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Abstract

Diatom data have been collected in large-scale biological assessments in the United States, such as 

the U.S. Environmental Protection Agency’s National Rivers and Streams Assessment (NRSA). 

However, the effectiveness of diatoms as indicators may suffer if inconsistent taxon identifications 

across different analysts obscure the relationships between assemblage composition and 

environmental variables. To reduce these inconsistencies, we harmonized the 2008–2009 NRSA 

data from nine analysts by updating names to current synonyms and by statistically identifying 

taxa with high analyst signal (taxa with more variation in relative abundance explained by the 

analyst factor, relative to environmental variables). We then screened a subset of samples with 

QA/QC data and combined taxa with mismatching identifications by the primary and secondary 

analysts. When these combined “slash groups” did not reduce analyst signal, we elevated taxa to 

the genus level or omitted taxa in difficult species complexes. We examined the variation 

explained by analyst in the original and revised datasets. Further, we examined how revising the 
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datasets to reduce analyst signal can reduce inconsistency, thereby uncovering the variation in 

assemblage composition explained by total phosphorus (TP), an environmental variable of high 

priority for water managers. To produce a revised dataset with the greatest taxonomic consistency, 

we ultimately made 124 slash groups, omitted 7 taxa in the small naviculoid (e.g., Sellaphora 
atomoides) species complex, and elevated Nitzschia, Diploneis, and Tryblionella taxa to the genus 

level. Relative to the original dataset, the revised dataset had more overlap among samples 

grouped by analyst in ordination space, less variation explained by the analyst factor, and more 

than double the variation in assemblage composition explained by TP. Elevating all taxa to the 

genus level did not eliminate analyst signal completely, and analyst remained the most important 

predictor for the genera Sellaphora, Mayamaea, and Psammodictyon, indicating that these taxa 

present the greatest obstacle to consistent identification in this dataset. Although our process did 

not completely remove analyst signal, this work provides a method to minimize analyst signal and 

improve detection of diatom association with TP in large datasets involving multiple analysts. 

Examination of variation in assemblage data explained by analyst and taxonomic harmonization 

may be necessary steps for improving data quality and the utility of diatoms as indicators of 

environmental variables.
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1 Introduction

Diatoms are single-celled algae with siliceous cell walls (valves) that are important basal 

components of aquatic food webs and contributors to aquatic ecosystem function. Diatoms 

are also useful indicators of environmental conditions, because they are ubiquitous in aquatic 

environments, have taxon-specific environmental preferences, and have relatively rapid 

generation times (Potapova and Charles, 2002; Smol and Stoermer, 2010; Smucker et al., 

2013). Diatom assemblage composition, along with other algal metrics such as biomass and 

non-diatom algal composition, can be used in the development of nutrient and biological 

criteria (Paul et al., 2017). As part of efforts to understand and monitor the condition of the 

nation’s freshwater resources, diatom data have been collected in large-scale assessments, 

including the U.S. Environmental Protection Agency’s (EPA’s) National Aquatic Resource 

Surveys (NARS) and the U.S. Geological Survey’s (USGS’s) National Water-Quality 

Assessment (NAWQA) program. These data are valuable resources for assessing biological 

condition, but the effectiveness of diatoms as indicators may suffer if inconsistent taxon 

identifications across different analysts obscure the relationships between assemblage 

composition and environmental variables.

Biological assessment aims to detect impairment in the structure and function of biological 

assemblages in response to environmental stressors. Nutrient chemical stressors continue to 

be widespread causes of impairment in rivers and streams. Nutrient pollution can contribute 

to large economic losses from negative effects on real estate, recreation, and human 

wellbeing (Dodds et al., 2009). Nearly half of river and stream length in the U.S. has high 

Lee et al. Page 2

Ecol Indic. Author manuscript; available in PMC 2020 August 13.

E
PA

 A
uthor M

anuscript
E

PA
 A

uthor M
anuscript

E
PA

 A
uthor M

anuscript



levels of surface water total phosphorus (TP) compared to least-disturbed regional reference 

sites (USEPA, 2016), and increases in TP over a decade appear ubiquitous across developed 

and undeveloped catchments (Stoddard et al., 2016). Indeed, TP is a high priority 

environmental variable for water managers. The strong relationship between algal 

assemblage structure with TP makes algae-based bioassessment useful for water managers. 

For example, Taylor et al. (2014) identified taxa with synchronous declines in abundance 

above threshold concentrations of TP, and many researchers have shown that a variety of 

metrics with strong correlations with TP can be developed from algal assemblage 

information (Porter et al., 2008; Smucker et al., 2013; Stevenson et al., 2013; Munn et al., 

2018). Taxonomic inconsistency can obscure relationships between biota and environmental 

conditions. Without accurate and consistent taxonomic information, the practical use of 

diatoms in bioassessment can be limited.

Here, we address the challenge of reducing analyst bias in an EPA National Rivers and 

Streams Assessment (NRSA) dataset to both support indicator development based on past 

assessments and improve diatom data consistency in future assessments. In some datasets, 

efforts have been undertaken to resolve taxonomic issues (e.g., by “lumping,” or combining 

taxa that are often misidentified). However, the process used to resolve ambiguous names or 

reconcile outdated names has rarely been completely and transparently documented, which 

has hindered the replication of data processing and statistical analyses necessary for 

indicator development. Moreover, it is unclear whether genus-level or a mixed hierarchy 

approach (i.e., a combination of fine- and coarse-scale taxonomic resolution) is sufficient for 

bioassessment.

The purpose of this work was to harmonize taxonomy across analysts for the 2008–2009 

NRSA dataset to reduce uncertainty and bias associated with taxonomic inconsistency. We 

then evaluated the effectiveness of harmonization and different taxonomic adjustments (i.e., 

genus-level and mixed hierarchy) by quantifying the variability explained by analysts in the 

original and revised datasets. Further, we examined how revising the dataset to reduce 

analyst signal can increase the statistical power of diatom data by reducing errors from 

inconsistent taxonomic identifications, and thereby reveal greater variation in assemblage 

composition explained by TP. Diatom data processed to maximize taxonomic consistency 

can help increase the quality of data that managers can use as biological indicators of aquatic 

ecosystems.

We hypothesized that a diatom dataset with greater taxonomic consistency would have:

1. decreased variation in assemblage composition explained by analyst, and

2. increased variation in assemblage composition explained by TP.

2 Materials and methods

2.1 Initial taxonomic revisions

We used a mixed hierarchy approach to harmonize and revise diatom names in the 2008–

2009 NRSA diatom dataset (Fig. 1, Table 1). We first harmonized the taxa list with BioData 

version 13.2 (USGS, 2017). The USGS BioData program documents nomenclature for fish, 
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invertebrates, and algae (USGS, 2017). Diatom taxonomy used in the NAWQA program was 

refined by experts through a series of workshops (ANSP, 1999–2007) with ongoing, 

versioned updates in BioData (USGS, 2017). The R function biodata_check() translates 

diatom species names to reflect current BioData taxonomy (Bishop, 2017; refer to A.1 for 

output of taxonomic conversion notes from biodata_check). For names that were not 

included in BioData, we used published taxonomic literature and the “Diatoms of the United 

States” website (Spaulding et al., 2010; website content now transferred to “Diatoms of 

North America” at diatoms.org) to update operational taxonomic units (OTUs) to a 

consistent nomenclatural system and to create “slash groups” of taxa documented as difficult 

to distinguish. We define a slash group as taxa that were combined while preserving the 

names of the individual taxa. For example, the varieties of Cocconeis placentula are difficult 

to distinguish when the raphe and rapheless valves are not intact (Potapova and Spaulding, 

2013). The slash group Cocconeis placentula/Cocconeis placentula var. euglypta/Cocconeis 
placentula var. lineata represents this OTU. The resulting dataset (mixed1; Fig. 1, Table 1) 

represents harmonization effort prior to analyzing the data to assess variation explained by 

analyst, but includes updating names to current synonyms and using the literature to 

minimize potential taxonomic problems (refer to A.2 for the complete list of revisions and 

justifications). Because mixed1 OTUs were assigned to the most updated genus 

designations, the genus-level dataset (genus) was produced by elevating all OTUs in the 

mixed1 dataset to genus. All data manipulations and analyses in R were conducted using R 

version 3.4.1 (R Core Team 2017)

2.2 Random forest analyses

We used random forest analysis (Breiman, 2001) to detect OTUs that may have been applied 

differently across analysts. Random forest provides a flexible tool for modeling relationships 

between many predictor variables and a single response. It is robust to different variable 

distributions and can effectively identify the relative importance of predictors in the presence 

of correlated variables and interactive effects. The relative abundance of an OTU may vary 

among sites due to differences in environment or due to analyst inconsistency. Random 

forest models can estimate the relative importance of analyst versus environmental variables 

in predicting the relative abundance of each OTU.

The original NRSA 2008–2009 dataset had 2292 samples and 1526 OTUs (Table 1). The 

total number of unique sites was 2115; samples from repeat visits to the same site were 

omitted from the analysis. To prepare the data for random forest analysis, we excluded 

samples with fewer than 400 valves counted after OTUs were adjusted. While the target 

valve count for NRSA was 600 valves per slide, the target was not always reached because 

of low density of diatoms or high density of debris in the samples. We included samples with 

at least 400 valves to retain a relatively large sample size. Thus, the total number of samples 

included in the analyses varied with the number of OTUs in the modified and genus-level 

datasets (Table 1). We then selected OTUs occurring in at least 50 samples to ensure that 

sufficient data were available to fit the random forest model. Count data were converted to 

relative abundances. In addition to analyst, we included predictor variables characterizing 

water chemistry, streambed substrate, water flow, canopy cover, human disturbance, stream 

size, and geographic location of the samples (refer to A.3 for the full list of predictor 
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variables). The final necessary processing steps for inclusion of predictor variables in 

random forest analysis included log10(x + 1) or square root transformations for variables 

with skewed distributions and standardization of all continuous variables to unit mean and 

zero variance.

We fit a separate random forest model for each OTU and estimated the importance of each 

predictor variable by comparing the mean square error of the fitted model to the mean square 

error of the model with the value of that predictor variable randomly permuted (Breiman, 

2001). The OTUs for which a random permutation of analyst accounted for the greatest 

increase in mean square error were flagged as being potentially problematic. In other words, 

random forest detected OTUs for which analyst explained the most variation in relative 

abundance, compared to all other predictor variables.

The OTUs detected by random forest as having the strongest analyst signals were each 

examined using QA/QC data available for a subset of the samples (143 slides). These 143 

slides were counted once by a primary analyst, and again by a secondary analyst. There were 

three primary analysts and two secondary analysts. The QA/QC data were sorted by taxa 

with the greatest differences in number of valves counted on the same slide by the primary 

and secondary analysts. When possible, data from at least 5 slides were examined for each 

taxon to compare the taxa list and enumerations by the two analysts. Data from slides with 

mismatches in taxa names (i.e., primary analyst counted many valves of the OTU of interest 

while secondary analyst counted zero valves of the same OTU because they used a different 

OTU name) were prioritized in this step to maximize detection of cases where the same 

taxon was reported as different names by different analysts. Because diatom QA/QC 

transects do not perfectly match the transect of the primary analyst, differences between 

analysts’ counts can have multiple sources of variation (Lavoie and Campeau, 2016).

Multiple instances of taxa mismatch or lumping vs. splitting taxa were used to justify the 

combining of two or more OTUs into slash groups. References (e.g., Krammer and Lange-

Bertalot, 1986, 1988, 1991a, 1991b; Spaulding et al., 2010) and voucher images from NRSA 

and other assessments in the Academy of Natural Sciences database (ANSP, 1998–2017) 

were examined to verify morphological similarity between OTUs that were combined. We 

repeated the process of random forest modeling and creation of slash groups to produce 

datasets with mixed hierarchy (intermediate datasets; Fig. 1). To further resolve analyst 

differences, slash groups and OTUs consistently exhibiting strong analyst signals were 

elevated to higher levels within the taxonomic hierarchy; when elevation to genus did not 

resolve analyst differences, the slash groups contributing to analyst differences were omitted 

(intermediate datasets; Fig. 1). We repeated random forest modeling and modification of 

slash groups until there was no further improvement in analyst signal (mixed2 and mixed3). 

The mixed2 dataset resulted from efforts to retain more taxonomic resolution by elevating 

fewer OTUs to genus compared to mixed3, while still resolving OTUs with high analyst 

signal. Refer to B.1–B.5 for the R scripts, C.1 for the full table of revisions in each of the 

datasets produced by the above process, and C.2 for the QA/QC data.
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2.3 Comparison of analyst signals

To compare the strength of analyst signals in the harmonized and genus-level datasets, we 

used non-metric multidimensional scaling (NMDS) ordination plots to visually assess the 

effect of harmonization and taxonomic resolution on diatom assemblage data, as well as 

analysis of similarity (ANOSIM) to assess the magnitude of Bray-Curtis dissimilarities 

between samples associated with different analysts relative to within analyst group 

dissimilarities. We used the “anosim” function in the vegan package to perform ANOSIM 

(Oksanen et al., 2017). Because ANOSIM p-values are highly dependent on sample size, we 

interpreted only the R values to compare relative magnitudes of dissimilarity among sample 

groups. R values close to zero indicate little dissimilarity among groups and values close to 

unity indicate large dissimilarity among groups; R values near 0.2 indicate overlap in many 

OTUs among groups, but separable differences in relative abundance of the OTUs (Clarke 

and Warwick, 2001). We also assessed the goodness of fit of analyst as a factor in the 

NMDS plots using the “envfit” function in the vegan package, which averages ordination 

scores (i.e., obtains centroids) for factor levels and performs permutations to calculate a 

squared correlation coefficient (Oksanen et al., 2017).

2.4 Comparison of total phosphorus signals

We expected harmonization to reduce noise associated with errors resulting from taxonomic 

inconsistency and thereby increase variation in assemblage composition explained by 

environmental drivers. To examine whether harmonization reduced noise and improved 

diatom-inferred environmental signals, and to limit the effects of other factors affecting 

assemblage composition (Reavie et al., 2014), we selected OTUs from the harmonized and 

genus datasets for which TP was among the top 5 most important predictors of relative 

abundance from random forest analysis. With this data subset, we quantified the variation in 

assemblage composition explained by TP using permutational multivariate ANOVA 

(PERMANOVA) using the “adonis” function in the vegan package (Oksanen et al., 2017). 

We produced species response curves across the TP gradient for the selected OTUs using 

generalized additive modeling using the “goeveg” package (Goral and Schellenberg, 2017). 

Supplementary data and R scripts are available in an open access data repository at doi: 

https://doi.org/10.23719/1503373.

3 Results

3.1 Mixed1 and genus datasets

The original NRSA 2008–2009 dataset had 2292 samples and 1526 OTUs (Table 1). The 

total number of unique sites was 2115; samples from repeat visits to the same site were 

dropped. Because of some missing data, merging with environmental data brought the 

number of samples down to 1828. Of these, 106 samples with ≤400 valves were dropped, 

which brought the number of samples down to 1722. After harmonization with BioData, the 

number of OTUs decreased to 1474. Of these OTUs, 409 had at least 50 occurrences (i.e., at 

least 1 valve counted in ≥50 samples) in the dataset required to model OTU relative 

abundances with random forest (Table 1). We manually reviewed the 409 OTUs and updated 

56 OTUs with synonyms (e.g., Psammothidium reversum/Achnanthes reversa) and made 65 

slash groups to combine taxa with known issues based on information from references (e.g., 
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Amphora inariensis/Amphora pediculus; Stepanek and Kociolek, 2011). With these changes, 

the number of OTUs decreased to 351 in the mixed1 dataset. Elevating the OTUs in the 

mixed1 dataset to genus level resulted in 90 genera.

3.2 Mixed2 and mixed3 datasets

The percent of taxa with analyst as the most important predictor of relative abundance 

decreased with dataset modification (Fig. 2). Random forest detected 39 OTUs in the 

mixed1 dataset with analyst as the most important predictor. To resolve these 39 OTUs, we 

made or modified 28 slash groups to produce the first intermediate (inter1) dataset. We 

repeated the random forest analysis, then made or modified 8 slash groups to produce inter2. 

Changes to inter2 to produce mixed2 were done while attempting to retain more taxonomic 

resolution by elevating a more conservative number of OTUs to genus (only the OTUs in 

inter2 with analyst as the predictor explaining the most variation in relative abundance were 

elevated). Several OTUs in the genus Nitzschia could not be resolved without creating 

increasingly large species complexes, so we elevated 130 Nitzschia OTUs in inter2 to genus. 

We retained several Nitzschia OTUs that may be consistently identified (e.g., Nitzschia 
dissipata/Nitzschia dissipata var. media, Nitzschia kurzeana/Nitzschia obtusa, Nitzschia 
sigmoidea/Nitzschia vermicularis, and a slash group containing several taxa with some 

morphological similarities to Nitzschia fonticola, Nitzschia frustulum, and Nitzschia 
perminuta. Additionally, analyst signal did not improve even when Sellaphora was elevated 

to the genus level, so 7 “small naviculoid” OTUs were omitted from inter2, including: 

Adlafia minuscula, Craticula molestiformis, Craticula subminuscula, Eolimna minima, 

Eolimna tantula, Mayamaea agrestis, and Mayamaea permitis. Further, attempts to resolve 

inconsistency of the Diploneis elliptica OTU by making slash groups based on QA/QC data 

were unsuccessful because of the low number of occurrences (63 occurrences in the full 

NRSA dataset). Thus, we elevated 11 Diploneis OTUs to the genus level in inter2.

We did not use a conservative approach for mixed3. Instead, we prioritized minimizing 

analyst signal by elevating all 157 OTUs in Nitzschia and all 15 OTUs in Diploneis to their 

respective genera and omitting the 7 “small naviculoid” OTUs to produce inter3. We 

repeated random forest analysis 2 more times. Tryblionella gracilis was another OTU that 

could not be resolved with slash groups and thus, all 21 Tryblionella OTUs were elevated to 

the genus level to produce inter4. After modifying 2 slash groups in inter4 to produced 

mixed3, application of random forest models to mixed3 showed that analyst was no longer 

the most important predictor of any OTU (Fig. 2). In mixed3, analyst was the second most 

important predictor of relative abundance for 6 out of 249 OTUs. For these 6 OTUs, the 

most important predictors included longitude, latitude, sulfate, or TN. For more detailed 

random forest output, see D.1.

3.3 Comparison of predictors

The predictor most frequently identified by random forest as being important in determining 

diatom relative abundance was conductivity (Table 2). In mixed1, the next most frequent 

predictor was analyst (39 OTUs), while longitude was the second most frequent predictor in 

mixed3 and genus. In genus, models for three genera, Sellaphora, Mayamaea, and 
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Psammodictyon, identified analyst as the most important predictor. Models for Adlafia, 

Geissleria, and Cocconeis identified analyst as the second most important predictor.

3.4 Comparison of analyst signal

The best solutions for three-dimensional NMDS produced ordinations with stress = 0.19, 

0.18, 0.17, and 0.16 for mixed1, genus, mixed2, and mixed3, respectively (Fig. 3). Mixed3 

produced a NMDS plot with more overlap of the ellipsoid hull boundaries among samples 

grouped by analyst in ordination space compared to mixed1, mixed2, or genus (Fig. 3, see 

E.1 for ordination plots of original dataset and postBD). The analyst factor goodness of fit in 

the NMDS plots was lowest in mixed3 (r2 = 0.25, 0.16, 0.15, and 0.14 for mixed1, genus, 

mixed2, and mixed3, respectively). Mixed3 also had the lowest ANOSIM R, indicating the 

most similarity among samples grouped by analyst, relative to the other datasets (R = 0.17, 

0.11, 0.08, and 0.06 for mixed1, genus, mixed2, and mixed3, respectively).

3.5 Comparison of total phosphorus signal

Mixed1, mixed2, and mixed3 had 54, 38, and 35 OTUs, respectively, for which TP was 

among the top 5 predictors of relative abundance. Of these, models for 11 to 13 OTUs 

identified TP as the most important predictor in mixed1, mixed2, and mixed3 (Table 3). 

Harmonization more than doubled the magnitude of variation explained by TP 

(PERMANOVA r2 = 0.08 and 0.20 for mixed1 and mixed3, respectively), indicating that the 

harmonization process helped to elucidate the strength of the relationship between 

assemblage composition and TP. Mixed2 had no improvement in variation explained by TP 

(PERMANOVA r2 = 0.08). Genus had 16 genera for which TP was among the top 5 

predictors and PERMANOVA r2 = 0.05. Models for 5 of these 16 genera identified TP as the 

most important predictor (Table 3). Among the top 5 predictors, TP was the fourth and 

second predictor associated with Sellaphora and Mayamaea, respectively, but as reported 

above, analyst was the most important predictor of these two genera. See E.2 for species 

response curves.

4. Discussion

Overall, harmonization efforts used to produce the mixed3 dataset resulted in improved 

taxonomic consistency. Analyst groups overlapped more in ordination space, with relatively 

lower ANOSIM R and lower goodness of fit. The genus dataset reduced, but did not 

eliminate, analyst signal. Even after harmonization, models for three genera identified 

analyst as the most important predictor. Analyst signal in Psammodictyon could be reduced 

by combination with a morphologically similar genus, Nitzschia, but this strategy did not 

work with small naviculoid taxa within Sellaphora and Mayamaea (data not shown). The 

coarse taxonomic resolution also resulted in fewer sensitive indicators of TP. The use of 

genus-level data may best be limited to applications that consider gradients related to genus-

level characteristics of diatom adaptations, such as motility and pH tolerance (Hill et al., 

2001), rather than as a method to resolve taxonomic inconsistencies.

Our results show that a mixed hierarchy approach that uses different harmonization 

strategies for different taxa can resolve inconsistent assemblage data while retaining 
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information that may be lost using coarse taxonomic resolution (e.g., genus-level data). 

Mixed hierarchy approaches have been used successfully in other diatom-based assessments 

in Canada and Europe (Lavoie et al., 2009, Kelly and Ector 2012). Problematic diatom 

species have been identified and are treated as species complexes in Europe (Kahlert et al., 

2016). Bioassessments using other indicators, such as macroinvertebrates, also accept 

multiple levels of taxonomic resolution depending on resource and analyst expertise levels. 

These programs usually aim for the lowest practical taxonomic resolution, and can include a 

combination of macroinvertebrate species, genera, and families (e.g., Barbour et al., 1999, 

KDOW, 2015). Like the slash groups used here, macroinvertebrate bioassessments also use 

slash groups if clear distinctions cannot be made between morphologically similar taxa (e.g., 

“Cricotopus/Orthocladius” taxa that are nearly indistinguishable at the larval stage) (USEPA, 

2012).

Autecological information should inform harmonization strategies. A drastic harmonization 

strategy used in this study was omitting 7 OTUs of small naviculoid taxa from the dataset. 

Creating slash groups or elevating to genera did not improve taxonomic consistency in this 

group. Omitting these small naviculoids from the dataset helped minimize variation in 

assemblage data explained by analyst and reveal variation explained by TP. However, 

omitting these taxa may result in misclassification of sites on the basis of other 

environmental variables, such as organic pollution or general human disturbance (Kahlert et 

al., 2009). Small naviculoid taxa with morphology similar to Sellaphora nigri (De Not.) 

Wetzel and Ector, 2015 (commonly reported as Eolimna minima) often dominate freshwater 

benthic assemblages with organic pollution or human disturbance (van Dam et al., 1994, 

Wetzel et al., 2015). Wetzel et al. (2015) found a high diversity of morphology and wide 

variety of names applied by researchers to taxa in this group and Kahlert et al. (2016) noted 

several European countries where these taxa were a problematic group in intercalibration 

exercises. These small-celled taxa have sometimes been overlooked during enumeration 

when analysts did not use high quality microscopes (Kahlert et al., 2009). Analysts 

contributing to the NRSA dataset in the current study used high quality microscopes and 

were unlikely to have overlooked small-celled taxa. However, training and sharing of 

knowledge among analysts on how to distinguish these difficult taxa during the early stages 

of enumeration would have improved taxonomic consistency (Kahlert et al., 2009, 2016).

Harmonization improved taxonomic consistency and increased the variation explained by 

TP. The variation in assemblage composition explained by TP increased from 8% to about 

20%, improving the detection and precision of the relationship between diatom assemblages 

and TP. The proportion of variation unexplained by TP may seem high, given that we 

selected a subset of OTUs for which random forest analysis identified TP as an important 

predictor. However, our result was greater or similar to that in other studies quantifying 

variation in diatom assemblages explained by TP. Reavie et al. (2014) improved the 

performance of a diatom-based transfer function for the Laurentian Great Lakes by selecting 

taxa with directional responses along the TP gradient that were minimally confounded by 

other environmental variables. They found TP explained 6.8% of the total variation (Reavie 

et al., 2014). The variation in diatom assemblage in a national-scale dataset that was 

explained by all included environmental variables (including TP) using partial canonical 

correspondence analysis was 11% (Potapova and Charles, 2002). In the same study, limiting 
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the analysis to sites from a smaller geographic area (Northern Forests) increased the 

variation explained by environmental variables to 36.5%, but the variation explained by TP 

was not reported (Potapova and Charles, 2002).

A single environmental variable is unlikely to explain all the variation in observational 

assemblage data, but reducing noise related to taxonomic identification errors was important 

for uncovering a more precise relationship between diatom assemblages and TP. Reasons for 

the observed proportion of unexplained variation may include the many interacting factors 

that influence the statistical relationships between in-stream water chemistry and algal 

responses to nutrients, such as spatial and temporal variability in environmental variables 

(Wold and Hershey, 1999), such as light regime, land use, human disturbance, and climate 

(Beck et al., 2017).

Efforts to standardize diatom identification should begin early in bioassessment programs, 

rather than after sample enumeration. While research to better understand poorly 

distinguished groups of diatom taxa continues, it is important to thoroughly document OTUs 

with voucher images (e.g., Bishop et al., 2017). During enumeration, these voucher images 

represent a common resource for analysts to use and contribute to the project flora. Voucher 

flora should adequately represent the variation in morphology that occurs with size 

diminution of diatom valves to help analysts make more consistent identifications. Even 

those taxa that have not yet been described can be documented as OTUs and included in 

statistical analyses with confidence. After enumeration, voucher images offer permanent 

documentation of taxonomic decisions made for individual projects, providing a valuable 

reference for harmonization of datasets over time and across projects that expand the spatial 

scale of the study system. Coordinated communication and harmonization workshops before 

and during enumeration can also be very helpful for minimizing inconsistency. Both Kahlert 

et al. (2016) and Lavoie and Campeau (2016) observed the importance of communication 

between analysts and regional monitoring groups to reduce inconsistencies in diatom 

datasets. Moreover, the shared knowledge gained from intercalibration exercises among 

analysts was more important than analysts’ experience level with diatoms for producing 

more consistent datasets (Kahlert et al., 2009).

Researchers working with datasets created without standardized identification methods or 

combining data from multiple locations or monitoring programs to increase spatial coverage 

can adapt the method described here to assess and minimize taxonomic inconsistency. The R 

scripts and functions help to automate several steps of the harmonization process (https://

doi.org/10.23719/1503373). Documentation of taxonomic updates and justifications for 

making slash groups are available in Appendices A through E, to help researchers improve 

taxonomic consistency in their data. While the specific actions to harmonize taxonomy in 

this study uncovered a more precise relationship between diatoms and TP, different actions 

(e.g., making slash groups, elevating to genus, omitting OTUs) may be appropriate for 

variables other than TP. Quantitative assessment of uncertainty and potential bias in the data 

is important to ensure data quality and appropriate application of large diatom datasets to 

development of water quality indicators.
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5. Conclusions

Harmonization of diatom data through a series of defined steps can re-establish confidence 

in data quality, which has been uncertain in the past because of inconsistent identification 

across different analysts. Although the influence of analyst bias may not be completely 

removed from datasets, this work reveals the extent of the problem and provides a method to 

minimize analyst signal. Reducing analyst signal helped to minimize the confounding effect 

of taxonomic inconsistency across analysts to better detect and elucidate the magnitude of 

association between diatoms and TP. Examination of variation in assemblage composition 

explained by analyst and taxonomic harmonization may improve the quality of large 

datasets. Quantitative assessment of variation in assemblage composition explained by 

analyst provides a transparent indication of potential bias in the dataset. Taxonomic 

harmonization reduces potential bias in the dataset and can improve interpretation of how 

assemblage data associate with environmental variables. Taxonomic harmonization may 

influence conclusions about diatom responses to TP reached by diatom-based monitoring 

and assessment efforts using large datasets involving multiple analysts.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• R tools automated several steps of harmonization.

• Harmonization resolved all taxa with high analyst signal.

• Analyst signal was still detectable, but minimized.

• Revised data revealed a stronger association between diatoms and total 

phosphorus.
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Fig. 1. 
Process of harmonizing the 2008–2009 NRSA diatom dataset using a mixed hierarchy 

approach. Rectangles represent datasets and bold rectangles are revised datasets compared in 

final analyses. NRSA = National Rivers and Streams Assessment; OTU = Operational 

Taxonomic Unit; QA/QC = Quality Assurance/Quality Control. Refer to Table 1 for more 

details on actions taken to produce revised datasets.
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Fig. 2. 
Percent of taxa with analyst as the most important predictor variable explaining variation in 

relative abundance, as determined by random forest analysis, in all dataset versions. The 

abbreviations “postBD,” “m,” and “i” indicate “post-BioData,” “mixed,” and “intermediate,” 

respectively.
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Fig. 3. 
Nonmetric multidimensional scaling ordination plots of sites and ellipsoid hulls (ellipses that 

enclose all points of a group) around sites of NRSA 2008–2009 data: a) mixed1 sites, b) 

mixed1 hulls, c) mixed2 sites, d) mixed2 hulls, e) mixed3 sites, f) mixed3 hulls, g) genus 

sites, h) genus hulls. Colors indicate sites associated with 9 different analysts. Black points 

are centroids of the ellipsoid hulls. See E.1 for ordination plots of original data.
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Table 1.

Modification of the original 2008–2009 NRSA diatom data into revised datasets; for each dataset, information 

is provided on number of samples, number of OTUs, whether revisions were based on results of random 

forest, number of slash groups, number of OTUs elevated to genus, number of OTUs omitted, and an 

explanation of changes made to the dataset to produce the next revised dataset. Datasets in bold compared in 

subsequent analyses.

Dataset Samples OTUs Random 
forest

Slash 
groups

OTUs 
elevated to 

genus

OTUs 
omitted

Explanation of actions taken to produce revised 
datasets

original 2292 1526
a - - - - Harmonized with BioData taxa list to produce 

postBD.

postBD 1722 409 - - - -
Updated 56 OTUs with synonyms and made 65 
slash groups based on references to produce 
mixed1.

genus 1396 90 - - 351 - Elevated all OTUs in mixed1 to genus.

mixed1 1714 351 - 65 - - Added or modified 28 slash groups in mixed1 to 
produce inter1.

inter1
b 1714 306 Y 87 - - Added or modified 8 slash groups in inter1 to 

produce inter2.

inter2 1714 297 Y 86 - -
Modified 1 slash group, elevated 14 Diploneis and 
156 Nitzschia OTUs to genus, and omitted 7 small 
naviculoid OTUs in inter2 to produce inter3.

inter2 1714 297 Y 86 - -

Modified 4 slash groups, elevated 11 Diploneis 
and 130 Nitzschia OTUs to genus, and omitted 7 
small naviculoid OTUs in inter2 to produce 
mixed2 (fewer OTUs elevated to genus compared 
to mixed3).

mixed2 1685 262 Y 74 143 7 -

inter3 1683 259 Y 75 172 7 Modified 1 slash group, elevated 21 Tryblionella 
OTUs to genus in inter3 to produce inter4.

inter4 1683 251 Y 67 193 7 Modified 2 slash groups in inter4 to produce 
mixed3.

mixed3 1683 249 Y 68 193 7 -

Y indicates yes;

dash (−) indicates not applicable;

a
number of OTUs includes taxa with <50 occurrences;

b
“inter” indicates “intermediate dataset”.
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Table 2.

Most frequent variables identified by random forest analysis as the most important predictors explaining 

variation in OTU relative abundance. Variables with the same number of OTUs are listed at the same rank. 

Analyst variable is shown in bold (= 0 OTUs in mixed2 and mixed3). For more details on variables, see 

Appendix A.3.

Dataset (number of OTUs)

Rank mixed1 (351) genus (90) mixed2 (262) mixed3 (249)

1 Conductivity (72) Conductivity (16) Conductivity (60) Conductivity (51)

2 Analyst (39) Longitude (11) Longitude (33) Longitude (36)

3 Longitude (38) TN, Watershed area (7) Potassium, pH, TN (15) TN (16)

4 pH, Sulfate (21) LOWFLOW, pH (6) Sulfate (13) pH (15)

5 Potassium (19) TP, Sulfate (5) BANKFULLFLOW (12) Potassium (13)

6 TN (18) Potassium (4) TP, Nitrate, Watershed area (11) LDCBF_G08, Sulfate (12)

7 LDCBF_G08, Watershed area 
(14)

Analyst, Ammonia, LDCBF_G08 
(3)

Latitude, LOWFLOW (7) TP, LOWFLOW (11)

8 TP (11) Eco9CPL, Latitude, PCT_SAFN, 
Shade (2)

LDCBF_G08, PCT_SAFN (6) Watershed area (10)

9 BANKFULLFLOW (10) BANKFULLFLOW, DOC, 
MAVFLOWV, Nitrate, SiO2, 

Turbidity (1)

Ammonia, Turbidity (5) BANKFULLFLOW (9)

10 LOWFLOW (8) - Dissolved organic carbon, 
Eco9UMW, MAVFLOWV (4)

Nitrate (6)

LDCBF_G08 is log10(streambed critical diameter at bank-full flow).

LOWFLOW and BANKFULLFLOW are bed shear stress at low flow and bank-full flow, respectively.

MAVFLOWV is mean annual flow computed by Vogel method.

TP and TN are total phosphorus and total nitrogen, respectively.

Eco9CPL and Eco9UMW are coastal plains and upper Midwest ecoregions, respectively.

PCT_SAFN is percent of streambed surface consisting of sand and fine sediments.

Dash indicates no additional OTUs remaining.
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Table 3.

Operational taxonomic units (OTUs) identified by random forest as having TP as the most important predictor 

of relative abundance in mixed1 (revised but not corrected for taxonomic inconsistency), mixed2 (harmonized 

with fewer OTUs elevated to genus), mixed3 (harmonized), and genus.

Dataset Operational Taxonomic Units O P

mixed1 Achnanthidium minutissimum (Kütz.) Czarn. 1994 1466 10.4

Ulnaria ulna (Nitzsch) Compère 2001 890 0.60

Gyrosigma acuminatum (Kütz.) Rabenh. 1853 318 0.11

Rhopalodia gibba (Ehrenb.) O.Müll. 1895 280 0.23

Caloneis silicula (Ehrenb.) Cleve 1894 235 0.10

Diadesmis confervacea Kütz. 1844 167 0.26

Navicula viridulacalcis Lange-Bert. in Rumrich, Lange-Bert. and Rumrich 2000 154 0.06

Aulacoseira italica (Ehrenb.) Simonsen 1979 120 0.09

Cymbella cistula (Ehrenb.) O.Kirchner 1878 108 0.09

Sellaphora bacillum (Ehrenb.) D.G.Mann 1989 80 0.02

Sellaphora stroemii (Hustedt) H.Kobayasi 2002 63 0.02

mixed2 Achnanthidium minutissimum/Achnanthidium jackii/Achnanthidium reimeri/Achnanthidium deflexum/
Achnanthidium rivulare 1511 14.4

Gyrosigma acuminatum (Kütz.) Rabenh. 1853 318 0.12

Encyonema microcephala 251 0.30

Diadesmis confervacea Kütz. 1844 167 0.28

Navicula viridulacalcis Lange-Bert. in Rumrich, Lange-Bert. and Rumrich 2000 154 0.06

Diatoma tenuis C.Agardh 1812 112 0.07

Cymbella cistula (Ehrenb.) O.Kirchner 1878 108 0.09

Encyonopsis subminuta Krammer and E.Reichardt 1997 84 0.08

Gyrosigma strigilis (W.Smith) J.W.Griffin & Henfrey 1856 80 0.04

Sellaphora bacillum (Ehrenb.) D.G.Mann 1989 80 0.02

Sellaphora stroemii (Hustedt) H.Kobayasi 2002 63 0.02

mixed3 Achnanthidium minutissimum/Achnanthidium jackii/Achnanthidium reimeri/Achnanthidium deflexum/
Achnanthidium rivulare 1511 14.4

Fragilaria sepes/Ulnaria acus 470 0.34

Gyrosigma acuminatum (Kütz.) Rabenh. 1853 318 0.12

Diadesmis confervacea Kütz. 1844 167 0.28

Navicula viridulacalcis Lange-Bert. in Rumrich, Lange-Bert. and Rumrich 2000 154 0.06

Aulacoseira italica (Ehrenb.) Simonsen 1979 120 0.09

Diatoma tenuis C.Agardh 1812 112 0.07

Encyonopsis subminuta Krammer and E.Reichardt 1997 84 0.08

Gyrosigma strigilis (W.Smith) J.W.Griffin & Henfrey 1856 80 0.04

Sellaphora bacillum (Ehrenb.) D.G.Mann 1989 80 0.02

Sellaphora stroemii (Hustedt) H.Kobayasi 2002 63 0.02

genus Ulnaria (Kütz.) Compère 2001 1169 1.41

Cymbella Agardh 1830 851 0.89
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Dataset Operational Taxonomic Units O P

Gomphoneis Cleve 1894 502 0.57

Encyonopsis Krammer 1997 369 0.45

Diadesmis Kütz. 1844 191 0.33

O is number of occurrences;

P is mean percent abundance.
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