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Abstract

Large-scale studies spanning diverse project sites, populations, languages, and mea-
surements are increasingly important to relate psychological to biological variables.
National and international consortia already are collecting and executing mega-
analyses on aggregated data from individuals, with different measures on each person.
In this research, we show that Asparouhov and Muthén’s alignment method can be
adapted to align data from disparate item sets and response formats. We argue that
with these adaptations, the alignment method is well suited for combining data across
multiple sites even when they use different measurement instruments. The approach
is illustrated using data from the Whole Genome Sequencing in Psychiatric Disorders
consortium and a real-data-based simulation is used to verify accurate parameter
recovery. Factor alignment appears to increase precision of measurement and validity
of scores with respect to external criteria. The resulting parameter estimates may
further inform development of more effective and efficient methods to assess the
same constructs in prospectively designed studies.
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Introduction

Large-scale measurement data are now being collected globally for many reasons,

including to study genetic associations, to gain insights from electronic medical

records, and to harvest health information from mobile device use. The analysis of

aggregated data from multiple studies, or meta-analysis, is now being supplanted by

aggregation of data at the individual level across multiple studies, a practice some-

times referred to as mega-analysis (McArdle, Prescott, Hamagami, & Horn, 1998).

Mega-analyses that span multiple projects or instruments require a multistep proce-

dure to ensure comparability of measurements across samples. First, researchers must

identify a set of data elements or items that putatively harmonize by identifying items

that appear to assess essentially the same thing (with face validity). Second, investi-

gators need to determine if the data elements used comparable response scales and

transform items to have comparable response scales if needed. Third, the researcher

must ensure that the items used across the studies have similar measurement proper-

ties; differences in the measurement properties of items, if found, must be incorpo-

rated into the measurement model. This process is referred to in the psychometric

literature as an assessment of measurement invariance (Vandenberg & Lance, 2000).

Historically, measurement invariance testing has relied on a series of model modi-

fications in which constraints on item measurement parameters are imposed or freed,

depending on the search strategy, based on the results of statistical tests of those
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constraints (Leite, Huang, & Marcoulides, 2008; Vandenberg & Lance, 2000). As

the number of groups increases, the number of statistical tests required for measure-

ment invariance analysis becomes prohibitively large, rendering traditional measure-

ment invariance methods impractical for large numbers of groups. For example, with

10 groups there would be 45 possible pairwise comparisons per item, and a 10-item

test administered to those 10 groups would require up to 450 statistical tests to assess

measurement invariance for each item parameter. Furthermore, when item sets are

not identical across groups (i.e., some harmonized items are shared across one or

more samples, but not all items are shared across all samples) and response formats

differ across groups (e.g., an item is scored as absent [0] or present [1] in one scale,

but as absent [0], mild [1], moderate [2], or severe [3] in another), specialized soft-

ware and estimation techniques are required to estimate the multiple-group measure-

ment model at each step of the search; in particular, the large amount of missing data

that result from nonidentical item sets makes often-used methods of estimation (e.g.,

maximum likelihood) very difficult (see McArdle, Grimm, Hamagami, Bowles, &

Meredith, 2009). Thus, there is a growing need for integrative measurement tech-

niques that can flexibly accommodate large numbers of groups and nonidentical item

sets and response formats.

To elaborate further, it is often the case in measurement mega-analysis (e.g., Gu

& Guttman, 2017; Kaplan & McCarty, 2013; Marcoulides & Grimm, 2017; McArdle

et al., 2009) that many, or even all, items intended to measure the same construct

have highly similar, but not identical, content and response formats across instru-

ments and/or samples. For example, the following questions about the core symptom

of ‘‘depressed mood’’ are asked in slightly different ways in two of the instruments

used in our study, the DI-PAD (Diagnostic Interview for Psychotic and Affective

Disorders) and the SCID (Structured Clinical Interview for the Diagnostic and

Statistical Manual of Mental Disorders [DSM]):

DI-PAD: ‘‘Have you ever been sad, down, depressed, or blue most of the day, nearly every

day, for at least one week?’’ Rated 0 (Not present) or 1 (present)

SCID: ‘‘In the last month . . . has there been a period of time when you were feeling

depressed or down most of the day nearly every day? How long did it last? (As long as 2

weeks?)’’ Rated 1 (Absent), 2 (Subthreshold), or 3 (Threshold)

For such items, it is sensible to assume that the same latent factor (here, depressive

symptomatology) underlies item responses for both items (configural invariance;

Vandenberg & Lance, 2000) and that the two items harmonize, which here means that

they measure the severity of the same symptom (depressed mood).

In such applications, even after harmonizing items across instruments, there are

likely to remain many items which are unique to a single or small number of samples

and/or very few items with measurements from all samples, resulting in a large

amount of missing data which need to be accounted for. For instance, one instrument
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may focus on the physical symptoms of depression (e.g., decreased appetite, impaired

sleep, psychomotor dysfunction), while another may focus on the psychological

symptoms of depression (e.g., anhedonia, irritability), resulting in nonidentical item

sets. In this case, the two instruments would have some items in common (e.g.,

depressed mood) but responses to items that are not in both instruments would be

missing in the samples in which those items were not administered. Furthermore, dif-

ferences in item wording (e.g., the inclusion of ‘‘blue’’ in the DI-PAD) and small but

meaningful content differences (e.g., depressed mood for 1 versus 2 weeks) will lead

to items that differ in their relationship to the construct of interest (depression); in

other words, it is not reasonable to expect that items have perfect measurement invar-

iance (specifically, metric or scalar invariance; Vandenberg & Lance, 2000) across

studies, and this lack of invariance must be accounted for in the modeling approach.

Last, it is desirable to maximize the information gained from each participant’s

responses by preserving the original response scales, rather than, for example, collap-

sing all items to a dichotomous measurement scale.

We believe that, with several modifications, the alignment approach introduced by

Asparouhov and Muthén (2014; see also Marsh et al., 2017; Muthén & Asparouhov,

2018) can achieve these goals. The main purpose of this report is to describe and

evaluate an application of this method to a large data set that presented multiple chal-

lenges for traditional linking or measurement invariance studies, including the study

of different clinical and healthy samples assessed using different instruments.

Our motivating example for these modifications to alignment comes from analysis

of psychiatric symptom ratings from the Whole Genome Sequencing in Psychiatric

Disorders Consortium (WGSPD; Sanders et al., 2017). In this project, different clini-

cal diagnostic instruments, including the SCID (First, 2014), Comprehensive

Assessment of Symptoms and History (CASH; Andreasen, Flaum, & Arndt, 1992),

Diagnostic Interview for Genetic Studies (DIGS; Nurnberger et al., 1994), Mini-

International Neuropsychiatric Interview (MINI; Sheehan et al., 1998), Diagnostic

Interview for Psychotic and Affective Disorders (DI-PAD; Perlman et al., 2016),

were used to assess symptoms relevant to diagnostic criteria in 12 samples, many of

which were further subdivided into distinct clinical subgroups (e.g., Controls, Major

Depressive Disorder, Bipolar I Disorder, Schizoaffective Disorder, Schizophrenia).

The assessments comprised a total of 6,560 items across a variety of clinical domains

(e.g., depression, mania, positive, negative, and disorganized psychotic symptoms).

The resulting data set could not be analyzed using traditional approaches to multi-

group data given the diversity of instruments and confounds of site with both diag-

nostic group and instrument used, the absence of any predefined ‘‘linking’’ items,

and the lack of participants examined with multiple instruments. Despite these major

challenges, we sought to produce factor scores on clinical domains using as much

data as possible, so that the resulting scores could be used in genetic analyses as

‘‘dimensional phenotypes’’ to complement the categorical diagnoses. To do so, we

modified the alignment method (Asparouhov & Muthén, 2014) to accommodate non-

identical item sets and nonidentical response formats. Our work represents an attempt
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to improve phenotype definition by creating scores that putatively identify variation

on a shared measurement scale.

In the following sections, we first discuss existing approaches to multiple-group

item response theory and prior work in item response theory mega-analysis. Next,

we review the alignment method for the graded response model before introducing

two modifications which allow for the application of alignment across instruments

with differing response formats and item sets. We then apply the modified alignment

method to data from the WGSPD Consortium. This application has three primary

goals: demonstrating the utility of the alignment method for explaining cross-study

differences in measurement models, using a real-data-based simulation study to

examine parameter recovery under the unique design conditions in WGSPD, and

comparing the external validity of scores generated from alignment to those based

on the configural model. We conclude with recommendations about future methodo-

logical directions in item-level mega-analysis and for instrument development that

may facilitate and increase the power and efficiency of mega-analyses in future mul-

tisite studies.

Multiple-Group Item Response Theory and Mega-Analytic Measurement

In order to compare Muthén’s alignment method with conventional methods for

multiple-group factor analysis, we will utilize the framework of Vandenberg and

Lance (2000; see also, Widaman & Reise, 1997), who synthesized the somewhat

chaotic measurement invariance literature into a unified modeling framework. In this

framework, multiple-group factor analysis is a multistep process assessing the equiva-

lence of factor model parameters across groups. These steps usually take a particular

order and invariance needs to be obtained at each step for subsequent tests to be

meaningful (Vandenberg & Lance, 2000). First, configural invariance is tested to

determine if different groups have the same factor structure, regardless of the specific

parameter estimates obtained. Assuming configural invariance has been obtained, the

next test is of metric invariance, which holds if the factor loadings for like items are

invariant across groups, followed by tests of scalar invariance, which holds if the

measurement intercepts for like items are invariant across groups, and invariant

uniquenesses, which holds if the item uniquenesses for like items are invariant across

groups. Assuming a multiple-group data set passes all four tests, the measurements

can be considered statistically invariant and the measurement models can be used to

test for group differences in mean, variance, and/or covariance of the latent vari-

able(s) measured.

If any of these tests of measurement invariance fail to hold, researchers have the

opportunity to settle for partial measurement invariance, in which the aforemen-

tioned invariances hold for some subset of items, possibly across some subset of

groups, but not for all items or all groups. Establishing partial measurement invar-

iance across two groups often requires a large number of statistical tests, for exam-

ple, tests of equal factor loadings across groups for a subset of items to establish
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partial metric invariance, and the number of possible tests scales exponentially with

the number of items. The number of required tests also scales exponentially with the

number of groups, and thus, when there are many items and groups, conventional

approaches quickly become infeasible. In brief, although the measurement invariance

approach described above has been applied fruitfully in the literature (e.g., Ang et

al., 2007; Antonakis, Avolio, & Sivasubramaniam, 2003; Lee et al., 2016; Schwartz

& Rubel, 2005), a critical limitation is its lack of scalability, or ability to accommo-

date large numbers of groups and/or items. Although distributed search procedures

have been proposed to address this problem (e.g., Leite et al., 2008), such approaches

can be computationally expensive, in effect exchanging one deficiency in scalability

for another.

In contrast to typical multiple-group measurement applications, recent mega-

analyses of item-level measurement data generally ignored the measurement invar-

iance problem because of its computational intractibility. These analyses have pri-

marily been conducted in the context of longitudinal growth modeling, wherein

differences in item content across form versions and overlapping content among sim-

ilar scales yield complex data structures similar to those in the current study. One

mega-analytic approach has been to jointly model all available data in a single item

response theory (IRT) model using a Rasch or one-parameter logistic (1PL) model in

which all items at all time points have the same discrimination and each item is

equally difficult, conditional on the latent trait value, at all time points (e.g.,

Marcoulides & Grimm, 2017; McArdle et al., 2009). Others have adopted the statisti-

cal matching approach (D’Orazio, Di Zio, & Scanu, 2006), creating a synthetic com-

pleted data set using Bayesian methods, resampling, and/or IRT modeling (e.g., Gu

& Gutman, 2017; Kaplan & McCarty, 2013) which can then be used in subsequent

analyses. These statistical matching techniques also generally assume that the mea-

surement parameters for items are identical across groups or measurement occasions

to computationally simplify the imputation procedure. Other work in the psychiatry

literature (e.g., Ruderfer et al., 2014) has approached mega-analysis in this context

by conducting separate factor analyses in each unique sample, generating sample-

specific factor scores, and then using those scores together in a second analytical step

without first determining if the derived factors satisfy assumptions of measurement

invariance, and leaving unclear if the scores reflect similar scales across the different

samples and instruments.

Differences in item wording across instruments in the current context (e.g., depres-

sion across 1 vs. 2 weeks), preclude the use of either of the first two approaches

unless the measurement invariance restrictions are removed. However, removing

those restrictions would result in the lengthy and error-prone measurement model

specification search described above, and removing all constraints would yield an

unidentified model unless factor means and variances were instead constrained to be

equal across groups, an untenable assumption given the differences in populations

from which the groups were sampled. In addition, as the size of the amalgamated data

set grows, the computational resources needed to implement the statistical matching
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approach (e.g., latent-variable matching; Markov Chain Monte Carlo) become

prohibitive.

The alignment method attempts to sidestep these issues by assuming approximate

scalar and metric invariance, that is, that factor loadings and measurement intercepts

are approximately equal across groups but are not constrained to be exactly equal.

By requiring approximate measurement invariance, the alignment method can

accommodate small differences between items across groups if these differences are

not systematically in one direction (i.e., higher/lower average factor loadings or mea-

surement intercepts), and thus, has an additional advantage over conventional mea-

surement invariance testing procedures in not requiring the specification of a priori

invariant anchor items or requiring a search procedure. Instead, it is assumed that the

group of items which are entered into the alignment complexity function is approxi-

mately measurement invariant; thus, the assumption of exact invariance in a single

item or set of items is exchanged for the assumption of approximate invariance

across the set of aligned items.

In the alignment method, the assumption of approximate measurement invariance

is used to identify the factor hyperparameters (i.e., the factor means and variances),

enabling their estimation. This is done in a two-stage procedure which is described

below in detail. In brief, alignment begins by assuming that configural invariance has

been met, and the first step of alignment is to estimate the configural model within

each group. In the configural model, the mean and variance of the latent factor are

constrained to 0 and 1, respectively, in order to identify the model. Next, the config-

ural model parameters are transformed to minimize measurement invariance, taking

advantage of the assumption of approximate measurement invariance and yielding

estimates of the factor hyperparameters. Because alignment is a two-step process, it

is highly scalable, as it requires neither the (sometimes complex) step of estimating a

multiple-group item response theory model, nor the iterative, risky procedure of post

hoc model modification to identify a partially invariant measurement model, nor the

costly imputation of all missing item responses involved in the statistical matching

approach.

Motivating Example: Whole Genome Sequencing in Psychiatric Disorders

In the WGSPD Consortium, many of the 12 component studies used a different clini-

cal diagnostic instrument to assess psychiatric symptoms in their respective samples.

All symptom ratings were designed to assess DSM criteria. Prior to our work on

applying the alignment method, an extensive matching process was used to identify

the specific items across instruments that putatively measure the same psychiatric

symptoms, notwithstanding subtle differences in wording. Due to differences in the

instruments used (e.g., SCID vs. CASH) and different versions of some instruments

(e.g., SCID-I vs. SCID-IV), each pair of instruments shares only a subset of items

with each other instrument, and instruments often contain items that are unique to

that instrument. One possible solution to this mismatch is to consider only items that
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exist in all samples. Unfortunately, this would have restricted the number of avail-

able items drastically, rendering mega-analysis of little use. For instance, only two

symptom ratings for disorganized psychosis putatively harmonized across all studies,

although most instruments contained from six to nine items measuring disorganiza-

tion, and the two items that did putatively harmonize (aggressive and agitated beha-

vior, and derailment) were not those considered most important for diagnosis.

Because factor scores from these analyses were to be used in subsequent genetic

analyses, for which high power is of utmost importance, we sought to maximize the

information available for each clinical dimension by using all available items, rather

than only those items that were consistent across studies.

Furthermore, instruments often differed in their response formats. For many

instruments (e.g., CASH, MINI), symptoms were judged as present or absent, but for

others (e.g., SCID, DI-PAD), polytomous response formats were used, often differing

in the meaning of response categories. For the instruments with polytomous response

formats, the first category always indicated the absence of the symptom, while the

remaining categories indicated that the symptom was present; however, for some

(e.g., SCID), the categories indicating the presence of a symptom differed in the

severity of the symptom, while in others (e.g., DI-PAD), these categories differed in

the duration of the symptom.

These issues motivated modifications to the alignment method, permitting its

application in this rich and unique database, and demonstrating its simplicity and

scalability as applied to data structures that otherwise presented an extremely com-

plex multiple-group measurement problem. In the next two sections, we explain the

alignment method for polytomous item response data before introducing two modifi-

cations that enable item-level mega-analysis of the clinical phenotype data in

WGSPD.

Item Response Theory Alignment and Extensions for Mega-Analysis:
Muthén’s Alignment Method for Polytomous Item Response Data

Muthén and Asparouhov (2014) extended the alignment method to dichotomous

items using IRT (Embretson & Reise, 2013). Recently, alignment for polytomous

items has been implemented in Mplus Version 7.3, and a recent simulation study

showed that the method generally performs well under small and moderate amounts

of measurement noninvariance (Flake & McCoach, 2018). In this section, we briefly

review the alignment method for polytomous items.

Consider a data set X consisting of N polytomous item response vectors xi, i = 1,

. . ., N, each of length P, and each of the P items has Q ordered response categories

labeled 0, . . ., kQ. One parameterization of the graded response model for polyto-

mous items (Samejima, 1968) is

P xi = kqjh
� �

= P xi � kqjh
� �

� P xi � kq + 1jh
� �

; ð1Þ
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where P x � kqjm
� �

is the probability of responding in category kq or in a higher cate-

gory and is given by

P xi � kqjh
� �

= 1

1 + exp � aph + dpqð Þð Þ : ð2Þ

Here, ap is called the discrimination parameter and dpq is the item intercept for cate-

gory boundary kq for item p, p = 1, . . ., P. The graded response model can be con-

ceptualized as a series of models for each category boundary, all sharing a common

discrimination parameter but with (Q 2 1) unique, ordered intercept parameters.

Next consider that instead of a single sample, there exist G samples of responses to

the same set of items. Consistent with Asparouhov and Muthén (2014), we will assume

a unidimensional measurement model in which each variable loads on a single factor,

and that the structure of this model holds across a set of groups g = 1, 2, . . ., ng (config-

ural invariance; Vandenberg & Lance, 2000). Then Equation (2) can be written as

P xig � kqgjh
� �

= 1

1 + exp � apgh + dpqgð Þð Þ : ð3Þ

As written above, the multiple-group item response theory model is not identified,

and constraints must be imposed to enable parameter estimation. A common identifi-

cation constraint involves fixing the mean of the latent variable h to zero and its var-

iance to one within each group, and the resulting model is referred to as the

configural model.

In multiple-group item response theory, it is usually not assumed that the means

and variances of the latent variable(s) are equal in all groups; indeed, this is consid-

ered one of the strongest forms of measurement invariance in the literature

(Vandenberg & Lance, 2000). However, estimating the configural model in each

group separately yields models with equal factor means and variances in all groups,

and thus, appears to eliminate group differences from the model. The core principle

underlying Muthén’s alignment method is that these group differences do not disap-

pear entirely when the configural model is estimated separately in each group; rather,

assuming no test bias, group differences manifest as differences in item discrimina-

tion parameters across groups, which reflect group differences in latent variances,

and as differences in item intercepts across groups, which reflect group differences

in latent means.

In alignment, the group differences on the latent variable are recovered by rever-

sing this transformation, identifying the latent means and variances that yield trans-

formed models with the most similar measurement parameters as possible across

groups. In other words, the differences in item parameters when the latent distribu-

tion is held fixed are used to inform on group differences in the latent distribution

itself. The key to understanding this process is the fact that a set of item parameters

for the configural model can be transformed to any other metric, defined according

to the mean and variance of the latent variable, yielding an equivalent model. Let

apg, 0, p = 1, . . ., P denote the estimates of the item discrimination parameters in the
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configural model for group g, and dpg, 0, p = 1, . . ., P denote the estimates of the item

intercept parameters in the configural model for group g, wherein the metric of the

latent variable is set for identification purposes to have a mean of 0 and variance of

1. The equations to transform IRT parameters to a new latent variable metric with

mean ag and variance cg are given by

apg1, 1 =
apg1, 0ffiffiffiffiffi

cpg

p ; ð4Þ

dpqg1, 1 = dpqg1, 0 � apg1, 1 � ag ; ð5Þ

where the (,1) in the subscripts of the item parameters indicates transformed item

parameters to the metric defined by ag and cg.

Muthén’s alignment method searches this space of equivalent models to identify

the model with the most measurement invariance, quantified by a complexity func-

tion. Alignment for the graded response model proceeds as follows. First, the config-

ural model, which fixes latent means to 0 and latent variances to 1, is estimated in

each group, yielding estimates of ap and dpq, q = 1, . . ., Qp2 1. Next, alignment pro-

ceeds by minimizing the graded response model (GRM) complexity function:

FGRM =
P

p

P
g1\g2

wg1, g2
f apg1, 1 � apg2, 1

� �
+
P

p

P
g1\g2

P
q

wg1, g2
f dpqg1, 1 � dpqg2, 1

� �
:

ð6Þ

Once factor means and variances are estimated through alignment, Equations 4 and 5

are used to compute the parameter estimates that minimize measurement noninvar-

iance across groups, and the resulting parameters can be used to produce factor scores

which are comparable across groups.

The extension of the alignment method from factor analysis to item response the-

ory relies on the equivalence of the categorical factor analysis model and the item

response theory model (see, Kamata & Bauer, 2008; Takane & de Leeuw, 1987).

This equivalence allows the IRT parameters to be converted to equivalent factor

analysis parameters, and alignment is performed on the factor analysis metric. The

aligned factor analysis parameters can then be transformed to equivalent IRT para-

meters for reporting and scoring purposes.

Extensions of Alignment for Mega-Analysis

To accommodate the complexities of the WGSPD data, the alignment complexity

function (Equation 6) was modified to allow for missing items across studies, essen-

tially optimizing over the available item parameters, and all but the first threshold

value was excluded from the alignment complexity function to account for differing

response formats across studies. Although these modifications were developed to

solve the specific mega-analytic measurement problems presented in WGSPD, we

believe that these modifications will be useful to many integrative data analysis proj-

ects with similar mismatches in instruments and populations across studies.
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To account for these differences, the instruments in WGSPD were aligned by

modifying the GRM complexity function to exclude missing item pairs, that is, the

complexity function was calculated for each pair of items that was administered in

each pair of instruments. Instead of summing over all P items, the complexity func-

tion sums over all items p such that p 2 I1 and p 2 I2, where Ig is the set of items

administered to group g.

In this application, it would not be sensible or feasible to align the models using

all item intercepts because the item intercepts differ in number and meaning across

instruments. However, all instruments shared a common ‘‘anchor category’’ corre-

sponding to the absence of the symptom. The item intercept parameter corresponding

to the boundary between the absence of a symptom (kq = 0) and the presence of that

symptom (kq . 0) was present in all samples and had a common interpretation.

Therefore, to align the models in WGSPD, only the first item intercept d0 was

included in the alignment complexity function. An alternative approach would have

been to collapse all response categories indicating the presence of a symptom into a

single category in instruments with polytomous rating formats; however, this would

have reduced power, as each category boundary yields additional information on an

individual’s relative standing on the latent trait (Samejima, 1968, 1997; Vispoel &

Kim, 2014). Thus, in the interest of maximizing power for genetic analyses, we

chose to include all response options in our analyses, but to align the models using

only the first item intercept parameter.

With these modifications, the final alignment complexity function is given by

F�GRM =
X

g1\g2

X

p2I1, p2I2

wg1, g2
f apg1, 1 � apg2, 1

� �
+
X

g1\g2

X

p2I1, p2I2

wg1, g2
f dp0g1, 1 � dp0g2, 1

� �
:

As described above, measurement noninvariance is only minimized for items that

appear in each pair of instruments, and only the first measurement intercept is

considered.

In the WGSPD analyses, described below, this modified alignment method was

implemented using custom functions built in R (R Core Team, 2019). Item response

models were estimated using the mirt package (Chalmers, 2012).

Plausible Value Imputation

When item response theory is used to estimate scores for individuals, such estimates

may be MAP, EAP, ML, or other estimates, each with their own sets of strengths and

weaknesses (Embretson & Reise, 2013; Reise & Revicki, 2014, pp. 309, 310). All

such point estimates of latent trait level are inherently incomplete in that they are

single-number summaries of the posterior distribution of the latent trait given the

observed item responses; specifically, these point estimates do not represent measure-

ment error. When using factor scores in regression analyses, these issues can lead to

bias in the resulting regression coefficients (but, see Warm, 1989) and negatively
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biased standard error estimates for those regression coefficients as a result of treating

posterior distributions as point estimates (Mislevy, Beatom, Kaplan, & Sheehan, 1992;

Wu, 2005). Even when point estimates are augmented by estimates of the standard

error of each measurement, the use of such standard errors assumes that the posterior

distribution is normal, an assumption which will generally not be met in practice.

In contrast, plausible value imputation allows researchers to directly incorporate

the posterior distributions of the latent trait estimates into analysis (Beatom &

Gonzales, 1995; Mislevy, 1991). This involves a three-step process which is identical

to that used to accommodate for missing values using multiple imputation (Rubin,

1976; see also Enders, 2010). In the first step, instead of estimating a single factor

score for each participant, the analyst draws multiple plausible values from the pos-

terior distribution of the latent variable given each individual’s observed item scores;

each of the resulting imputations of the factor score consists of one such plausible

value per participant. Next, these imputations are treated as complete data in estimat-

ing the statistics of interest, such as mean levels of the latent variable in subgroups

or regression coefficients predicting the latent variable from external correlates.

These estimates will differ across imputations, with this difference reflecting the

variability in the estimates due to measurement error; note that this between-imputa-

tion variability is not accounted for if factor scores are treated as point estimates and

used directly in subsequent analyses. In the final step, the statistical analysis results

(means, variances, regression coefficients, etc.) are combined into pooled point esti-

mates and unbiased estimates of sampling variability (e.g., standard errors) which

properly account for between-imputation variability.

An important statistic in evaluating results derived from multiple imputation,

whether using plausible values or otherwise, is the fraction of missing information

(FMI), given by

FMI =
1 + 1=mð ÞvB

vW + 1 + 1=mð ÞvB

;

where vB is between-imputation variability, estimated as the variance in estimates

across imputations, and vW is within-imputation variability, estimated as the averaged

square standard error of the estimates across imputations, and m is the number of

plausible values drawn for each observation. The fraction of missing information

quantifies the proportion of sampling variability in the estimates (e.g., means, var-

iances, regression coefficients) which is due to measurement error; values of FMI

close to 1 indicate that most of the variability in these estimates is due to measure-

ment error, while values of FMI close to 0 indicate that measurement error contri-

butes little to estimation precision.

As a final statistical note, plausible value imputation yields estimates of means

which are biased toward the prior used in their estimation, which here was an identi-

cal N(0, 1) prior for all cases regardless of age, sex, or diagnosis. Thus, all estimated

means and correlations are biased toward 0, yielding smaller estimates of group dif-

ferences than may truly exist in the samples (Mislevy, 1991; Wu, 2005). This bias
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can be removed by including these variables as covariates during estimation; how-

ever, this would not be appropriate in the current context, because CFA models which

include covariates cannot be estimated with the alignment method (Asparouhov &

Muthén, 2014), and extending alignment to accommodate group differences is out-

side the scope of this work.

Alignment of Psychiatric Symptoms in WGSPD

The overarching goal of the WGSPD Consortium (Sanders et al., 2017; Senthil,

Dutka, Bingaman, & Lehner, 2017) is to aggregate data on psychiatric phenotypes in

large groups of people with diagnosed psychiatric syndromes, healthy comparison

groups, and their relatives, and to relate these phenotypes to genetic variation

observed in whole genome sequence data derived from these individuals. A chal-

lenge for the WGSPD was that the participating projects were launched indepen-

dently, and phenotyping was therefore done in different sites and countries by

different investigators with different instruments across the participating studies. The

overall scope of the WGSPD projects is shown in Table 1.

Data were aggregated across the major diagnostic instruments used in the

WGSPD studies; the analyses presented here aimed to include all usable data from

studies of adults with schizophrenia (SCZ), schizoaffective disorder (SA), bipolar

disorder (BD), and depression (DEP), along with data from healthy comparison

groups included in these studies (see Table 1). We did not include data from stud-

ies of autism spectrum disorders (Project 2) because the phenotypes measured in

those studies have little overlap with those obtained in the studies of adult SCZ,

SA, BD, and DEP samples. We aggregated item-level data from six different diag-

nostic instruments (DIPAD, SCID, CASH, DIGS, OPCRIT, and MINI) across 12

different studies in six different countries, representing ratings on a total of 38,551

individuals (see Table 1).

WGSPD Sites and Participants

The sites at which data were collected are described elsewhere (Sanders et al., 2017;

Senthil et al., 2017). Project 1 is a case-control study principally targeting patients with

SCZ, SA, and BD in two different regions: Los Angeles, where a large number of indi-

viduals with Hispanic/Latino ancestry were ascertained; and New York, where a large

number of individuals with African American ancestry were ascertained. Project 3 con-

sisted of case-control studies of SCZ, SA, and BD individuals, relatives and controls in

Finland and the Netherlands, family and twin studies of BD in Finland, and family stud-

ies with BD from Costa Rica and Colombia. Project 4 consisted of family studies of

SCZ, SA, BD, and DEP in Texas and Pennsylvania. The specific inclusion/exclusion cri-

teria varied across studies, as detailed in Supplemental Material A. In general, patients

were included based on satisfaction of diagnostic criteria using either the DSM-III-R,

DSM-IV, or ICD diagnostic systems, which share most criteria for the diagnosis of these

psychiatric disorders. The projects included mostly adults in the age range 18 to 80 years
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Table 1. Overview of Projects, Instruments, and Sample Characteristics Comprising the
Whole Genome Sequencing in Psychiatric Disorders (WGSPD) Consortium.

Project Instrument N Females, n (%) Age M6SD

Project 1: Whole Genome Sequencing for Schizophrenia and Bipolar Disorder in the GPC
(Boehnke, McCarroll, Pato)

Los Angeles, New York City
SCZ DI-PAD, GPC

screener
7,758 2,361 (30.4%) 44.0 612.7

SA DI-PAD, GPC
screener

2,551 1,110 (43.5%) 43.8 6 11.5

BP DI-PAD, GPC
screener

3,798 2,025 (53.3%) 42.8 6 12.8

BP-I DI-PAD, GPC
screener

3,696 1,966 (53.2%) 42.8 6 12.8

BP-II DI-PAD, GPC
screener

102 59 (57.8%) 41.4 6 13.8

DEP DI-PAD and/or
GPC screener

812 476 (58.6%) 40.4 6 14.7

OTHER (no
diagnosis of
BP, psychosis
or DEP)

GPC screener 12,335 6,925 (56.1%)a 39.2 6 15.2a

Project 3: Genomic strategies to identify high-impact psychiatric risk variants (Freimer,
Palotie, Geschwind)

Dutch BP
SCZ SCID, CASH 1 0 (0%) 33.0
SA SCID, CASH 1 1 (100%) 36.0
BP SCID, CASH 1,412 809 (57.3%) 49.3 6 12.4

BP-I SCID, CASH 1,384 789 (57.0%) 49.2 6 12.4
BP-II SCID, CASH 26 20 (76.9%) 52.2 6 15.4
BP-NOS SCID, CASH 2 0 (0%) 67.5 6 9.2

DEP SCID, CASH,
MINI

134 101 (75.4%) 51.7 6 14.9

OTHER SCID, CASH,
MINI

103 56 (54.4%) 51.0 6 15.9

CON MINI 556 317 (57.0%) 53.6 6 16.0
Dutch SCZ
SCZ CASH 600 122 (20.3%) 27.7 6 7.1a

SA CASH 99 33 (33.3%) 27.8 6 6.9
BP CASH 16 6 (37.5%) 27.5 6 7.7

BP-I CASH 16 6 (37.5%) 27.5 6 7.7
DEP CASH 1 1 (100%) 29.0
OTHER CASH 101 23 (22.8%) 28.0 6 8.0
Finland Schizophrenia Family Study
SCZ SCID 246 85 (34.6%) 45.8 6 9.3
SA SCID 60 28 (46.7%) 44.9 6 7.1
BP SCID 22 13 (59.1%) 47.9 610.0

BP-I SCID 17 10 (58.8%) 47.5 6 8.3

(continued)
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Table 1. (continued)

Project Instrument N Females, n (%) Age M6SD

BP subtype
unclear

SCID 5 3 (60%) 49.2 6 15.7

DEP SCID 41 27 (65.9%) 50.2 6 12.9
OTHER SCID 55 26 (47.3%) 49.6 6 11.6
CON SCID 412 223 (54.1%) 53.1 6 13.6
Psychosis in Finland
SCZ SCID 39 22 (56.4%) 54.2 6 12.0
SA SCID 14 12 (85.7%) 49.6 6 10.2
BP SCID 20 8 (40.0%) 49.0 6 13.0

BP-I SCID 14 7 (50.0%) 50.6 6 14.6
BP-II SCID 3 1 (33.3%) 41.3 6 1.5
BP-NOS SCID 3 0 (0%) 49.0 6 11.4

DEP SCID 159 89 (56.0%) 54.5 6 12.2
OTHER SCID 153 63 (41.2%) 52.9 6 13.4
CON SCID 157 96 (61.1%) 55.9 6 15.0
Colombia/LA
BP DIGS, MINI 87 54 (62.1%) 50.7 6 15.2

BP-I DIGS, MINI 87 54 (62.1%) 50.7 6 15.2
DEP DIGS, MINI 35 26 (74.3%) 45.1 6 16.8
OTHER DIGS, MINI 172 89 (52.0%)a 40.4 6 14.4
CON DIGS, MINI 62 35 (56.5%) 65.1 6 16.4
Costa Rica/LA
SZA DIGS, MINI 4 2 (50.0%) 36.8 6 14.2
BP DIGS, MINI 65 37 (56.9%) 45.4 6 15.0

BP-I DIGS, MINI 53 28 (52.8%) 46.8 6 14.8
BP-II DIGS, MINI 12 9 (75.0%) 39.5 6 15.0

DEP DIGS, MINI 46 30 (65.2%) 45.4 6 15.9
OTHER DIGS, MINI 161 87 (54.4%)a 44.5 6 14.2
CON DIGS, MINI 69 31 (44.9%) 58.3 6 16.4

Project 4: Pedigree-Based Whole Genome Sequencing of Affective and Psychotic Disorders
(Glahn, Blangero, Gur)

Pennsylvania/EA
SCZ DIGS 66 21 (31.8%) 44.7 6 10.3
SA DIGS 12 10 (83.3%) 44.5 618.9
BP DIGS 7 3 (42.9%) 48.6 6 13.3

BP-I DIGS 2 1 (50%) 64.5 6 12.0
BP-II DIGS 3 2 (66.7%) 41.0 6 9.8
BP-NOS DIGS 2 0 (0%) 44.0 6 1.4

DEP DIGS 129 89 (69.0%) 42.3 6 14.5
OTHER DIGS 176 60 (34.1%) 48.0 617.7
CON DIGS 237 139 (58.6%) 47.0 6 18.8
Texas/LA
SCZ MINI 8 0 (0%) 45.3 6 13.2
SA MINI 15 10 (66.7%) 43.1 6 15.6
BP MINI 30 18 (60.0%) 36.1 6 9.3

(continued)
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inclusive. Patients with other neurological diseases that might also be associated with

idiopathic psychiatric syndromes were typically excluded. The family-based studies

involved more complex ascertainment designs, with some (e.g., Finnish studies) involv-

ing national registry reviews, while others involved recruitment of family members in

specific regions (e.g., Colombia, Costa Rica, Philadelphia, Texas).

Variables

A first step in harmonization was the construction of a master instrument compari-

son file (ICF) which identifies items that putatively match in content across differ-

ent instruments. This involved examining 6,560 individual rating variables which

we represented in a series of tables organized by overall diagnostic construct

(Mood Disorder; Psychotic Disorder, Substance Use Disorder, Anxiety Disorder,

Eating Disorder). Within each of these groups of ratings, we further identified

three different kinds of ratings: Screeners, or items whose responses determine

whether subsequent items will be administered; Symptoms, which are the specific

symptoms of the disorder; and Specifiers, or ratings that qualify other symptom

ratings or disorder characteristics, for example by indicating their duration or con-

text. Supplemental Material B (available online) provides descriptions of all puta-

tively harmonized items, along with the IRT parameters for both the prealigned

and the postaligned data.

For each set of putatively matching variables, we created a master variable

description (see Supplemental Material B). For example, in the Mood Disorders

Table 1. (continued)

Project Instrument N Females, n (%) Age M6SD

BP-I MINI 16 9 (56.3%) 37.9 6 9.9
BP-II MINI 14 9 (64.3%) 34.1 6 8.5

DEP MINI 585 422 (72.1%) 43.1 6 14.7
OTHER MINI 549 204 (37.2%) 40.9 6 15.4
CON MINI 717 496 (69.2%) 42.3 616.9

Note. SCID = Structured Clinical Interview for the Diagnostic and Statistical Manual of Mental Disorders

(DSM); CASH = Comprehensive Assessment of Symptoms and History; DIGS = Diagnostic Interview for

Genetic Studies; MINI = Mini-International Neuropsychiatric Interview; Di-PAD = Diagnostic Interview

for Psychotic and Affective Disorders; SCZ = schizophrenia; SA = schizoaffective disorder; BP = bipolar

disorder; BP-I = bipolar disorder type I; BP-II = bipolar disorder type II; BP-NOS = bipolar disorder not

otherwise specified; DEP = any depressive disorder. SCZ includes individuals with a diagnosis of

schizophrenia and schizophreniform disorder, CON includes individuals with no diagnosis, OTHER

includes individuals with a diagnosis other than SCZ, SA, BP, DEP, or with diagnosis unknown.
aMissing data Project 1: Sex (n = 1); Age (n = 3), Missing data Project 3, Colombia: Sex (n = 1); Age (n =

2), Costa Rica: Sex (n = 1); Age (n = 3).
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domain, the variable ‘‘Dysphoria � 2 weeks’’ is found on the SCID-IV, SCID-I,

MINI, and GPC screener; because there are different versions of the SCID-IV,

SCID-I, and MINI across sites, languages and substudies, our data set includes 20

different rating variables which putatively measure this single symptom. Our first

steps in variable comparison involved trained individuals fluent in the relevant lan-

guages determining which individual items would be treated as comparable (or

approximately so) across studies.

Assumptions of Alignment in WGSPD

Table 1 shows the instrument(s) used in each study. Use of alignment given this

extreme variation in methods requires a strong assumption of approximate measure-

ment invariance. Specifically, we assume that, in all instruments containing a given

set of symptom measurements, those symptoms have approximately the same prob-

ability of being detected in an individual with a given phenotype score. Because all

symptom ratings came from similar diagnostic systems (i.e., DSM/ICD) we believe

this assumption is likely satisfied in the aggregate, but this assumption may be vio-

lated to some degree for any given symptom and/or instrument combination, and due

to the near-complete confounding of study site and instrument, it is not possible to

conclusively assess this assumption in the data presented here. Such an assessment

could be made by conducting a test-linking study in which all instruments were

administered to the same sample (Dorans, Pommerich, & Holland, 2007; Kolen &

Brennan, 2014).

Validation Approach and Hypotheses

We predicted that clinical diagnostic groups would differ in their average levels of

symptomatology in each domain; specifically, we predicted that bipolar and schi-

zoaffective individuals would have higher levels of mania and depression than

those with other diagnoses or no diagnosis and that individuals with schizophrenia

or schizoaffective disorder would have higher levels of psychotic symptoms (delu-

sions, hallucinations) than those with other diagnoses or no diagnosis. These pre-

dictions reflect the diagnostic criteria and should be supported; the question for

our validation study here was whether the aligned data would show more robust

differences than prealigned scores, consistent with the hypothesis that the aligned

scores are more reliable and valid. Predictions based on age and sex are less

robust, but overall the literature suggests that women may have less severe psy-

chotic symptoms, but more severe depressive symptoms. We also expected there

to be age effects, primarily based on the differences in typical age of onset of the

relevant samples (e.g., individuals with primary diagnoses of schizophrenia or

schizoaffective disorder were expected to be younger than those with primary

diagnoses of depression or bipolar disorder).
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Method

Data Preparation

All instruments possess a branching structure typical of diagnostic instruments, such

that if individuals do not satisfy certain symptom criteria (Screener symptoms), cer-

tain other symptoms or sets of symptoms will not be measured. This missing data

structure results in incomplete two-way contingency tables between screener and

screened items, leading to difficulties in estimating the necessary IRT models. To

account for this structure, we used logical imputation (e.g., Kaufman, 1988) such that

if a given screening criterion was not satisfied, all screened items were ‘‘filled in’’

with a rating corresponding to the absence of that symptom. When responses to

screened symptom measurements were present despite not passing the screening cri-

terion (most likely due to rater error; Brodey et al., 2016), the original responses

were left intact and were not replaced by imputed responses. After imputation, each

imputed variable was cross-tabulated with that same variable prior to imputation and

examined as a quality control procedure.

After imputing missing values, we combined symptom ratings for identical symp-

toms across all time periods episodes, and/or instruments (for samples that were mea-

sured multiple times on different instruments) to establish a lifetime symptom

presence and severity rating. This was done by taking the most severe symptom rating

for each symptom across all time periods episodes assessed in each instrument, and/or

instruments. We note briefly that some instruments, for example SCID and DIGS,

assess symptoms according to specific episodes, while other instruments, for example,

the MINI screener and OPCRIT items, directly assessed lifetime symptomatology, and

thus, these measurements may not be exactly comparable if symptoms were experi-

enced in time periods and/or episodes not assessed by the former class of instruments.

Factor Specification

As an extension of confirmatory factor analysis, alignment requires that a factor

structure be specified in advanced of model estimation. In addition, each item is

assumed to load on a single factor, requiring a fully independent cluster structure to

be specified prior to alignment. We therefore chose an a priori factor structure based

on commonly used DSM distinctions between psychiatric syndromes. The WGSPD

data contained items measuring 15 distinguishable domains: depression, mania,

hypomania, dysthymia, delusions, hallucinations, disorganized psychosis, negative

psychotic symptoms, catatonia, disengagement, phobias, generalized anxiety disor-

der, panic disorder, obsessive–compulsive disorder, and posttraumatic stress disorder.

Due to challenges with data sufficiency (too few items, too few responses per item),

sparsity (domain measured in only one or two samples), or poor fit, we did not

attempt alignment in 10 domains (catatonia, hypomania, dysthymia, disengagement,

obsessive–compulsive disorder, phobias, panic disorder, PTSD, GAD, and negative

symptoms). These domain exclusion steps left five domains: depression, mania, delu-

sions, hallucinations, and disorganization (see Supplemental Material B).
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Simulation Study

The modifications to the alignment method outlined in the ‘‘Method’’ section may

differ in performance across contexts. Much like the alignment method itself, these

modifications require a sufficient sample size in each study to estimate item para-

meters well. In addition, the performance of the alignment method with nonidentical

item sets may vary by item, where items which are only represented in a small num-

ber of low-n groups may be estimated poorly, whereas items which are well repre-

sented across most groups will be estimated well. Rather than perform an exhaustive

simulation study with a variety of test conditions, we opted to perform a small simu-

lation study using the estimated parameters, sample sizes, item sets, and item proper-

ties based on the WGSPD data in order to examine how this modified alignment

method performs within this specific context. Because a flexible tool like this modi-

fied alignment method can be used in a wide variety of contexts, we recommend that

researchers interested in the method conduct a similar post hoc simulation study

using the properties of their own data.

The median item parameters used for scoring each psychiatric domain in WGSPD

(item slope parameters and first item threshold parameter) were treated as the corre-

sponding true population item parameters for the simulation. These item parameters

were used to construct population models corresponding to each trait-sample combi-

nation in the WGSPD data. To reproduce the item overlap patterns in WGSPD, the

model for each trait in each sample consisted only of the items administered measur-

ing that trait in that sample for which item parameters were estimated in the WGSPD

analysis. This allowed us to examine in simulation the performance of the alignment

method when items overlap, but are not identical, across studies.

To simulate the alignment of only the first threshold parameter used in the analysis

above, items with more than two item categories in the WGSPD data were given

additional threshold parameters in the population models in the simulation study,

such that the items in the simulation study would have the same number of item cate-

gories as the corresponding items in WGSPD. To construct these additional threshold

parameters, the median item intercept parameters were transformed into threshold

parameters using the equations in Kamata and Bauer (2008, p. 140). From these

threshold parameters, additional threshold parameters were added based on quantiles

of a standard univariate normal distribution such that the corresponding item response

probabilities would match those observed in the WGSPD data as closely as possible.

These threshold parameters were then transformed into item intercept parameters for

the simulation models, resulting in polytomous simulated items with similar response

frequencies to those observed in the WGSPD data.

From these population models, we simulated item response data with sample sizes

in each simulated sample equal to the sample sizes in the corresponding WGSPD

sample. The underlying trait distributions for each simulated sample were univariate

normal distributions with mean and variance equal to the estimated mean and var-

iance from the alignment analyses in the WGSPD data. Such simulation resulted in a

set of simulated samples, each with identical sample size, underlying trait
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distribution (as estimated by alignment) and item content (set of included items,

numbers of response categories) to the corresponding WGSPD data set.

After simulating a set of data sets, we analyzed it using a simplified version of the

mega-analysis performed on the WGSPD data. First, items with insufficient item

responses were dropped from analysis and item response categories were collapsed

as in the WGSPD analyses. Next, unidimensional item response models were fit to

each simulated data set. Models that did not converge after 1,000 cycles of the

expectation-maximization (EM) algorithm were dropped from subsequent analysis.

Models that had too few degrees of freedom to obtain unique parameter estimates

were also dropped; this occurred when too many variables were dropped from analy-

sis due to insufficient item responses. The item discrimination parameters and first

item intercept parameters for each item were extracted from all remaining models

and were used to perform alignment as described above. After alignment, the median

aligned item parameters across studies were recorded. The above process of simula-

tion, data cleaning, estimation, and alignment was repeated 250 times.

Validation Using Plausible Value Imputation

Once the alignment models were estimated and the simulation study conducted, we

examined the relationships between estimated factor scores on the five domains and

three external correlates: age, sex, and diagnosis. To accurately account for differ-

ences in measurement precision across individuals, instruments, and studies, we

employed plausible value imputation (Mislevy, 1991) to represent the uncertainty in

estimates of the latent variables.

Results

Model Specification and Parameter Estimation

Several specific models from the five domains exhibited poor model fit and were

excluded from alignment: two of the depression models (schizoaffective subsamples

of Project 1, standardized root mean square residual [SRMSR] = .106; controls and

family members in the Project 3 Dutch bipolar study, SRMSR = .154), and one of the

mania models (schizophrenia subsample of Project 1; SRMSR = .115; see Table 1).

Table 2 contains a summary of the analysis pipeline for these five domains, indicating

how many participants were included, how many variables were included, and which

domains were used in the alignment procedure.

Parameter estimates (intercepts and slopes) for items in these the five domains are

presented graphically in Figure 1 (for further details, also see Supplemental Material

B, Tables SB1a-SB5b). Figure 1 also shows the variance ratio statistic VR for each

item parameter; VR was calculated by dividing the variance in parameter estimates

for each item parameter after alignment by the same quantity calculated before align-

ment. Values less than one indicate that parameters varied less after alignment than

before alignment, with values close to 0 indicating that nearly all of the variance
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Figure 1. Distributions of parameter estimates in the configural and aligned models.
Note. First column: Intercept parameters in the configural model. Second column: Intercept parameters in

the aligned model. Third column: Slope parameters in the configural model. Fourth column: Slope

parameters in the aligned model. VR = variance ratio, calculated as the ratio of postalignment parameter

variance to prealignment parameter variance.

Mansolf et al. 893



between item parameters in the configural model is explainable by group differences

in latent trait distribution. In these data, VR was below 0.1 for most item parameters

and below 1 for nearly all item parameters, indicating that a large majority of group

differences in item parameters can be explained by group differences in the mean

and/or variance of the latent trait.

Following alignment, two sets of factor scores were estimated to visually inspect

the shift in distributions of factor scores due to alignment. The first set of factor

scores (prealignment) was estimated using the estimated configural model para-

meters in each sample. The second set of factor scores (postalignment) was estimated

using the transformed item parameters resulting from alignment. All factor scores

were estimated using the EAP estimator.

Figures 2 and 3 contain scatterplots of prealignment (Figure 2) and postalignment

(Figure 3) factor score estimates in each domain, with factor scores estimated on the

x-axis and estimated factor score information on the y-axis. In these scatterplots, the

maximum information value for each factor score estimate can be treated, roughly

speaking, as an empirical test information function for each sample. This comparison

between the distributions of prealignment and postalignment test information func-

tions across samples provides a visual illustration of the alignment procedure. When

group differences in factor mean and variance are not accounted for (prealignment),

each item is calibrated relative to the specific sample, and thus the item slope and

intercept parameters are only interpretable relative to the sample in which those para-

meters were estimated. As such, the test information function is scaled and shifted

according to the mean and variance of the estimation sample, yielding test informa-

tion functions which vary widely across samples, as can be seen in Figures 2. In con-

trast, after alignment these parameters can be interpreted relative to the reference

sample (first column in Supplemental Tables SB1a-SB5b), yielding test information

functions in which the scaling and shifting produced by estimating the configural

model have been reversed and the test functions coincide based on the overlapping

subsets of harmonized items (Figure 3).

Simulation Results

Results of the simulation study are shown in Figure 4, which contains distributions

of simulated parameter estimates for the five domains. All parameter estimates (item

intercepts, item slopes) were within one empirical standard error of the population

values for the simulation study, verifying that the alignment method is able to accu-

rately recover the median item parameters across groups. For most symptoms, sam-

pling distributions are very small and centered around the population values. Some

symptoms, such as ‘‘Elevated, expansive, or irritable mood lasting � 1 week’’ had

much higher sampling distributions than others; this reflects the fact that these symp-

toms were only measured in a small number of studies (here, only the Finnish

Schizophrenia family study).

894 Educational and Psychological Measurement 80(5)



Figure 2. Panel plot of factor score and information estimates for prealignment models.
Note. SCID = Structured Clinical Interview for the Diagnostic and Statistical Manual of Mental Disorder

(DSM); CASH = Comprehensive Assessment of Symptoms and History; DIGS = Diagnostic Interview for

Genetic Studies; MINI = Mini-International Neuropsychiatric Interview; Di-PAD = Diagnostic Interview

for Psychotic and Affective Disorders. Top-left: Depression scores. Top-right: Legend. Center-left: Mania

scores. Center-right: Delusions scores. Bottom-left: Hallucinations scores. Bottom-right: Disorganization

scores. For factor score estimation, a prior of N(0, 1) was used.

Mansolf et al. 895



Figure 3. Panel plot of factor score and information estimates for postalignment models.
Note. SCID = Structured Clinical Interview for the Diagnostic and Statistical Manual of Mental Disorder

(DSM); CASH = Comprehensive Assessment of Symptoms and History; DIGS = Diagnostic Interview for

Genetic Studies; MINI = Mini-International Neuropsychiatric Interview; Di-PAD = Diagnostic Interview

for Psychotic and Affective Disorders. Top-left: Depression scores. Top-right: Legend. Center-left: Mania

scores. Center-right: Delusions scores. Bottom-left: Hallucinations scores. Bottom-right: Disorganization

scores. For factor score estimation, a prior of N(0, 1) was used.

896 Educational and Psychological Measurement 80(5)



Figure 4. Parameter estimates from simulation study.
Note. Left column: Slope parameter. Right column: Intercept parameter. The center of the intervals indicates

the mean item parameter across replications, and the width of the interval is 2 times the empirical

standard error of the mean item parameter. The jagged line indicates the observed parameter estimates

in the Whole Genome Sequencing in Psychiatric Disorders (WGSPD) data.

Mansolf et al. 897



Validation Results

To compare the ability of pre- and postalignment measurement models to detect the

hypothesized effects of diagnostic group, age and sex, we generated 100 imputations

of plausible values for each symptom domain for all individuals whose data were

used in estimation of the corresponding symptom domains (nE in Table 2). From

these plausible values, we estimated mean latent trait levels for the five domains of

interest (depression, mania, delusions, hallucinations, disorganization) across levels

of diagnosis and sex. Diagnostic groups were assigned following primary diagnosis:

bipolar disorder, schizophrenia, schizoaffective disorder, depressive disorder, no

diagnosis, or ‘‘other or unknown’’ which includes both cases without any of the other

diagnoses and cases for which a diagnosis was not recorded or could not be identi-

fied based on available data. In addition to age and sex, we estimated the correlations

between age and each of the latent traits measured.

Table 3 contains sample sizes, means, standard deviations, standard errors, and

fraction of missing information statistics by diagnosis and sex for the five domains

in the prealignment and postalignment models. Table 4 contains correlations of each

domain’s plausible values with age in the prealignment and postalignment models.

Statistics obtained using prealignment models, in general, were less robust than

the effects observed using the aligned data. Gender differences and correlations of

scores with age are also small when prealignment models are used, and sometimes in

directions opposite theoretical expectations. This is not unexpected, as the configural

model can be used to scale people within each sample but cannot be used to do so

across samples. One notable exception is that individuals with depressive disorders

score higher on depression than controls; this is because no sample consists of only

individuals with depressive disorders, and therefore individuals with these disorders

tend to score higher on depression than others within those samples, leading to high

factor score estimates when the configural model is used.

In contrast, when postalignment models are used for validation analyses, expected

group differences are large and robust. In these models, individuals with mood disor-

ders (bipolar, schizoaffective, depression) score higher on mood symptom domains

than controls and individuals with psychotic disorders (schizophrenic, schizoaffec-

tive) score higher on psychosis symptom domains than controls. The effects of gender

are in line with predictions, specifically men showed more severe delusions, while

women showed more severe depressive symptoms. Age was indeed positively associ-

ated with depressive and bipolar symptoms, and negatively correlated with both delu-

sions and hallucinations.

The estimated fraction of missing information (FMI) varied by domain and analy-

sis and was generally lowest for analyses based on postalignment models. The mini-

mum FMI (.11) was obtained for the mean depression level for schizophrenic

individuals in the postalignment results, while the highest FMI (.49) was obtained

for the mean disorganization level in depressed individuals in the extended alignment

results, illustrating the range of FMI values observed.
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Discussion

There is a growing need for measurement models that can be applied to mega-

analyses as recent revolutions in genomics, informatics, and ubiquitous sensing tech-

nologies have created opportunities to aggregate individual participant data on an

unprecedented scale. These models need to be flexible enough to accommodate

cross-study differences in data structure that may arise from variation across environ-

ments, participants, and measurement methods. The usual tools for assessing and

correcting for measurement invariance are cumbersome and may be ineffective. In

this study, we defined and applied a method for conducting multiple-group item

response modeling while accommodating two types of difference in data structure,

item set and response category structure, modifying the existing alignment method

(Muthén & Asparouhov, 2014). We applied the new method to a highly complex and

sparse data structure consisting of psychiatric phenotype measures in the WGSPD

Consortium, finding that much of the variance in parameter estimates across samples

could be explained by group differences in the mean and variance of the latent vari-

ables. Parameter recovery for the modified version of the alignment method was

validated using a simulation study based on the real-data results from WGSPD.

We also found that models resulting from the alignment procedure (postalign-

ment) yielded estimates of diagnostic group differences, sex differences, and correla-

tions with age that were more consistent with prior literature and expectations based

on our understanding of how the samples were ascertained, compared with simply

aggregating scores from the configural model estimated within each data set (prea-

lignment scores), demonstrating the increased validity afforded by the new method.

The latter approach, aggregating results from the configural model estimated sepa-

rately within each sample, has previously been used to scale individuals on psychia-

tric symptom dimensions, and so far, has reflected the state of the art in psychiatric

genetics research (Ruderfer et al., 2014). As the prealignment results demonstrate,

Table 4. Plausible Value Correlations of Each Domain With Age in the Prealignment (Pre-)
and Postalignment (Post-) Models.

Domain Type n r SE FMI

Depression Pre- 31,556 2.001 0.006 .232
Post- 31,556 .048 0.006 .180

Mania Pre- 10,079 2.038 0.012 .253
Post- 10,079 2.024 0.011 .163

Delusions Pre- 17,044 2.046 0.009 .235
Post- 17,044 2.073 0.009 .228

Hallucinations Pre- 17,033 2.015 0.009 .270
Post- 17,033 2.041 0.009 .192

Disorganization Pre- 16,185 2.007 0.009 .254
Post- 16,185 2.013 0.009 .261

Note. n = sample size; r = imputed Pearson correlation coefficient; SE = pooled standard error; FMI =

fraction of missing information.
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this approach may misestimate between-group differences, and fail to fully measure

between-sample variations that may be important for subsequent analyses. The

advantages of alignment can be observed best by comparing effect sizes for key mea-

sures across these methods. For example, the effect size (which can be estimated

simply by inspecting the differences between the mean values for each domain,

given these scores have SD of approximately 1) for the group difference between the

depressed group and the other/no diagnosis group was 1.49 in the prealigned data but

2.02 in the aligned data. The difference was even more striking for the difference in

the bipolar disorder group, where prealignment scores yielded an effect size of only

0.29, while after alignment the difference was 2.36. These differences in the magni-

tude of effect would be expected to have a substantive impact on validity in other

contexts, for example, in detecting genetic associations. Despite the limitations of

the current approach, discussed below, we were able to generate more robust group

differences between major clinical subgroups by accounting for cross-study differ-

ences in modeling approach (postalignment). Researchers interested in generating

phenotype scores for use in subsequent analyses (e.g., genetic analysis) may benefit

from explicitly accounting for group differences in their measurement models, rather

than using the configural model, and thus, implicitly assuming invariance in the dis-

tribution of the latent variables across groups.

To assess the loss of precision resulting from the missing latent trait values, we

calculated the (FMI) for all estimates based on plausible values. These FMI values

are of critical importance to secondary data analysts interested in using these models

for analyses such as genome-wide association studies (GWAS) because they inform

the researcher about the loss of power that results from having measurements that are

less than perfectly reliable. Sample size requirements for such analyses need to be

adjusted to account for this missing information.

In this study, as in much of the multiple-group factor analysis literature, we were

forced to make an assumption about the invariance of measurement parameters (item

slopes and intercepts) and structural parameters (factor means and variances) across

groups. In using the alignment method, we assumed that the entire set of measurement

parameters was approximately invariant, that is, it was assumed that most parameters

were very similar in magnitude across groups, but no strict equality constraints were

placed on parameter estimates across groups, and alignment allows for some para-

meters to exhibit differential item functioning (DIF). Without knowing the true values

of the latent variable in all groups, it is not possible to conclusively test this assump-

tion of approximate measurement invariance. Instead, we calculated the ratio of the

variance in parameter estimates across groups before and after alignment (VR), using

this value as an estimate of how much of the group difference in model parameters in

the configural model (i.e., assuming equal factor mean and variance across all groups)

can be explained by group differences in factor means and variances, estimated

through alignment. Most VR values were close to 0, indicating that the alignment

method did well in explaining systematic group differences in IRT model parameters.
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The high degree to which alignment was able to explain group differences in item

parameters is consistent with the assumption of approximate measurement invariance.

The measurement models used within each sample were incomplete in that they

did not account for potential residual relationships between items after controlling for

the latent variable (Cai, Yang, & Hansen, 2011; Gibbons et al., 2007; Marsh, 1989)

and they did not account for the varying and often complicated sampling methods used

in the component studies listed in Table 1 (Adams, Wilson, & Wu, 1997; Fragoso, de

Andrade, & Soler, 2014; Pastor, 2003). In order to do so, the alignment method would

need to be validated, both theoretically and empirically, in these contexts. The effec-

tiveness of parameter recovery and the stability of the resulting models is contingent

upon the structure of the data in each mega-analysis (sampling methods, item content,

item overlap). When these structures are not determined by the data analyst, as in

consortium-type studies where data were collected prior to the development of a

cross-study analysis plan, we recommend validating extensions of the alignment

method using a real-data-based simulation study similar to the one employed here.

Modeling issues aside, the largest limitation of this work is the severe sparsity of

the data matrices analyzed within each sample. By using logical imputation to reduce

this sparsity for estimation, we were able to estimate IRT models within each sam-

ple, and these exhibited reasonable fit to the data and yielded parameter estimates

which, after alignment, were within reasonable ranges. Without having observed the

item responses which were imputed logically, we have no way of knowing whether

the resulting models were affected by this imputation; however, without it we could

not have performed this estimation at all. In order to accurately represent the amount

of information in the observed data, we used nonimputed data for scoring and valid-

ity analyses, resulting in very little information for large portions of the sample

(Figures 2 and 3) and high fractions of missing information for estimated sample sta-

tistics (Tables 3 and 4).

The problems posed by sparsity of measurement in these data resulted from the

fact that the consortium was assembled after the individual studies were already

underway. The analysis strategy developed here aimed to maximize the information

yield given the available data. This research illustrates the challenges involved in post

hoc cross-study item-level IRT analyses given only partially overlapping item sets,

different category structures, and high percentages of missing data, and it is hoped

that some of the approaches taken here may be useful to others. These results further

suggest design features that might facilitate multisite mega-analyses. Ideally, the field

could develop stronger consensus on shared instrumentation and scoring methods that

could be used across studies (Curran & Hussong, 2009; Hofer & Piccinin, 2009), but

it is recognized that different investigators have unique interests and loyalties to exist-

ing instruments with which they have long and deep experience. An alternative is to

develop a ‘‘Rosetta Stone’’ strategy, whereby certain core items are selected as com-

mon data elements, that can be shared across studies, while still permitting diverse

additional questions to be asked. This research contributes to that goal by providing

item-level analysis results that span many clinical instruments. These results can be

Mansolf et al. 903



used to design or improve upon instruments currently used to measure psychopathol-

ogy constructs. Future measurement tools could be developed that would be more

efficient, informative, well standardized, and compatible with existing measures. The

results presented here already provide item parameter estimates for several of the

most widely assessed domains in psychopathology research. These estimates may

provide a useful starting point for future multisite international efforts by identifying

those items most likely to be useful across sites and diagnostic groups, and particu-

larly, in determining how many items are necessary to provide desired levels of preci-

sion in estimating the levels of each construct. The results may further inform efforts

to develop evidence-based screening tools, to avoid the risks of ‘‘logical imputation’’

that may fail to adequately define construct levels because informative questions

were never asked.

Past research on cross-study item-level measurement has historically been limited

to cases in which the same instrument was administered to all participants in all

included studies (e.g., Hussong et al., 2007; Hussong, Huang, Curran, Chassin, &

Zucker, 2010), although recent work has attempted to account for nonidentical item

sets (e.g., Gu & Gutman, 2017; Kaplan & McCarty, 2013; Marcoulides & Grimm,

2017; McArdle et al., 2009). In designs with identical item sets across groups or time

points, a multiple-group item response theory model can accommodate differences in

item properties and sample characteristics into a single estimated model which spans

both studies. Using concepts from the test-linking literature, other studies have per-

formed cross-study measurement when at least some participants were given all the

instruments used; see Curran & Hussong (2009) for an example of this work. In the

educational assessment literature, it has become increasingly common to administer

a subset of items from a larger item pool to each participant (e.g., in balanced incom-

plete block designs; Beatom & Gonzales, 1995; Van der Linden, Veldkamp, &

Carlson, 2004); such designs can be accommodated straightforwardly by most IRT

estimators which are robust to the resulting missing data structures. Such approaches

would be an appealing alternative to the current approach for multisite research; spe-

cifically, if a set of ‘‘common data elements’’ comprising a core group of ‘‘linking’’

items could be agreed upon. Such an item set could even be based on the parameter

estimates provided by our study or those by others. This could be complemented by

administration of diverse additional item content, enabling different investigators to

pursue additional hypotheses while facilitating mega-analyses. Of course, the practi-

cality of this approach may be limited as the number of core items may already

exceed the pragmatics of large-scale studies.

Ultimately, we view this work as proof-of-concept for an inclusive measurement

modeling strategy that incorporates as much data as possible from highly disparate

samples and study designs into a single harmonized measurement model. The beauty

of extending alignment as demonstrated here resides in the simplicity of the statisti-

cal procedures. Each model is estimated only within its own sample, avoiding the

complications involved in identifying a well-fitting measurement model that spans a

large number of disparate groups in the face of daunting amounts of missing data.
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Ideally, such procedures would be unnecessary; in an ideal study, everyone would be

measured with one instrument and one could simply conduct a multiple-group item

factor analysis or, if the number of groups is large, the alignment method as it cur-

rently exists in the literature. For post hoc consortium-style mega-analyses such as

these, the approach of modifying the alignment method to account for cross-study

differences may offer a valuable tool that enables scalable model-based measurement

in this complex and challenging context.
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