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Abstract

Background: Tor putitora, the largest freshwater fish of the Indian subcontinent, is an endangered species. Several
factors have been attributed towards its continuous population decrease, but very little is known about the gut
microbiome of this fish. Also, the fish gut microbiome serves as a reservoir of virulence factors and antibiotic
resistance determinants. Therefore, the shotgun metagenomic approach was employed to investigate the
taxonomic composition and functional potential of microbial communities present in the gut of Tor putitora, as well
as the detection of virulence and antibiotic resistance genes in the microbiome.

Results: The analysis of bacterial diversity showed that Proteobacteria was predominant phylum, followed by
Chloroflexi, Bacteroidetes, and Actinobacteria. \Within Proteobacteria, Aeromonas and Caulobacter were chiefly present;
also, Klebsiella, Escherichia, and plant symbionts were noticeably detected. Functional characterization of gut
microbes endowed the virulence determinants, while surveillance of antibiotic resistance genes showed the
dominance of 3-lactamase variants. The antibiotic-resistant Klebsiella pneumoniae and Escherichia coli pathovars
were also detected. Microbial genome reconstruction and comparative genomics confirmed the presence of
Aeromonads, the predominant fish pathogens.

Conclusions: Gut microbiome of endangered Tor putitora consisted of both commensals and opportunistic
pathogens, implying that factors adversely affecting the non-pathogenic population would allow colonization and
proliferation of pathogens causing diseased state in asymptomatic Tor putitora. The presence of virulence factors
and antibiotic resistance genes suggested the potential risk of dissemination to other bacteria due to horizontal
gene transfer, thereby posing a threat to fish and human health. The preservation of healthy gut microflora and
limited use of antibiotics are some of the prerequisites for the conservation of this imperilled species.
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Background

The gastrointestinal tract is a complex environment
inhabited by diverse groups of microbial communities
[1-3]. The gut bacteria play an important role in main-
taining the normal physiology, nutrition, health, homeo-
stasis, protection against pathogens, and functioning of
the host immune system [2, 4-7]. There has been a
growing interest in understanding the composition of
symbiotic and pathogenic bacteria in the gut [6]. The
symbiotic bacteria present in the gut provide several
benefits to their hosts, such as digestion of complex
indigestible food materials, production of important
secondary metabolites, and defence against pathogens [2,
7-10], several opportunistic bacterial pathogens are also
reported in the gut microbial community [11, 12]. Alter-
ations in normal gut microflora reduce the competition
for pathogens and result in their overgrowth leading to
the diseased state [13]. Microbial dysbiosis causes im-
pairment of the normal activity of digestive enzymes,
damage to gut tissue, and increased infiltration of oppor-
tunistic pathogens and toxicants [14]. This fact has
drawn considerable attention to find out potential pro-
biotic, symbiotic, and pathogenic bacteria that may have
a profound influence on the host physiology and health.
While there are several studies on the fish gut micro-
biome, hitherto, there are gaps in our understanding on
the structure and function of the gut microbiome in
endangered fish [1, 2, 15, 16].

Most of the knowledge with respect to the fish gut
microbiome was based on the use of culture-based
methods for the investigation of microbial communities
[6, 17]. However, culture-independent methods allow
identification of a large proportion of microbial diversity
than could be observed with culture-based studies [18].
Although 16S rRNA (marker-gene) sequencing provides
information about the taxonomic composition of micro-
bial communities, it provides limited information about
their functional capabilities and metabolic pathways [19].
On the other hand, whole genome shotgun metage-
nomics can overcome these caveats and allow for a
deeper understanding of the gut microbial communities
and host-microbiota interactions [19-21]. The compos-
ition of microbial communities residing in the intestinal
tract of different fish showed the presence of both bene-
ficial and pathogenic microbes [2, 22—25]. However, it
remains a challenge to elucidate whether the gut micro-
flora drives for protection (friends) or disease develop-
ment (foes) in fish. The fish gut is natural reservoir of
Aeromonas, Pseudomonas, Vibrio, Streptococcus, and
other coliforms [26—30]. The presence of virulence genes
and antibiotic-resistance genes in Aeromonas spp. from
freshwater may also be responsible for causing infections
in humans as there have been reports of transmission of
infectious Aeromonas from fish following injuries during

Page 2 of 18

handling, practicing aquaculture systems or pet fish
keeping [31-34]. Aeromonads, the predominant species
associated with the gastrointestinal tract of aquatic
animals, are known to cause a multitude of diseases in
freshwater fish [7, 30, 35, 36]. Among all the Aeromo-
nads, Aeromonas veronii has the greatest range in
virulence and has been associated with infectious
abdominal dropsy in fish [37]. Also, there have been
reports on the presence/transmission of opportunistic
and other pathogenic bacteria in fish, making them
potential carriers [26, 27, 29, 38—41]. Thus, it is impera-
tive to detect virulence genes in the microbiome of fish
for their possible transmission.

The aquaculture sector is a major contributor to the
world’s production for food [22]. Overuse of antibiotics
in aquaculture has led to the rapid emergence of
antibiotic resistance genes (ARGs) in the aquatic envir-
onment where fish serve as a reservoir of multidrug-
resistant bacteria and their potential mobilization [19,
42-44]. The dissemination of antibiotic resistance genes
from fish bacteria to human pathogens is a serious
threat to public health [43, 44]. Surveillance of ARGs in
fish would aid in the development of regulations for the
application of antibiotics in aquaculture.

Tor putitora (Ham.) is commonly known as golden
mahseer due to its large size, attractive golden colour
and sport values. It has been promoted as a ‘flagship’
species of the Indian subcontinent [45, 46] and has been
enlisted endangered by International Union for Conser-
vation of Nature (2010) and IUCN Red List assessment
[47]. It is widely distributed in Afghanistan, Bangladesh,
Bhutan, Myanmar, Nepal, Pakistan, and in India, its
distributional range is in the Northeast Himalaya which
includes Himalayan foothills, Garo hills of Meghalaya
and Challou river of Manipur [45]. It is an indigenous
fish species and forms mainstay fishery of upland Hima-
layan region [48]. It is consumed by people because it
contains high-quality proteins making it a potential re-
source for aquaculture industries. Besides this, it is also
a good source of minerals acting as diet supplements
[48]. Tor putitora is an economically important fish be-
cause it has great culinary value, forms lucrative sport
fishery in the Himalayan river, and provides employment
opportunities to locals [49]. Despite this, very limited re-
search efforts have been made to investigate the com-
mensal/beneficial/pathogenic bacteria in the gut of this
fish species [39]. In India, the Gobindsagar reservoir
(31°24'59.99” N, 76°29'59.99” E) is one of the largest
man-made lakes which port Tor putitora [50]. Mahseer
used to constitute as high as 9% of the total catch during
1984—-85, which has decreased rapidly to 1% during
1999-2000 [50]. Therefore, the major objective of this
study was to understand the taxonomic composition and
functions of bacterial communities associated with the
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gut of Tor putitora. The second focus of this study was
to understand the antibiotic resistance pattern of gut
bacterial communities.

Results

Taxonomic composition of fish gut microbiome

The Illumina HiSeq 2500 platform generated a total of
284,412,950 paired-end reads, n=120,716,302 paired-
end reads in fish gut metagenome 1 (FGM1) and n=
163,696,648 paired-end reads in fish gut metagenome 2
(FGM2) yielding total 71.3 gigabase high-quality whole
metagenome shotgun sequence data. The final merged
read length was 200bp. The other details regarding
sequencing and assembly have been mentioned in Add-
itional file 1: Table S1. The values of Shannon-Wiener
index (H) 1.796 (FGM1) and 2.362 (FGM2) as well
Simpson’s index value (1-D) of 0.7998 (FGMI1) and
0.8792 (FGM2) depicted compositional shift in the
microbial diversity of gut of Tor putitora. The rarefac-
tion curves based on alpha diversity measures depicted
the saturation phase at le+06bp sequencing effort
(Additional file 2: Figure S1). Likewise, beta diversity
analysis was conducted to determine the similarity or
dissimilarity in the composition of microbial communi-
ties of the samples. The Non-metric Multi-Dimensional
Scaling (NMDS) plot based on the Whittaker index ex-
plained variance in the diversity of the two samples
(Additional file 2: Figure S2). Similarly, pairwise correla-
tions computed using Pearson’s method (R*=0.7947)
depicted a positive correlation between microbial com-
munities of two metagenomes. The microbial commu-
nity was dominated by bacteria (97.07%), whereas the
abundance of viruses (0.37%) and archaea (0.02%) was
relatively low. Within bacteria, FGM1 and FGM2 were
dominated by 95.96% and 91.33% Proteobacteria, re-
spectively. Besides, Chloroflexi, Actinobacteria, and Bac-
teroidetes were also present (Fig. 1la). The relative
abundance at genera level depicted that FGM1 was
dominated by Caulobacter (28.62%), Aeromonas
(28.18%), Klebsiella (12.4%), Escherichia (10.1%), Bradyr-
hizobium (9.55%) and Mesorhizobium (3.81%). Likewise,
FGM2 microbial community comprised Aeromonas
(24.51%), Pseudomonas (12.06%), Caulobacter (11.59%),
Klebsiella (10.08%), Bradyrhizobium (9.12%), Escherichia
(7.34%) and Mesorhizobium (0.68%). Moreover, Rhodop-
seudomonas, Mycobacterium, Vibrio, and Methylobacter-
ium were also detected (Fig. 1b). Members of
Aurantimonadaceae, Acetobacteraceae, and Sphingobac-
teriaceae could not be classified to the genus. The rela-
tive abundance of different species is illustrated in Fig. 1c.

Functional characterization of gut microbial communities
In this study, both the KEGG and SEED databases were
used to predict the metabolic potential of the gut
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microbiome. The KEGG pathway analysis using Pear-
son’s correlation and hierarchical clustering showed a
higher relative abundance of pathways involved in me-
tabolism (28.7% in FGM1, 28.9% in FGM2), followed by
biosynthetic pathways (15.6% in FGM1, 12.06% in
FGM2) and pathways for degradation (12.22% in FGM1
and 11.66% in FGM2). In the pathways for metabolism,
vitamin B6 metabolism, nucleotide sugars, and alanine
and aspartate metabolism were dominant. Under the
category for biosynthesis, pathways for lipopolysacchar-
ide biosynthesis, peptidoglycan biosynthesis, and anti-
biotic production were abundant. Discounting core
metabolism and energy, several pathogenesis-related
genetic traits, including bacterial chemotaxis, flagellar
assembly, and type III secretion system, were also
present (Fig. 2a). Moreover, pathways of type II- and
type IV secretion systems, [-lactam resistance, and
Vibrio cholerae pathogenic cycle was also detected (Fig.
2a). The functional assignment of normalized reads in
the metagenomes with SEED database also revealed
similar patterns with maximum reads assigned to the
cofactors, vitamins, prosthetic groups, pigments, protein
metabolism, fatty acids, lipids, and isoprenoids and
metabolism of aromatic compounds. The pathways for
cell wall and capsule formation, iron acquisition and me-
tabolism, virulence, motility and chemotaxis, phages,
prophages, transposable elements, plasmids showed high
relative abundance in both the metagenomes. All these
pathways were significantly different (Fisher’s exact test
at 0.95 confidence interval, p-value <0.05) among the
metagenomes (Fig. 2b).

Detection of virulence genes in the fish gut microbiome

Fish gut microbiome could be a possible reservoir of
virulence genes and resistance determinants; therefore,
the gut metagenome was explored for genes encoding
virulence factors of putative pathogens in fish. Search
against Aeromonas virulence factor database depicted
the presence of a total of 157 virulence genes. The key
virulence factor of Aeromonas salmonicida is type 111 se-
cretion system (TTSS) which is present on a large-sized
plasmid encoded by different genes arranged in five
major polycistronic operons (i) exsA,D,ascB,C,D,EF,G,H,
LLK,L (ii) exsCE,B (iii) aopN,acrl,2,ascX,Y,V,acrR,G,V,H,
aopB,D (iv) ascN,O,PL,QRS T,U and (v) aopXsycX
(Fig. 3a). The Blastp searches against the virulence factor
database were performed using the similarity criteria of
e-value < le-5, percent identity = 80%, alignment length/
subject length > 0.8, and alignment length/query length >
0.8. Thirty-one genes of a total of 38 genes comprising
the TTSS operon of Aeromonas salmonicida were de-
tected (Fig. 3b, Additional file 1: Table S2). Some TTSS
genes (ascD, ascE, ascF, ascK, exsB, ascP, and aopX), in-
cluding aexT, which encodes TTSS effector protein,
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were detected below the cut-off. Furthermore, genes
encoding hemolysin III and thermostable hemolysin in
Aeromonas veronii, flagellar apparatus in Aeromonas
salmonicida, and Aeromonas hydrophila, and HcpA, ef-
fector protein of type VI secretion system in Aeromonas
hydrophila were also detected using the same parame-
ters as mentioned above (Additional file 1: Table S2).
Similarly, the search against the Escherichia coli viru-
lence factor database depicted the presence of different
virulence genes. With e-value < le-5, percent identity
> 80%, alignment length/subject length>0.8 and
alignment length/query length>0.8, total 100 genes
belonging to different classes of entero-virulent Escheri-
chia coli strains were identified (Additional file 1: Table
S3). The relative abundance of virulence genes repre-
senting enterohemorrhagic Escherichia coli (EHEC)
strains was 46%, followed by 33% uropathogenic

Escherichia coli (UPEC). The virulence genes associated
with enteroinvasive Escherichia coli (EIEC) (9%), avian
pathogenic Escherichia coli (APEC) (8%), and benign la-
boratory strain Escherichia coli (BLS) (3%) were also de-
tected (Fig. 4). Of the total EHEC detected in the
metagenomes, the relative abundance of virulence genes
associated with enterohemorrhagic Escherichia coli
O157:H7 serotype was abundant, whereas those associ-
ated with Escherichia coli strain RS218 were least.

The mining of Pseudomonas virulence genes in the
fish gut metagenome resulted in the identification of 79
genes at the filter parameters. Among these, the genes
for virulence factors related to adherence (45.57%) and
antiphagocytosis (27.85%) were abundant. The major
genes for adherence included those related to flagellar
apparatus, lipopolysaccharide, and type IV pili, and
antiphagocytosis was composed of genes for mucoid
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Fig. 3 (See legend on next page.)
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Fig. 3 Type Il secretion system in Aeromonas salmonicida. a Genetic organization of type Il secretion system (TTSS) genes in Aeromonas
salmonicida. TTSS of Aeromonas salmonicida is located on a large plasmid pASA5 and gene encoding effector protein (aexT) is located on the
chromosome. At stringent criteria, maximum genes of TTSS were detected while ascD, ascE, ascf, asck, exsB, ascP, and aopX, and aexT were
detected below the cut off. b Genes orthologous of type Il secretion system of Aeromonas salmonicida enriched in the fish gut metagenome.

Figure modified from: [51]

exopolysaccharide (alginate). Apart from these, genes for
TTSS and HSI-I (Hcpl Secretion Island I) secretion
systems were also present. Also, genes encoding for exo-
lysin (ex/A) and iron uptake (pvdA, pvdS) were detected
(Additional file 1: Table S4, Additional file 2: Figure S3).

Distribution of antibiotic resistome

Fish are associated with the dissemination of antimicro-
bial resistance genes (ARGs). Investigation of antibiotic
resistance revealed the presence of a total of 445 ARGs.
Primarily, the identified ARGs encoded for B-lactamases
(87.19%), efflux pumps (5.39%), multidrug transporters
(1.12%), polymyxins (0.45%), vancomycin (0.22%) and
tetracycline (0.22%) resistance (Fig. 5a). In addition,
different transcriptional regulators (EvgA, EvgS, GadW)
involved in the controlled expression of ARGs were also
identified. The relative abundance of p-lactamase was

highest in Klebsiella pneumoniae (56.44%) trailed by
Escherichia coli (22.42%), Proteus mirabilis (4.38%) and
Enterobacter cloacae (2.32%). Contrarily, the relative
abundance of efflux pumps was higher in Escherichia
coli (75%), Klebsiella pneumoniae (8.33%), and Entero-
bacter cloacae (8.33%) (Fig. 5b). Within [-lactamase,
different variants of extended spectrum [-lactamase
(ESBL) such as SHV, TEM, OKP, and CTX-M were
predominantly associated with Klebsiella pneumoniae
(Additional file 1: Table S5).

Reconstruction of the microbial genome and comparative
genomics

In this study, we reconstructed a microbial genome of
3.5Mb. RAST analysis (RAST Id: 6666666.356227)
depicted that reconstructed microbial genome of 3,501,
394 bp size consisted of 3464 coding sequences and 383
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100% abundance

Fig. 5 Antibiotic resistance pattern of gut microbiome in endangered Tor putitora. a Distribution of different antibiotic resistance genes in the
fish gut microbiome. The data was normalized and the calculation of z-score showed the highly abundant genes for different variants of
extended spectrum {-lactamases. b The relative distribution of antibiotic resistance genes in different bacteria present in the gut of Tor putitora.
The colour code indicates the distribution of ARGs ranging from none to 100%. All the zero values are given in orange. The percentages varying
from 0 to 10% are highlighted grey. The 10-20% interval is shaded blue while 20-30% range is represented by green colour. The magenta, dark-
red, dark-pink and yellow colour code represent 30-40%, 40-50%, 50-60% and 60-70% distribution, respectively whereas turquoise highlights

subsystems and showed close resemblance with Aeromo-
nas veronii B565, Aeromonas hydrophila subsp. hydro-
philaATCC 7966, and Aeromonas salmonicida subsp.
salmonicida A449. To further gain insight into the pre-
cise phylogenetic relatedness, whole genome-based
average nucleotide identity (ANI) analysis was per-
formed using publicly available representative genomes
of Aeromonas species. Estimates of ANI values (> 94%)
showed that reconstructed microbial genome clustered
together with strains of Aeromonas veronii (Fig. 6a, Add-
itional file 1: Table S6). Henceforth, it was designated as
Aeromonas veronii strain RL.

The pathogenicity of Aeromonas species is linked to
different virulence factors, including adhesion proteins,
siderophore secretion, toxins, and lipopolysaccharides
(LPSs). In order to confirm the pathogenic properties of
strain RL, we performed its comparative genomic ana-
lyses with reported pathogenic strains of Aeromonas ver-
onii and an uncharacterized Aeromonas sp. 159, which
was phylogenetically closer to selected Aeromonas vero-
nii strains. A close look at the number of orthologous
genes revealed the presence of 1627 single-copy genes
(core) determined using the GET_HOMOLOGUES
pipeline (Fig. 6b). Genes encoding different virulence
factors including LPS biosynthetic gene cluster, hemoly-
sin, flagellar biosynthesis and assembly, siderophore se-
cretion, two-component system, type I, and type II
proteins, type IV pilus genes, outer membrane porin
proteins, proteases were conserved in Aeromonas veronii
genomes. In addition, genes encoding efflux pumps, -
lactamase, multidrug resistance proteins, dihydrofolate
reductase, resistance-nodulation-cell division (RND)
multidrug efflux transporters and major facilitator
superfamily (MFS) were also present in the core gen-
ome. Interestingly, quorum-sensing regulator protein,
which is directly involved in the pathogenesis, was
found in the core (Additional file 1: Table S7). Strain
RL also harboured genes encoding different virulence
factors viz. lipase, collagenase, hemolysin, phospholip-
ase C, and serine protease. In addition, strain RL and
Aeromonas veronii TH0426 harboured L-serine dehy-
dratase, which was earlier considered unique to hy-
pervirulent strains of Aeromonas hydrophila (Table 1,
Additional file 1: Table S8).

Discussion

The values of the Shannon-Wiener index (H) were in
the range of 1.8-2.4, and Simpson’s index value (1-D)
varied from 0.8-0.9, which was consistent with values
reported by other studies [52-54] indicating consider-
able sample diversity in the metagenomes. The compos-
ition of gut microbiota has been explored in different
fish species as a function of dietary changes, the impact
of host genotype, and different environmental factors [1,
2, 55-58]. The beta diversity analysis also showed varia-
tions from site 1 to site 2, mainly because microbiome
composition can be influenced by the environment [58].
Studies have confirmed the influence of gut microbiota
in host development, physiology, and health mainten-
ance [22, 55, 59]. Therefore, a comprehensive analysis of
the taxonomic composition and function of gut micro-
biota of endangered Tor putitora is crucial for under-
standing the influence of gut microflora on the host. To
our best knowledge, the present study is the first report
showing shotgun metagenomic analysis of microbial
communities present in the gut of an endangered fresh-
water fish. In this study, Proteobacteria were dominantly
present in the intestinal tract of Tor putitora, which con-
forms to previous studies including Prussian carp, grass
carp, crucian carp, bighead carp, and Labeo rohita (rohu)
[1, 2, 19, 57, 60, 61]. Studies have also shown the pres-
ence of Chloroflexi, Actinobacteria, Firmicutes, Fusobac-
teria, and Bacteroidetes in the intestinal tract of different
carp species [7, 57, 58, 60—64].

Fish are in continuous contact with the complex and
dynamic planktonic microbiota; therefore, it is expected
that the gut microbiota in fish is largely affected by
microbes in the environment [65]. The dominant micro-
biota in the intestinal contents of carps included bacteria
from families Caulobacteraceae, among others [66].
Also, the prey of different fish species in the Chany (eu-
trophic) lake showed relatively higher abundances of
bacteria from family Caulobacteraceae [66]. The high
relative abundance of genus Caulobacter in the gut of
Tor putitora could be attributed to its feeding on insects,
macrophytes, rotifers, and small fish [45]. The intestine
of healthy juvenile salmon had Caulobacter as one of
their main bacterial components [67]. The occurrence of
Caulobacter spp. on the eggs of Gadus morhua L. and
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Aeromonas veronii B565, TH0426 — Aeromonas veronii TH0426

Fig. 6 Comparative genome analysis of Aeromonas veronii strain RL. a Phylogenetic relatedness of Aeromonas veronii strain RL based on the
average nucleotide identity values. b Distribution of gene clusters (core and strain-specific content) in Aeromonas veronii strain RL and its other
closely related strains. The diagram is based on presence and absence of genes using Euclidean distance and Ward linkage. The strains' name are
used to represent the genotypes for different strains of Aeromonas veronii, RL — Aeromonas veronii RL, sp. 159 — Aeromonas sp. 159, AER39 —
Aeromonas veronii AER39, AER397 — Aeromonas veronii AER397, AMC34 — Aeromonas veronii AMC34, AMC35 — Aeromonas veronii AMC35, B565 —

Hippoglossus hippoglossus indicated that eggs were colo-
nized by bacteria before spawning and could be because
of preinvasion from the gut [68]. Alongside resident
autochthonous microbes, the fish gut is considered as
the principal reservoir of Aeromonas, Pseudomonas,
Vibrio, Streptococcus, Mycobacterium, and other coli-
forms [26-30, 41]. The presence of Escherichia coli in
different tissues and organs of the fish indicates the bac-
teriological conditions of the water inhabited by the fish
[29]. In Gobindsagar lake, which was our sampling site,
industrial and domestic effluents are discharged into the
water body, it is also used for bathing and recreational
activities, thereby deteriorating the quality of water [69,
70]. Thus, pathogenic microbes from such polluted envi-
ronments can be transmitted to fish, thereby colonizing
their guts [26]. Moreover, the relatively high prevalence
of E. coli in the gut could be because they multiply rap-
idly when the temperature is between 16°C and 20°C
[29] and in the present study, the water temperature was
18.033 £0.153°C at sampling site 1 and 20.467
0.451 °C at sampling site 2 (Additional file 1: Table S9).
Also, they have long retention periods suggesting that
they could carry bacteria in their digestive tract to non-
polluted water [29]. Klebsiella pneumoniae is an

opportunistic pathogen responsible for causing nosoco-
mial infections and are found in the gastrointestinal tract
of the host [71, 72]. Again, the presence of K. pneumo-
niae in the gut may relate to the water environment, and
its presence has been reported from tilapia, rohu [19,
73]. Being an opportunistic pathogen, it may cause dis-
ease under favorable conditions, as was the case in
Maldive’s clown fish when the concentration of un-
ionized ammonia increased in the culture tank [74].
Pseudomonas species are another group of bacterial
communities that are frequently associated with fish as
one of the dominant microbes and have been isolated
from their skin, gills and intestine [13, 35, 75-77].
Pseudomonas might aid in digestion by the production
of proteases and along with Photobacterium spp. might
produce chitinases [75]. Also, these species have been
evaluated as potential probiotics in aquaculture [78—80],
and their live inoculum can be used to mitigate oomy-
cete diseases [81]. Tripathy et al. (2007) proposed that
they are widespread and numerous, hence may act as
secondary invaders of fish compromised with pathogens
and may become involved in the disease processes [39,
76]. Thus, there is a very blurred boundary between
pathogens and commensals [82].

Table 1 Presence and absence matrix of different virulence factors among known pathogenic strains of Aeromonas species

Virulence factors A. veronii A. veronii A. veronii A. hydrophila A. hydrophila A. hydrophila A. hydrophila A. salmonicida
RL B565 THO0426 ATCC 7966 HZAUAH I NJ 35 A449

Lipase + + + + + + + +

Serine Protease + + + + + + + +

Collagenase + + + + + + + +

Phospholipase C + + + + + + + +

Metalloprotease + + + + + T + "

L-serine + - + + + + + _

dehydratase

Oligopeptidase A + + + + +

Sensor histidine + + + + + 4

protein kinase

Hemolysin + + + + +

Thermostable + + + + +

hemolysin

Cytolysin and - - - - + + n 4

hemolysin (Hly A)
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Human beings have used large amounts of antibiotics
as growth factors in aquaculture, agriculture, and live-
stock, resulting in the contamination of the immediate
environment [83]. The pathogens then exploit commu-
nity changes induced by antibiotics, wherein microbiome
serves as a reservoir of virulence factors and resistance
determinants [82]. Given that many virulence genes are
coded in extra-chromosomal elements, the horizontal
transfer of such genes to other non-pathogenic species
might occur by genetic elements of varying mobility
such as plasmids and transposable elements [84, 85].
The functional annotation of gut metagenome revealed
the presence of different mobile genetic elements that
might aid in the transfer of virulence properties to harm-
less strains rendering them potential pathogens [83].
Also, it has been stated that virulence factors are needed
in bacteria’s “struggle for existence” against microscopic
adversaries [82]. For example, enterohemorrhagic sero-
type Escherichia coli O157:H7 (EHEC) is a commensal
in the bovine gut, but acts as a pathogen for humans
[82]. Therefore, it could be concluded that the presence
of virulence factors in the fish gut metagenome may not
be an indication of unhealthy gut microbiota but can
serve as a reservoir for dissemination of genes to mu-
tualistic or commensal bacteria which can pose a serious
threat to fish and public health by their virtue of being
converted into potential pathogens. Escudeiro et al.
(2019) proposed that there exists a correlation between
antibiotic resistance determinants and virulence factors
diversity in metagenomes and speculated that by select-
ing for resistant bacteria, we may end up selecting for
more virulent strains as a side effect of antibiotics usage
[83]. Antibiotic resistance genes have been frequently
reported in isolates belonging to the families Pseudomo-
nadaceae, Enterobacteriaceae, and Rhizobiaceae [84].
Besides, multidrug-resistant strains of Escherichia coli
and Klebsiella pneumoniae have been reported from
wild and commercial fish and other seafood [43, 86—88].
The extended-spectrum [-lactamase (ESBL) was found
to be predominantly associated with Klebsiella
pneumoniae present in the gut of Tor putitora. Similar
to this study, genes encoding extended spectrum beta-
lactamase (TEM, CTX-M-1) and multidrug resistance
proteins (mdtA, mdtB, mdtC) were also found in the gut
microbiome of freshwater Indian carp [19].

Members of Aeromonas have been reported from fish
with a wide range of both beneficial and pathogenic out-
comes [75, 89, 90]. The furunculosis committee had
considered the fish intestine as an important niche for
the isolation of Aeromonad species [35, 91-93]. In this
study, the prominently detected Aeromonas species were
Aeromonas hydrophila, Aeromonas salmonicida, and
Aeromonas veronii. Several virulence factors have been
characterized for Aeromonas species, and the type III
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secretion system (TTSS), which can efficiently inject
anti-host virulence determinants (toxins) into the host
cells, is main virulent factor reported in strains of Aero-
monas salmonicida and Aeromonas hydrophila [51, 94—
97]. Functional investigation showed the presence of dif-
ferent virulence genes of Aeromonas hydrophila, and
complete operon encoding TTSS of Aeromonas salmoni-
cida (Fig. 3b, Additional file 1: Table S2). The role of
genes encoding flagellar apparatus, and bacterial chemo-
taxis has been well elucidated in Helicobacter pylori,
Pseudomonas aeruginosa, Vibrio cholerae allowing them
to colonize and invade the host’s mucosa [98]. Apart
from these, type IV pili serve as important structures for
adhesion to epithelial cells and are involved in biofilm
formation and twitching motility [98]. These observa-
tions suggest the presence of virulent strains of Aeromo-
nas in the gut of Tor putitora, indicating that intestine
may be a possible route of infection. Moreover, the re-
construction of Aeromonas veronii strain RL genome
reflected its abundance. Aeromonas veronii strains have
been conspicuously detected in the intestine of fish [30,
99]. Recently, Aeromonas jandaei and Aeromonas veronii
were reported as the disease causative agent and linked
to mortality in Nile tilapia [91]. Core genome analysis
highlighted the virulent properties of strain RL and
showed the conservation of virulence genes. Compara-
tive genome analysis confirmed the virulent properties
of strain RL genome, which harbored several virulence
genes encoding lipase, collagenase, hemolysin, thermo-
stable hemolysin, phospholipase C and serine protease
which are well-characterized virulence factors of Aero-
monas species [94]. Intriguingly, strain RL possessed a
gene encoding L-serine dehydratase, which was earlier
considered to be uniquely present in hypervirulent
strains of Aeromonas hydrophila. The role of L-serine
dehydratase in the colonization of the avian gut by Cam-
pylobacter jejuni has been reported [100]. The presence
of virulent properties does not reflect that they are ac-
tual pathogens; however, under conditions of stress-
induced infections, the gut may be the primary location
for colonization by Aeromonas. Clearly, additional
studies are needed to understand the role of Aeromonas
species in the gut of Tor putitora.

Previous studies had shown that intestinal microbiota
of freshwater fish is dominated by phyla such as Proteo-
bacteria, Fusobacteria, Firmicutes, and Bacteroidetes
whose members are able to decompose plant polymers
and ferment organic compounds providing nutrients and
energy to fish [7, 35, 58, 60, 62, 101, 102]. Aeromonas
species, representative of Gammaproteobacteria, are
well-characterized fish pathogens, but beneficial
cellulose-degrading Aeromonas species had also been
cultured from the intestinal tract of grass carp [2]. Like-
wise, Cetobacterium (Fusobacteria), which can produce
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vitamin Bj, were abundantly present in the intestinal
tract of Cyprinus caprio and Tor tambroides [7, 103,
104]. Interestingly, occurrences of symbiotic bacteria
such as Bradyrhizobium and Mesorhizobium, which are
generally associated with plant roots, reflect the omniv-
orous feeding habit of Tor putitora [45]. The diverse
microbial community present in the gut of Tor putitora
comprised of both non-pathogenic (symbiotic or benefi-
cial) microbes and putative pathogens. The diverse intes-
tinal communities are more beneficial for their host and
stable to environmental disturbances [65]. Consistent
with this statement, higher alpha diversity was frequently
detected in the healthy fish compared to diseased fish
[65], and measures of alpha diversity in Tor putitora
were comparable to those in healthy fish in other studies
[65]. The environmental factors adversely affecting the
non-pathogenic community (microbial dysbiosis) would
possibly decrease the competition to gut pathogens
allowing their colonization and proliferation in the gut
of Tor putitora. Also, the risk involved in the consump-
tion of contaminated fish may not necessarily be associ-
ated with bacteria present in the edible tissues, but
infection may also occur during handling of the fish,
cross-contamination to other food sources is likely to
occur when the fish is prepared and cleaned for con-
sumption. Also, the presence of antibiotic-resistant
strains in the gut poses a threat to public health by their
virtue of being consumers.

Conclusions

The present study is a pioneer attempt to investigate the
microbial diversity and functional potential of gut micro-
bial communities of endangered fish Tor putitora. This
fish species is vital for ecological and ecosystem stability;
thus, potential mobilization of antibiotic resistance genes
through gut microbes has serious implications both for
the fish and human health. This baseline data on gut
microbiome clears that the microbiota affects its host in
more than one way, and this study is thought to bring a
plenitude of understanding of their functional potential
in the host and expand current notions of the fish gut
microbiome.

Methods

Site selection and sampling

In this study, sampling was performed from two fish
landing stations located at the Gobindsagar reservoir,
Himachal Pradesh, India (Fig. 7). The first sampling was
done from Gulehar site (31.4047°N, 76.4968°E; lotic
water system) and second sampling site was Bhakra
barrage (31.5269°N, 76.3968°E; lentic water system). A
total of ten healthy fish specimens ranging from 50-53
cm in length and 1650-2250 g in weight were collected
from each of the two sites (Additional file 1: Table S10).
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Samples were brought to the laboratory in dry ice. Each
fish was aseptically dissected for its whole gut contents,
and samples were stored at -80°C. The Physico-
chemical parameters of water such as temperature, pH,
electrical conductivity, total dissolved solids (TDS) and
dissolved oxygen (DO) were measured immediately after
sampling by an Orion 5-Star Portable pH/ORP/DO/
Conductivity Multimeter (Thermo Fisher Scientific Inc.
[INYSE: TMO], MA, USA).

DNA isolation, sequencing and data processing

The DNA was isolated from the whole gut contents of
each fish sample using a metagenomic DNA isolation kit
(PowerSoil” DNA Isolation Kit, MO BIO). The metage-
nomic DNA was quantified using the NanoDrop ND-
1000 spectrophotometer (NanoDrop Technologies, Inc.,
Wilmington, DE, USA). The metagenomic DNA was
visualized on 0.8% agarose gel electrophoresis. The DNA
from each fish gut content sample was pooled in
equimolar concentration for fish gut metagenome 1
(FGM1) and fish gut metagenome 2 (FGM2) samples
representing sampling site 1 and sampling site 2, re-
spectively [58, 63]. The whole metagenome shotgun
DNA sequencing was performed at Beijing Genomics In-
stitute (Shenzhen, China) on Illumina HiSeq 2500 plat-
form. The raw data were processed for a quality check
using the FastQC software [105]. The duplicate’s reads
were removed using Picard [106], and any reads with a
quality score of less than 20 were discarded.

Taxonomic and functional characterization

Microbial diversity was analyzed on filtered reads using
MetaPhlAn, which has its own database comprising of
~ 1M unique clade-specific marker genes [21, 107]. For
the classification at the species level, the relative
abundances were normalized according to the median
genome size of each predicted species and the number of
total reads in the sample [108, 109]. The rarefaction
analysis and alpha and beta diversity measures were com-
puted in Megan6 [110]. For functional characterization,
raw reads were submitted for BLAST search against the
nr database using diamond BLASTx at e-value 1e-3, simi-
larity > 90%, and alignment length > 20 amino acids [111].
Using the best-hit algorithm, individual reads were de-
scribed to belong to a class in the particular classification
system [112]. The method was as follows: For a read ‘', let
‘@’ describe the highest-scoring alignment to a reference
protein belonging to functional class ‘c’ and the number of
reads that mapped to the individual proteins were then
analysed using databases eggNOG [113], KEGG [114] and
SEED [115]. The data was normalized by dividing the
binned read counts for each pathway with the number of
total reads in the sample [109].
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Fig. 7 The map of sampling location indicating the two points of collection of fish samples from Gobindsagar reservoir, Himachal Pradesh, India

Detection of virulence and antibiotic resistance genes
The de novo assembly of paired-end reads from each
sample was done using IDBA-UD at different k-mers
[116]. The open reading frames (ORFs) were then pre-
dicted on the assembled contigs using FragGeneScan
[117]. The protein sequences encoded by virulence genes
of Aeromonas and Pseudomonas were retrieved from
Virulence Factors Database (VFDB) [118]. Likewise,
Escherichia coli virulence factors (EVF) database was
created using the protein sequences encoded by different
virulence genes of Escherichia coli available at VFDB
[118], and Victors Virulence Factors database [119].
Distribution of antibiotic resistance genes in fish gut
metagenome was analyzed using ‘The Comprehensive
Antibiotic Resistance Database’ (CARD) [42, 120, 121].
The z-score for antibiotic resistome was calculated
using the mean and standard deviation of the abun-
dances of all individual antibiotic resistance genes in
the fish gut metagenome. The BLASTp searches were
performed using the assembled contigs to identify the
virulence genes (Escherichia coli, Aeromonas spp. and
Pseudomonas spp.) and major ARGs. The virulence
genes and ARGs which fulfilled the following similar-
ity criteria (cut off): e-value < le-5, percent identity >
80%, alignment length/subject length > 0.8, and align-
ment length/query length >0.8 were included in the
study [122].

Assembly of the microbial genome and comparative
genomics

The microbial genome was reconstructed from the gut
metagenome sequence using Metabat2 [123, 124]. The
quality and completeness of the assembled genome was
checked wusing CheckM [125]. The reconstructed
genome was annotated using Rapid Annotations using
Subsystems Technology (RAST) [126]. For comparative
genome analysis, all the nearest neighbours annotated in
RAST, as well as the representative genotypes available
at National Center for Biotechnology Information
(NCBI), were included [127]. Whole genome-based ANI
analysis was done, and genomes were clustered using
kmeans clustering. The clustering analysis revealed the
monophyletic neighbours of the metagenome assembled
genome (MAG) and orthologous gene identification was
performed using the GET_HOMOLOGUES pipeline
[128] at the following criteria: -E value le-5 (expectation
value), -C > 75 (percentage coverage in BLAST
alignments) and -F 1.5 (inflation value).

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/512866-020-01911-7.

Additional file 1 Supplementary tables. Supplementary Table S1.
contains details regarding sequencing and assembly of the
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metagenomes FGM1 and FGM2. Table S2, Table S3 and Table S4.
contain list of virulence factors of Aeromonas species, Escherichia coli
pathotypes and Pseudomonas species identified in gut metagenome.
Table S5. enlists the antibiotic resistome of fish gut metagenome. Table
S6. describes the general genome features of Aeromonas veronii strain RL
and its nearest neighbours, while Table S7. lists core genes conserved in
the selected genomes of Aeromonas veronii strains. Table S8. is the RAST
annotations of assembled genome of Aeromonas veronii strain RL. Table
S9. provides an account of various physico-chemical properties of water
collected from two sampling sites mentioned in Table S10 and depicted
in Fig. 7. Table S10. describes length and weight of the fish species col-
lected from Gobindsagar reservoir (Gulehar and Bhakra).

Additional file 2 Supplementary figures. Figure S1. shows the
rarefaction curves of samples. Figure S2. depicts the beta diversity
estimates of the samples using Non-metric Multi-Dimensional Scaling
plot based on Whittaker distance. Figure S3. shows the relative abun-
dance of different virulence factors of Pseudomonas spp.
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