlation

results across different simulation conditions for MAR. As the test length increased,

Figure 4. Average correlation values across the different simulation conditions when
missing data type is MAR.
Note. MAR = missing at random; FIML = full-information maximum likelihood; MICE-CART = multiple

imputation with chain equations with classification and regression trees; MICE-RFI = multiple imputation

with chain equations with random forest imputation.
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RMSE decreased and the correlation increased for all missing data handling meth-

ods. On the contrary, increasing missing proportions resulted in larger RMSE and

smaller correlation values. These findings were consistent with the results of the first

simulation study. One new finding was that zero replacement outperformed the other

missing data handling techniques when missing proportions were 70%. However,

FIML generally performed the best whereas zero replacement performed the worst,

compared with the other methods. For most conditions, utilizing missing values as a

separate response category improved the performance of MICE-RFI, but it had a

negative impact on MICE-CART except when the test had 20 items with 40% miss-

ing values or data sets were highly sparse (70% missing data). When the missing

proportions were 70% and the test had 60 items, MICE-CART produced the largest

bias value (Bias = 20.005). Under 70% missing conditions, only FIML and zero-

replacement methods retained the mean bias value close to zero to three decimal

places, regardless of the test length (either 20, 40, or 60 items). Under sparse data

scenarios, MICE-CART2 always produced lower RMSE and higher correlation

Figure 5. Average RMSE values across the different simulation conditions when missing data
type is NMAR.
Note. RMSE = root mean square error; NMAR = not missing at random; FIML = full-information

maximum likelihood; MICE-CART = multiple imputation with chain equations utilizing classification and

regression trees; MICE-RFI = multiple imputation with chain equations utilizing random forest imputation.
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values, followed by MICE-CART, MICE-RFI2, and MICE-RFI except for the 20-

item condition. In this case, MICE-RFI2 outperformed MICE-CART.

Not Missing at Random Results. Mean bias, RMSE, and correlation results across dif-

ferent simulation conditions for NMAR are presented in Table 2. Consistent with pre-

vious findings, increasing the number of items and decreasing missing proportions

improved the performance of each missing data handling method. FIML outper-

formed the other missing data handling methods across all conditions, but it yielded a

negative bias when the test had 70% missing values and the test length was 60 items

(Bias = 0.001). While zero replacement kept the mean bias value close to zero to

three decimal places under all conditions, it performed the worst for most conditions

except when missing proportions were 70% and the test had 40 or 60 items. Under

these two conditions, MICE-RFI2 and MICE-CART2 produced the largest RMSE

and the smallest correlation values. In addition, using missing values as a separate

category always improved the performance of MICE-RFI but weakened the perfor-

mance of MICE-CART. When the test had 20 items and 40% missing data, MICE-

Figure 6. Average correlation values across the different simulation conditions when
missing data type is NMAR.
Note. NMAR = not missing at random; FIML = full-information maximum likelihood; MICE-CART =

multiple imputation with chain equations utilizing classification and regression trees; MICE-RFI = multiple

imputation with chain equations utilizing random forest imputation.
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Table 1. Average Bias, RMSE, and Correlation Values for MAR.

Method Test length Missing proportion (%) Bias RMSE Correlation

FIML 20 30 0.000 0.339 .916
MICE-CART 20 30 0.000 0.366 .902
MICE-RFI2 20 30 0.000 0.367 .900
MICE-CART2 20 30 0.000 0.373 .897
MICE-RFI 20 30 0.000 0.373 .896
Zero replacement 20 30 0.000 0.443 .854
FIML 40 30 0.000 0.282 .951
MICE-CART 40 30 0.000 0.304 .942
MICE-RFI2 40 30 0.000 0.311 .940
MICE-CART2 40 30 0.000 0.314 .938
MICE-RFI 40 30 0.000 0.314 .938
Zero replacement 40 30 0.000 0.384 .908
FIML 60 30 0.000 0.250 .964
MICE-CART 60 30 0.000 0.268 .958
MICE-RFI2 60 30 0.000 0.278 .955
MICE-RFI 60 30 0.000 0.280 .954
MICE-CART2 60 30 0.000 0.283 .953
Zero replacement 60 30 0.000 0.348 .929
FIML 20 40 0.000 0.406 .877
MICE-CART2 20 40 0.000 0.437 .857
MICE-CART 20 40 0.000 0.443 .853
MICE-RFI2 20 40 0.000 0.445 .850
Zero replacement 20 40 0.000 0.465 .845
MICE-RFI 20 40 0.000 0.470 .830
FIML 40 40 0.000 0.348 .924
MICE-CART 40 40 0.000 0.373 .912
MICE-CART2 40 40 0.000 0.378 .910
MICE-RFI2 40 40 0.000 0.382 .908
MICE-RFI 40 40 0.000 0.401 .898
Zero replacement 40 40 0.000 0.422 .891
FIML 60 40 0.000 0.311 .943
MICE-CART 60 40 0.000 0.332 .935
MICE-CART2 60 40 0.000 0.341 .931
MICE-RFI2 60 40 0.000 0.344 .930
MICE-RFI 60 40 0.000 0.358 .924
Zero replacement 60 40 0.000 0.400 .907
Zero Replacement 20 70 0.000 0.585 .738
FIML 20 70 0.000 0.658 .642
MICE-CART2 20 70 0.000 0.681 .607
MICE-RFI2 20 70 0.000 0.691 .572
MICE-CART 20 70 0.000 0.705 .580
MICE-RFI 20 70 0.000 0.747 .469
Zero replacement 40 70 0.000 0.543 .812
FIML 40 70 0.000 0.579 .776
MICE-CART2 40 70 0.000 0.604 .749
MICE-CART 40 70 20.004 0.622 .733

(continued)
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Table 1. (continued)

Method Test length Missing proportion (%) Bias RMSE Correlation

MICE-RFI2 40 70 20.001 0.631 .726
MICE-RFI 40 70 20.001 0.698 .640
Zero replacement 60 70 0.000 0.523 .838
FIML 60 70 0.000 0.539 .820
MICE-CART2 60 70 20.001 0.559 .803
MICE-CART 60 70 20.005 0.568 .796
MICE-RFI2 60 70 20.001 0.585 .787
MICE-RFI 60 70 20.001 0.660 .709

Note. RMSE = root mean square error; MAR = missing at random; FIML = full-information maximum

likelihood; MICE-CART = multiple imputation with chain equations utilizing classification and regression

trees; MICE-RFI = multiple imputation with chain equations utilizing random forest imputation.

Table 2. Average Bias, RMSE, and Correlation Values for NMAR.

Method Test length Missing proportion (%) Bias RMSE Correlation

FIML 20 30 0.000 0.348 .911
MICE-RFI2 20 30 0.000 0.371 .898
MICE-CART 20 30 0.000 0.373 .897
MICE-CART2 20 30 0.000 0.375 .896
MICE-RFI 20 30 0.000 0.379 .893
Zero replacement 20 30 0.000 0.466 .834
FIML 40 30 0.000 0.291 .947
MICE-CART 40 30 0.000 0.312 .939
MICE-RFI2 40 30 0.000 0.318 .937
MICE-CART2 40 30 0.000 0.319 .936
MICE-RFI 40 30 0.000 0.320 .936
Zero replacement 40 30 0.000 0.395 .901
FIML 60 30 0.000 0.254 .962
MICE-CART 60 30 0.000 0.270 .957
MICE-CART2 60 30 0.000 0.281 .954
MICE-RFI2 60 30 0.000 0.281 .954
MICE-RFI 60 30 0.000 0.282 .954
Zero replacement 60 30 0.000 0.350 .928
FIML 20 40 0.000 0.433 .860
MICE-CART2 20 40 0.000 0.456 .842
MICE-RFI2 20 40 0.000 0.460 .839
MICE-CART 20 40 0.000 0.463 .839
MICE-RFI 20 40 0.000 0.473 .827
Zero replacement 20 40 0.000 0.503 .804
FIML 40 40 0.000 0.370 .914
MICE-CART 40 40 0.000 0.386 .905
MICE-CART2 40 40 0.000 0.393 .901
MICE-RFI2 40 40 0.000 0.401 .898

(continued)
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CART2 produced lower RMSE value (0.456) and higher correlation value (r = .842)

than MICE-CART (RMSE = 0.463, r = .839). Among these four MICE-based meth-

ods, MICE-CART always produced the lowest RMSE and highest correlation values.

Discussion

A highly important task in educational assessments utilizing IRT is to obtain accurate

item and ability parameter estimates; but the existence of missing responses is inevi-

table, and it would have a detrimental influence on the accuracy of estimated para-

meters when missing data are not handled properly (Andreis & Ferrari, 2012). While

previous studies focused on the effects of missing data handling methods on item

parameter estimates (Edwards & Finch, 2018; Finch, 2008) and ability estimates

Table 2. (continued)

Method Test length Missing proportion (%) Bias RMSE Correlation

MICE-RFI 40 40 0.000 0.409 .893
Zero replacement 40 40 0.000 0.434 .879
FIML 60 40 0.000 0.331 .936
MICE-CART 60 40 0.000 0.346 .929
MICE-CART2 60 40 0.000 0.352 .926
MICE-RFI2 60 40 0.000 0.364 .922
MICE-RFI 60 40 0.000 0.370 .918
Zero replacement 60 40 0.000 0.386 .911
FIML 20 70 0.000 0.680 .618
MICE-CART 20 70 20.004 0.708 .585
MICE-RFI2 20 70 0.000 0.733 .491
MICE-RFI 20 70 0.000 0.738 .487
MICE-CART2 20 70 0.000 0.754 .485
Zero replacement 20 70 0.000 0.777 .463
FIML 40 70 0.000 0.635 .728
MICE-CART 40 70 20.010 0.652 .708
MICE-RFI 40 70 20.001 0.683 .660
Zero replacement 40 70 0.000 0.687 .665
MICE-RFI2 40 70 20.001 0.706 .634
MICE-CART2 40 70 0.001 0.727 .606
FIML 60 70 0.001 0.595 .779
MICE-CART 60 70 20.011 0.601 .770
Zero replacement 60 70 0.000 0.635 .739
MICE-RFI 60 70 20.001 0.643 .727
MICE-RFI2 60 70 20.001 0.676 .698
MICE-CART2 60 70 0.001 0.682 .683

Note. RMSE = root mean square error; NMAR = not missing at random; FIML = full-information

maximum likelihood; MICE-CART = multiple imputation with chain equations utilizing classification and

regression trees; MICE-RFI = multiple imputation with chain equations utilizing random forest

imputation.
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(Culbertson, 2011), no studies made a thorough comparison of traditional missing

data handling methods and data mining methods for ability estimates. In this study,

we conducted two Monte Carlo simulation studies to compare the performances of

missing data handling methods when estimating ability parameters from dichotomous

item responses with missing values. In the first simulation study, we selected four

missing data handling methods, namely, zero replacement, FIML, MICE-CART, and

MICE-RFI. The first two are commonly used methods in the missing data literature

and the latter two are the two new methods utilizing the CART and RFI algorithms

within the MICE framework. To evaluate the performances of these methods under

different data conditions, missing data mechanisms (MCAR, MAR, and NMAR),

missing proportions (5%, 15%, 30%, and 40%), test lengths (20, 40, and 60 items),

and sample sizes (500, 1,000, and 3,000) were manipulated. The relative perfor-

mances of the missing data handling methods were evaluated based on RMSE and

correlation values between estimated and true ability parameters.

The first simulation study indicated that the missing data mechanism, the propor-

tion of missing data, and test length could influence the accuracy of ability para-

meters obtained from a sparse response data set. However, the sample size had

almost no impact on the results. This result ties well with previous studies wherein

sample size has a negligible effect on ability estimation in IRT (Bulut et al., 2017; de

la Torre & Song, 2009). Among the four methods for handling missing data, the zero

replacement method performed the worst under most conditions. A similar conclu-

sion was reached by previous research on this method (De Ayala et al., 2001).

However, the performance of the zero replacement method appeared to improve

under the MAR and NMAR conditions. With MAR and NMAR, it was relatively

more reasonable to treat omitted responses as incorrect answers, which yielded more

accurate ability estimates especially when the missing proportion was very small.

Another important finding from the first simulation study is that MICE-CART

outperformed MICE-RFI under most conditions but the difference between the two

methods was negligible. A similar finding was also reported by Edwards and Finch

(2018) who compared the performance of MICE-CART and MICE-RFI in estimating

IRT item parameters from a sparse response data set. A possible explanation for this

finding might be that the CART and random forest (RF) algorithms work quite simi-

larly as recursive partitioning methods. CART builds a prediction model based on a

single decision tree, while RF creates multiple decision trees based on bootstrapped

samples of data and combines the predictions from all decision trees to build a final

prediction model. Furthermore, RF inherits most properties of CART, such as outlier

handling and the ability to utilize nonlinear relationships in the data. Therefore, the

two algorithms appeared to function very similarly within the MICE framework as

they created imputed values for missing responses. However, when dealing with

large volumes of data, MICE-CART might be a more desirable method for handling

missing responses compared with MICE-RFI, due to its lower computational cost.

To further evaluate the effect of using missing values as auxiliary information in

the imputation process, a second simulation study was considered as an extension of
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the first one. Based on the results of the first simulation study, the second study

ignored sample size due to its negligible impact on the accuracy of ability estimates.

Also, the second study only focused on the MAR and NMAR conditions that enabled

incorporating valuable information from missing values into the imputation process.

Findings indicated that utilizing missing values in the imputation process worked

well for MICE-RFI but weakened the accuracy of MICE-CART when missing pro-

portions were either 30% or 40%. One possible reason was that under the MAR and

NMAR conditions, systematic missingness in the data appeared to provide valuable

information for each decision tree created by MICE-RFI2. Consequently, the deci-

sion trees in MICE-RFI2 were more informative and they performed better than

those in MICE-RFI. In addition, because MICE-CART only created a single decision

tree, this approach could possibly consider low rates of missing responses as noise

when constructing a decision tree model. This could explain why the performance of

MICE-CART2 tends to improve when the missing proportion went up to 70%.

When missing proportions were 70%, the new approach improved MICE-based

methods under MAR conditions, but it was not suitable for NMAR conditions with

large numbers of items, which might be related to their underlying assumptions.

MAR assumed that missing values were related to other observed variables, and thus

incorporating the missing information from other variables would be meaningful.

However, NMAR assumed missing values were only related to themselves, and thus

the missing information from other variables might not be as valuable as it was for

MAR, especially for highly sparse data. Consequently, adding irrelevant information

to the model appeared to be detrimental to the accuracy of ability estimation.

The results of both simulation studies also indicated that using FIML to deal with

missing data could result in higher accuracy in the estimation of ability parameters,

compared with the zero replacement and MICE methods under most conditions. One

possible reason for FIML performing better than the MICE methods was insufficient

numbers of repeated imputations. Previous research examined how many imputations

could make MI and FIML equivalent, and at least 20 imputations for each data set

were recommended (Graham et al., 2007). In this study, we only conducted five

imputations for each data set and obtained very similar results for FIML, MICE-

CART, and MICE-RFI. Therefore, it is possible that increasing the number of impu-

tations could yield better results for MICE-CART and MICE-RFI. In addition, this

study adopted EAP to estimate ability parameters, but previous research indicated

that different missing data conditions could influence the performance of EAP in abil-

ity estimation (De Ayala et al., 2001). Therefore, the potential interaction between

missing data conditions and the ability estimation procedure might have affected the

performance of the methods used for handling missing data in the current study.

There are several implications for the current study. In educational assessments

with high proportions of missing responses (e.g., formative assessments, low-stakes

tests), increasing the number of items could improve the accuracy of respondents’

ability estimates. FIML is recommended to handle missing responses when estimat-

ing ability parameters from sparse response data sets due to its convenience and high
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accuracy in handling missing values. However, if researchers intended to get a com-

plete data set for further analysis, FIML would be inadequate. Instead, MICE-based

methods can provide a complete data set with imputed missing values to conduct fur-

ther data analysis. When the data set is highly response sparse and the missing data

mechanism is not clear, FIML and zero-replacement methods can be adopted to han-

dle missing values. However, when the missing values follow the MCAR mechanism

and missing proportions are not high, researchers and practitioners should avoid the

zero-replacement method. When the response data set includes relatively high miss-

ing proportions and researchers attempt to use MICE-RFI, adding missing values in

the imputation process could provide more precise results when estimating ability

parameters in IRT.

While the current study sought to make a comprehensive comparison of tradi-

tional missing data handling methods and data mining imputation methods for ability

estimates, there remains room for improvement. First, the current study only dis-

cussed CART and RFI as they were readily available in the mice package. Future

research should adopt alternative data mining approaches such as stochastic gradient

tree boosting and C5.0 (Ramosaj & Pauly, 2017) within the MICE framework and

evaluate their performance. Second, the current results were based on the fixed-

length assessment scenario in which all test takers responded to the same set of items

and test speededness was considered. Other scenarios including computerized adap-

tive tests and the presence of test speededness should also be investigated in the

future. Third, this study only focused on dichotomous items in a unidimensional test

scenario. Future studies should examine the performance of the missing data han-

dling methods for ability estimates for polytomous items as well as under a multidi-

mensional test scenario.
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