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Abstract

Childhood glaucoma is an important cause of blindness world-wide. Eleven genes are currently 

known to cause inherited forms of glaucoma with onset before age 20. While all the early-onset 

glaucoma genes cause severe disease, considerable phenotypic variability is observed among 

mutations carriers. In particular, FOXC1 genetic variants are associated with a broad range of 

phenotypes including multiple forms of glaucoma and also systemic abnormalities, especially 

hearing loss. FOXC1 is a member of the forkhead family of transcription factors and is involved in 

neural crest development necessary for formation of anterior eye structures and also pharyngeal 

arches that form the middle ear bones. In this study we review the clinical phenotypes reported for 

known FOXC1 mutations and show that mutations in patients with reported ocular anterior 

segment abnormalities and hearing loss primarily disrupt the critically important forkhead domain. 

These results suggest that optimal care for patients affected with anterior segment dysgenesis 

should include screening for FOXC1 mutations and also testing for hearing loss.
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Introduction

Glaucoma is a significant cause of blindness in children world-wide (Beck, 2011a; Haddad 

et al., 2007). Childhood forms of glaucoma are frequently characterized by high intraocular 

pressure (IOP) resulting from abnormalities of the eye fluid drainage structures (trabecular 

meshwork), however familial forms of normal-tension glaucoma are also known. High IOP 

causes irreversible damage to the optic nerve and in elastic pediatric eyes can cause ocular 

enlargement (buphthalmos) with the associated complications of high myopia, retinal 
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detachment and corneal decompensation related to fracture of the corneal basement 

membranes. As curative therapies for glaucoma do not currently exist, affected children are 

subject to a lifetime of medical and surgery treatments directed toward lowering elevated 

intraocular pressure (Zagora et al., 2015; Ben-Zion et al., 2011; Beck et al., 2011b).

The discovery of genes responsible for pediatric glaucoma is an important step toward the 

development of clinically useful gene-based screening tests and novel and potentially 

curative genetic therapies. Eleven genes responsible for childhood forms of glaucoma have 

been identified so far (Table 1). Four genes are now known to cause congenital glaucoma: 

CYP1B1 and LTBP2 causing autosomal recessive disease (Ali et al., 2009; Bejjani et al., 

1998; Stoilov et al., 1997) and TIE2 (TEK) and ANGPT1 cause dominantly inherited 

congenital glaucoma with variable expressivity related to development of Schlemm’s canal 

(Souma et al., 2016; Thomson et al., 2017). Mutations in three genes coding for transcription 

factors involved in ocular development can cause early-onset glaucoma and anterior segment 

dysgenesis: FOXC1 (Axenfeld-Rieger syndrome) (Nishimura et al., 1998), PITX2 (Rieger 

Syndrome) (Semina et al., 1996), PAX6 (Aniridia and Peter’s anomaly) (Jordan et al., 1992; 

Prosser et al., 1998). Recently CPAMD8 mutations have been identified as a cause of a 

unique form of autosomal recessive anterior segment dysgenesis that can include congenital 

cataracts (Cheong et al., 2016; Hollmann et al., 2017). Dominant MYOC (myocilin) 

missense alleles cause juvenile (onset after age 3) glaucoma (Fingert et al., 2002; Wiggs et 

al., 1998; Stone et al., 1997). Myocilin is an extracellular matrix protein and disease-causing 

missense alleles induce ER stress from the misfolded protein response (Donegan et al., 

2015). Loss of function MYOC mutations in mice and humans do not cause glaucoma (Kim 

et al., 2001; Wiggs et al., 2001). FOXC1, PITX2 and PAX6 are regulatory genes that 

influence development of the ocular anterior segment including structures involved in 

glaucoma (Fan and Wiggs, 2010). Loss of function dominant alleles cause clinically evident 

developmental defects that can include glaucoma (Allen et al., 2015). OPTN (optineurin) 

and TBK1 (tank binding protein 1) cause dominantly inherited early-onset normal tension 

glaucoma, characterized by profound optic atrophy in the setting of normal IOP (Fingert et 

al., 2011; Hauser et al., 2006; Rezaie et al., 2002).

Variable phenotypes

Phenotypic variation has been observed in patients with disease caused by childhood 

glaucoma genes, especially for patients with mutations in CYP1B1, MYOC, PAX6 and 

FOXC1. Many patients with CYP1B1 mutations are diagnosed with congenital glaucoma 

during infancy, however some patients do not show evidence of the disease until later in 

childhood or even teenage years (López-Garrido et al., 2013; Khan et al., 2011; Suri et al., 

2009). Similarly, while many MYOC mutations cause disease before age 20, several 

mutations, including the well-studied Q368X, are known to be responsible for disease in 

individuals who are not diagnosed with glaucoma until later in life (Nag et al., 2018; 

Allingham et al., 1998). PAX6 mutations are classically known to cause aniridia (Prosser et 

al., 1998) but can also cause autosomal dominant keratitis due to limbal stem cell deficiency 

(Mirzayans et al., 1995; Li et al., 2015). FOXC1 mutations can be responsible for disease 

with onset ranging from birth (Siggs et al., 2019) to adult (Bailey et al., 2016). Additionally 

our NEIGHBORHOOD consortium has recently identified SNPs in the FOXC1 5’ UTR that 
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are significantly associated with adult-onset POAG, suggesting that variable expression of 

FOXC1 may contribute to POAG more commonly (Cooke Bailey et al., 2016).

FOXC1 ocular phenotypes

Forkhead transcription factors are a family of proteins that share a highly conserved 

forkhead DNA-binding domain and are required for regulation of embryogenesis, cell 

migration, differentiation and fate determination (Golson and Kaestner, 2016). FOXC1 
codes for a member of the forkhead transcription factor family that is required for the 

migration and specification of the periocular mesenchyme neural-crest derived mesenchymal 

cells that give rise to important ocular structures related to glaucoma including the stroma of 

the ciliary body and iris and the trabecular meshwork (Akula et al., 2019).

Both deletions and duplications involving FOXC1 have been implicated in ocular disease 

(Lehmann et al., 2000; Nishimura et al., 2001) indicating gene dosage as a critical factor in 

disease development. FOXC1 null mice exhibit clinical features of anterior segment 

dysgenesis including iris hypoplasia, corectopia, and embryotoxon in mice (Kume et al., 

1998; Gould et al., 2004).

FOXC1 mutations can cause a broad range of ocular phenotypes: Axenfeld-Rieger syndrome 

(Nishimura et al., 1998), Peters Anomaly (Honkanen et al., 2003), congenital glaucoma 

(Siggs et al., 2019), and more recently adult-onset primary open angle glaucoma (Bailey et 

al., 2016). Frequently FOXC1 mutations are associated with Axenfeld-Rieger anomaly 

defined by anterior segment dysgenesis with characteristic posterior embryotoxon, iris 

hypoplasia, and corectopia (Seifi and Walter, 2018). Axenfeld-Rieger syndrome describes 

patients with Axenfeld-Rieger anomaly and additional systemic features that may include a 

flat mid-face due to maxillary hypoplasia and a flat broad nose, teeth abnormalities, 

redundant umbilical skin and congenital heart defects (Lewis et al., 2017). Many patients 

with Axenfeld-Rieger anomaly or syndrome will also develop glaucoma, however the 

severity of the anterior segment dysgenesis does not predict glaucoma risk. Recent studies 

suggest that patients with truncating FOXC1 mutations are more likely to be diagnosed with 

congenital glaucoma (Siggs et al., 2019).

FOXC1 systemic phenotypes

FOXC1 mutation carriers may also exhibit a range of systemic abnormalities. Patients with 

large-scale deletions or duplications of the 6pter-6p24 region that includes FOXC1, FOXFQ 
and FOXF2 can present with a syndromic phenotype defined by hearing loss, cardiac 

abnormalities, short stature, dental abnormalities, facial dysmorphism and hypertelorism 

(Gould et al., 2004). De Hauwere syndrome describes a subset of the 6pter-6p24 deletion 

patients that are characterized by Axenfeld-Rieger syndrome, hydrocephalus and hearing 

loss (Lowry et al., 2007). Dandy-Walker malformation involving the cerebellum has also 

been described in patients with FOXC1 mutations (Aldinger et al., 2009). FOXC1 is an 

important component of the signaling pathways necessary for cardiac development and 

mutations can cause congenital heart disease and abnormal valve formation (Zhu, 2016). 

Involvement of FOXC1 in the neural crest migration forming the pharyngeal arches and 
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cardiac neural crest likely underlie these systemic findings in FOXC1 mutation carriers 

(Kume et al., 2001).

Patients with FOXC1 point mutations and indels (nonsense, frameshift or missense alleles) 

also can present with a range of ocular and systemic phenotypes (Table 2). Systemic 

phenotypes associated with FOXC1 mutations are similar in range and scope to those 

identified in patients with large-scale deletions and duplications suggesting that genetic 

abnormalities involving FOXC1 are important drivers of the 6pter-6p25 syndromic clinical 

features.

FOXC1 and Hearing Loss

Patients with large-scale deletions and other copy number variations (CNVs) involving 

chromosome 6p25 and FOXC1 frequently are affected with hearing loss in addition to 

anterior ocular dysgenesis (D’haene et al., 2011; Gould et al., 2004). Although a precise role 

for FOXC1 in hearing or ear development is not well understood, during development, 

neural crest cells migrate from the dorsal hindbrain to specific locations in pharyngeal arch 

(PA) 1 and 2, to form the middle ear bones (malleus, incus and stapes) (Ritter and Martin, 

2019). As FOXC1 contributes to neural crest migration in the pharyngeal arches, its possible 

that FOXC1 mutations can interfere with this process. Defective FOXC1 can lead to 

abnormal development and ossification of facial bones (Xu et al., 2018) and Foxc1−/− mice 

have abnormal cranial facial bone development, and failed ossification of the middle ear 

bones (Inman et al., 2013).

To gain a better understanding of the role of FOXC1 in hearing and deafness we reviewed 

published reports of FOXC1 variants and recorded information on hearing and ocular 

findings (Tables 2 and 3 and Figure 1) by searching PubMed with terms “FOXC1” and 

“Mutation” or “6p25” or “Ring chromosome 6”. We excluded publications that were not in 

English, did not describe human genetic variants or were not accessible online.

Our review identified 82 different FOXC1 human mutations (Table 2) and 42 6p25 deletions, 

duplications or ring chromosomes that include the FOXC1 genomic region (Table 3). Of the 

82 FOXC1 mutations reported in patients with ocular disease, 17 reported abnormal hearing 

(Table 2; Figure 1). Fifteen of the 17 mutations found in patients reporting hearing loss 

either caused a frameshift or premature stop codon in Active Domain 1, leading to the loss 

of the forkhead domain, or a framshrift, nonsense or missense change located in the 

forkhead domain itself (Figure 1). Only one mutation within the forkhead domain 

(Q106RfsX75) reported normal hearing (Kim et al., 2013). Unfortunately, in many cases, 

there is no mention of the hearing phenotype or the case is reported with “no systemic 

findings,” making it difficult to determine whether or not hearing tests were conducted 

(Table 2).

Of the 38 reported cases of 6p25 deletions or duplications 20 (53%) have described hearing 

defects as part of the clinical presentation and 2 of 4 patients with ring chromosome 6 

involving the FOXC1 genomic region also reported hearing loss (Table 3). Nine patients 

with 6p deletions reported have normal hearing and two patients were reported to have 

normal auditory brainstem response but no speech (Table 3) suggesting variable expressivity 
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of the hearing phenotype. Similar to the reports for the FOXC1 mutations (Table 2) 7 of the 

6p25 deletion, duplication or ring chromosome reports did not comment on hearing.

The results of this literature review show that FOXC1 mutations that cause both anterior 

segment dysgenesis and hearing loss most likely disrupt the critical forkhead domain. The 

forkhead domain is necessary for proper FOXC1 nuclear localization and DNA binding, and 

disruptions to this part of the gene are the most deleterious to protein function (Saleem et al., 

2004). There are however, many patients with FOXC1 mutations involving the forkhead 

domain that do not report hearing problems. This observation may be due to variable 

expressivity of the hearing phenotype, or could implicate a second gene or other factors that 

impact hearing pathogenesis. Alternatively, hearing tests may not have been done or may not 

have been noted in the report.

Summary

Currently 11 genes are known to cause early-onset glaucoma and variable phenotypes in 

mutation carriers is frequently observed. In this review we focused on the spectrum of 

phenotypes found in patients with FOXC1 mutations with an emphasis on hearing loss. We 

determined that of the majority of FOXC1 mutations reported in the literature in patients 

with anterior segment dysgenesis and hearing loss disrupt the critically important forkhead 

domain necessary for DNA binding and transcriptional regulation. We also find that 

approximately 50% of patients reported with 6p25 deletions, duplications or ring 

chromosomes also report hearing abnormalities. These results overall suggest that FOXC1 
mutations are capable of causing hearing defects and that patients with FOXC1 mutations 

should undergo hearing testing.
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Highlights

• Eleven genes responsible for childhood forms of glaucoma are currently 

known.

• Variable clinical features can be observed in patients with mutations in 

childhood glaucoma genes.

• FOXC1 mutations can cause ocular and systemic disease.

• FOXC1 mutations causing ocular disease and hearing loss are primarily 

located in the forkhead domain.
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Figure 1. Gene location of FOXC1 mutations.
The location of the mutations listed in Table 2 are shown. Variants shown in red font are 

reported in patients with hearing loss. Abbreviations: AD1, Active Domain 1; AD2, Active 

Domain 2.
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Table 1.

Childhood glaucoma genes and phenotypes

Gene Protein Inheritance Phenotypes

CYP1B1 Cytochrome P450 1B1 AR Congenital and juvenile glaucoma

LTBP2 Latent transforming growth factor binding 
protein 2

AR Congenital glaucoma

CPAMD8 C3 and PZP like alpha-2-macroglobulin domain 
containing 8

AR Anterior segment dysgenesis

PITX2 Paired like homeodomain 2 AD Anterior segment dysgenesis and classic Reiger syndrome

FOXC1 Forkhead box C1 AD Congenital glaucoma, anterior segment dysgenesis, 
Axenfeld-Rieger syndrome, juvenile open angle glaucoma

PAX6 Paired box 6 AD Aniridia, corneal keratitis, Peter’s anomaly

MYOC Myocilin AD Juvenile open angle glaucoma, adult-onset open angle 
glaucoma

TIE2 (TEK) TEK receptor tyrosine kinase AD Congenital glaucoma with variable expressivity

ANGPT1 Angiopoietin 1 AD Congenital glaucoma

OPTN Optineurin AD Normal tension glaucoma

TBK1 TANK binding kinase 1 AD Normal tension glaucoma

Abbreviations: AD, Autosomal dominant; AR, Autosomal recessive.
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Table 2.

FOXC1 mutations and ocular and hearing phenotypes

Protein variant Protein domain cDNA variant Hearing Phenotype Ocular Phenotype Reference

Q2X Active 1 c.4C>T NR ARA Komatireddy et al., 2003

R4fs Active 1 c.12delC NR Glaucoma Chakrabarti et al., 2009

S9fsX89 Active 1 c.26–47ins Deafness Iris hypoplasia, 
corectopia

Kawase et al., 2001

Q23X Active 1 c.67C>T Hearing loss ARA, glaucoma Mirzayans et al., 2001

R28_30del Active 1 c.81_89del9 NR Glaucoma Chakrabarti et al., 2009

A31_33del Active 1 c.92_100del9 NR Glaucoma Kaur et al., 2009

A31fsX41 Active 1 c.93_102del10 No systemic findings ARA, glaucoma Michael et al., 2016

A31fsX41 Active 1 c.93_102del10 No systemic findings ARA, glaucoma Mears et al., 1998

G33fsX41 Active 1 c.99_108del10 NR ARA Nishimura et al., 2001

G34fsX8 Active 1 c.100_109del10 NR PE, glaucoma Souzeau et al., 2017

A39fsX42 Active 1 c.116_123del8 NR ARA Nishimura et al., 2001

Y47X Active 1 c.141C>G NR Glaucoma Medina-Trillo et al., 2015

S48X Active 1 c.143C>A No systemic findings PE, corectopia Weisschuh et al., 2006

A51fsX73 Active 1 c.153_163del11 NR ARA, glaucoma Nishimura et al., 1998

Y64X After
Active 1

c.192C>G NR ARA, glaucoma Carmona et al., 2017

Q70fsX73 Forkhead c.210delG Hearing loss ARA, glaucoma Swiderski RE et al. 1999

P79T Forkhead c.235C>A Hearing loss ARA, glaucoma Suzuki T et al., 2001

P79R Forkhead c.236C>G NR Iris hypoplasia, 
glaucoma

Weisschuh et al., 2006

P79L Forkhead c.236C>T NR ARA Saleem et al., 2003

P79L Forkhead c.236C>T NR ARA Nishimura et al., 1998

S82T Forkhead c.245G>C Hearing loss ARA, glaucoma Mears et al., 1998

A85P Forkhead c.253G>C NR ARA, glaucoma Fuse et al., 2007

L86F Forkhead c.256C>T NR ARA, glaucoma Saleem et al., 2003

I87M Forkhead c.261C>G No systemic findings ARA, glaucoma Mears et al., 1998

T88fsX100 Forkhead c.262_265insC NR ARA Nishimura et al., 2001

A90T Forkhead c.268G>A No systemic findings PE, glaucoma Souzeau et al., 2017

A90D Forkhead c.269C>A NR Glaucoma Siggs et al., 2019

I91S Forkhead c.272T>G NR ARA, glaucoma Kawase et al., 2001

I91T Forkhead c.272T>C NR ARA Mortemousque et al.,2004

D96GfsX210 Forkhead c.286dupG NR PE, glaucoma D’Haene et al., 2011

D96fsX305 Forkhead c.286insG NR ARA, glaucoma Kawase et al., 2001

Q106X Forkhead c.316C>T NR ARA, glaucoma D’Haene et al., 2011

Q106X Forkhead c.316C>T NR ARA, glaucoma Souzeau et al., 2017

Q106RfsX75 Forkhead c.317delA Normal hearing ARA, glaucoma Kim et al., 2013

M109V Forkhead c.325A>G Hearing loss Corectopia D’Haene et al., 2011
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Protein variant Protein domain cDNA variant Hearing Phenotype Ocular Phenotype Reference

F112SfsX69 Forkhead c.335del Hearing Loss ARA, glaucoma D’Haene et al., 2011

F112S Forkhead c.335T>C NR ARA, glaucoma Nishimura et al., 1998

F112S Forkhead c.335T>C NR ARA, glaucoma Honkanen et al., 2003

Y115S Forkhead c.339T>C Middle-ear deafness ARA, glaucoma Weisschuh et al., 2006

D117TfsX64 Forkhead c.349delG NR ARA, glaucoma Siggs et al., 2019

Q120X Forkhead c.358C>T NR ARA, glaucoma Weisschuh et al., 2008

Q123X Forkhead c.367C>T NR ARA, glaucoma Komatireddy et al., 2003

I126M Forkhead c.378C>G NR ARA, glaucoma Nishimura et al., 1998

H128R Forkhead c.378A>G NR Glaucoma Chakrabarti et al., 2009

R127H Forkhead c.380G>A NR ARA, glaucoma Kawase et al., 2001

R127L Forkhead c.380T>G NR ARA, glaucoma Du et al., 2016

L130F Forkhead c.388C>T NR ARA, glaucoma Ito et al., 2007

S131L Forkhead c.392C>T NR ARA, glaucoma Nishimura et al., 1998

S131X Forkhead c.392C>A NR Glaucoma D’Haene et al., 2011

S131W Forkhead c.392C>G NR ARA D’Haene et al., 2011

C135Y Forkhead c.402G>A NR Glaucoma Chakrabarti et al., 2009

V137del Forkhead c.409_411del NR PE, glaucoma Siggs et al., 2019

K138E Forkhead c.412A>G NR PE, glaucoma D’Haene et al., 2011

P146fs Forkhead c.437_453del17 Hearing loss ARA, glaucoma Fuse et al., 2007

G149D Forkhead c.446G>A NR ARA, glaucoma Weisschuh et al., 2006

W152R Forkhead c.454T>C Mild deafness ARA, glaucoma Michael et al., 2016

W152G Forkhead c.454T>G NR Glaucoma Ito et al., 2009

W152X Forkhead c.456G>A NR ARA, glaucoma Cella et al., 2006

T153P Forkhead c.457A>C Hearing loss PE, glaucoma Siggs et al., 2019

M161V Forkhead c.481A>G Middle-ear deafness ARA, glaucoma Weisschuh et al., 2006

M161K Forkhead c.482T>A NR ARA, glaucoma Panicker et al., 2002

M161K Forkhead c.482T>A NR ARA, glaucoma Komatireddy et al., 2003

E163X Forkhead c.487G>T Hearing Loss Glaucoma Siggs et al., 2019

G165R Forkhead c.494G>C NR ARA, glaucoma Murphy et al., 2004

R169P Forkhead c.506G>C Hearing loss ARA Murphy et al., 2004

R170W Forkhead c.508C>T Hearing Loss ARA, glaucoma Gripp et al., 2013

Q200fsX109 After
Forkhead

c.599_617del19 NR ARA Souzeau et al., 2017

P202RfsX113 After
Forkhead

c.605delC NR ARA, glaucoma D’Haene et al., 2011

A204RfsX111 After
Forkhead

c.609delC NR ARA, glaucoma Kelberman et al., 2011

I223PfsX87 Inhibitory c.666_681del16 NR PE glaucoma Souzeau et al., 2017

G231VfsX73 Inhibitory c.692_696del5 NR ARA, glaucoma D’Haene et al., 2011

L240VfsX65 Inhibitory c.718_719delCT No systemic findings ARA, glaucoma Cella et al., 2006

L240VfsX65 Inhibitory c.718_719delCT NR Glaucoma Siggs et al., 2019
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Protein variant Protein domain cDNA variant Hearing Phenotype Ocular Phenotype Reference

L240RfsX75 Inhibitory c.719delT + Glaucoma Hariri et al.,2018

L246fsX68 Inhibitory c.738delG NR Iris atrophy, glaucoma Weisschuh et al., 2006

D261RfsX45 Inhibitory c.780dup NR NR D’Haene et al., 2011

S272RfsX43 Inhibitory c.816_817delinsG NR NR D’Haene et al., 2011

A291fs Inhibitory c.853dup25 NR Glaucoma Chakrabarti et al., 2009

P297S Inhibitory c.889C>T NR Glaucoma Fetterman et al., 2009

P297S Inhibitory c.889C>T NR Glaucoma Medina-Trillo et al., 2016

S309CfsX84 Inhibitory c.925_949del25 NR Glaucoma Souzeau et al., 2017

E327AfsX200 Inhibitory c.980_981del NR NR D’Haene et al., 2011

G379Gins After
Inhibitory

c.1142_1144insGGC No systemic findings Iris atrophy, glaucoma Yang et al., 2015

M400SfsX129 After
inhibitory

c.1193_1196dup Congenital deafness Iris atrophy, glaucoma Reis et al., 2016

S422X After
Inhibitory

c.1265C>A NR ARA, glaucoma Souzeau et al., 2017

G452insR After
Inhibitory

c.1362_1364insCGG No systemic findings Iris atrophy, glaucoma Yang et al., 2015

Y497X Active 2 c.1491C>G NR Glaucoma D’Haene et al., 2011

Y497X Active 2 c.1491C>G Hearing Loss PE, glaucoma Souzeau et al., 2017

N503fsX15 Active 2 c.1511delT NR ARA, glaucoma Weisschuh et al., 2006

F504fsX518 Active 2 c.1512delG NR ARA Nishimura et al., 2001

Abbreviations: ARA, Axenfeld-Rieger anomaly; PE, Posterior embryotoxon; NR = Not reported.
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Table 3.

Chromosome 6p25 abnormalities and ocular and hearing phenotypes

6p25 Variant Hearing Phenotype Ocular Phenotype Reference

.084 Mb deletion NR PE, iris atrophy, glaucoma D’Haene et al, 2011

0.98 Mb deletion Hearing loss ARA, glaucoma Reis et al, 2012

1.10 Mb deletion Hearing loss ARA, glaucoma Reis et al, 2012

1.3 Mb deletion Hearing loss ARA Reis et al, 2012

1.3 Mb deletion Hearing Loss Congenital glaucoma Siggs et al., 2019

1.4 Mb deletion NR Normal Ophthalmic exam Ovaert et al., 2017

1.5 Mb deletion Normal hearing Axenfeld-Rieger syndrome, 
congenital glaucoma

Reis et al, 2012

1.5 Mb deletion NR PE, iris atrophy, glaucoma Sadagopan et al., 2015

2.1 Mb deletion Conductive hearing defect Anterior segment dysgenesis Anderlid et al, 2003

2.1 Mb deletion Abnormal auditory brainstem 
response

Congenital glaucoma Nakane et al., 2013

2.21 MB deletion Hearing loss Myopia Bedoyan et al, 2011

2.54 Mb deletion Hearing Loss ARA Vernon et al., 2013

2.6 Mb deletion Middle ear malformations and 
hearing loss

Iris hypoplasia, glaucoma D’Haene et al, 2011

2.6 Mb duplication NR PE, iris atrophy, glaucoma Sadagopan et al., 2015

2.7 Mb deletion Sensorineural deafness PE, iris atrophy, glaucoma Martinez-Glez et al., 2007

3.4 Mb deletion Hearing loss Glaucoma Weegerink et al, 2016

3.4 Mb deletion Hearing loss Glaucoma Weegerink et al, 2016

3.4 Mb deletion Hearing loss PE Weegerink et al, 2016

3.4 Mb deletion Middle ear hearing loss PE, glaucoma D’Haene et al, 2011

3.9 Mb deletion Normal hearing Strabismus Cellini et al, 2012

34 kb deletion Hearing loss PE, glaucoma D’Haene et al, 2011

4.7 Mb deletion Hearing loss ARA D’Haene et al, 2011

4.8 Mb deletion Conductive hearing loss PE, iris atrophy Le Caignec et al., 2005

5.06 Mb deletion and 1 Mb duplication Hearing loss Corectopia Linhares et al, 2015

5.4 kb deletion NR PE D’Haene et al, 2011

5.5 Mb deletion Hearing loss PE, corneal opacity Le Caignec et al., 2005

6 Mb deletion Normal auditory brainstem 
response, but no speech

Normal Ophthalmic exam Piccione et al., 2012

6.6 Mb deletion Normal hearing ARA, glaucoma Tonoki et al, 2011

6p25 microdeletion Sensorineural deafness ARA Kapoor et al, 2011

6p25-6p22 deletion NR ARA Suzuki et al., 2006

6p25-6pter deletion Normal hearing ARA Maclean et al, 2005

6p25-6pter deletion Normal hearing PE, glaucoma Tonoki et al, 2011

6p25-6pter deletion Normal hearing Axenfeld-Rieger syndrome, 
congenital glaucoma

Reis et al, 2012

6p25-6pter deletion Hearing loss ARA, glaucoma Gould et al, 2004
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6p25 Variant Hearing Phenotype Ocular Phenotype Reference

6p25-6pter deletion Normal hearing ARA Gould et al, 2004

6pter deletion Normal hearing PE Lin et al, 2005

6p25 to 6pter deletion Hearing loss ARA Lin et al, 2005

6pter microdeletion Normal hearing Anterior segment dysgenesis Guillen-Navarro et al, 1997

Ring chromosome 6, 6 Mb deletion on 
6p

Hearing loss Peter’s anomaly, glaucoma Zhang et al, 2004

Ring chromosome 6, 1.8 Mb distal 6p 
deletion

Hearing loss Ocular features not recorded Pace et al., 2017

Ring chromosome 6, 6p deletion Normal auditory brainstem 
response, but no speech

PE, iris atrophy, glaucoma Corona-Rivera et al., 2018

Ring chromosome 6, 6p25.2 deletion 
1.78 Mb

NR Anterior segment dysgenesis, 
microphthalmia

Zhang et al., 2016

Abbreviations: ARA, Axenfeld-Rieger anomaly; PE, Posterior embryotoxon; NR, Not reported.
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